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Production of neutralinos in cascade decays of selectrons with subse-
quent three-body leptonic neutralino decays is discussed. It is shown that
a high degree of polarization of such neutralinos and possibility of recon-
structing their rest frames could provide new tools to verify the Majorana
nature of neutralinos and to measure the CP violation in the neutralino
sector of the MSSM.
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1. Introduction

Supersymmetry (SUSY) is one of the most promising extensions of the
Standard Model (SM) [1] since, among other things, it solves the hierar-
chy problem, provides a natural candidate for dark matter, introduces new
sources of CP violation that are needed to explain baryon asymmetry of the
Universe, etc.

All SUSY theories contain neutralinos, the spin-1/2 Majorana super-
partners of neutral gauge bosons and Higgs bosons, that are supposed to
be one of the lightest supersymmetric particles and can be produced at fu-
ture colliders — the LHC and the ILC. It is of great importance to confirm
that the discovered particles are indeed SUSY partners of the SM particles.
Moreover, precise measurements of their quantum numbers, masses, mixing
angles, couplings and CP violating phases would allow to reconstruct the
fundamental SUSY parameters with great precision and give an insight of
physics at very high energy scales.

∗ Presented at the XXIX International Conference of Theoretical Physics, “Matter to
the Deepest”, Ustroń, Poland, September 8–14, 2005.

† The author is supported by the Polish Committee for Scientific Research (KBN)
Grant 2 P03B 040 24 for years 2003–2005.

(3477)



3478 K. Rolbiecki

In this talk we report on the results obtained in [2], where we provide an
alternative method for probing the Majorana nature of neutralinos and the
CP properties of the neutralino sector [3] of the Minimal Supersymmetric
Standard Model (MSSM). We exploit the charge self-conjugate three body
decays of polarized neutralinos into the lightest neutralino and a lepton pair

χ̃0
2 → χ̃0

1ℓ
+ℓ− , (1)

(where ℓ = e or µ) reconstructed in the χ̃0
2 rest frame. Here we rely on two

crucial observations: neutralinos produced in ẽ±L decays are 100% polarized,

having negative helicity in ẽ−L → e−χ̃0
i and positive helicity in ẽ+

L → e+χ̃0
i [4].

Furthermore, as it was shown in [5], the rest frame of the neutralino χ̃0
2 can

be reconstructed in some cascade decay processes, e.g. e+e− → ẽ+
L ẽ−L →

e+χ̃0
1e

−χ̃0
2, followed by the three-body decay χ̃0

2 → χ̃0
1µ

+µ−. Exploiting
these two possibilities we show a method of probing the Majorana nature
of neutralinos and measuring CP violation in the neutralino sector of the
MSSM. Throughout this work we assume that SUSY is a well established
theory and that the masses of particles are known very precisely. We assume
also that R-parity is conserved and hence that the lightest neutralino χ̃0

1 is
the lightest supersymmetric particle (LSP) and escapes detection.

2. Neutralino mixing

In the MSSM, the four neutralino mass eigenstates χ̃0
i (i = 1, 2, 3, 4) are

the mixtures of the neutral UY(1) and SUL(2) gauginos, B̃ and W̃ 3, and

two Higgsinos H̃0
1 and H̃0

2 . In the gauge eigenstate basis (B̃, W̃ 3, H̃0
1 , H̃0

2 )
the neutralino mass matrix has the form

M =











M1 0 −mZcβsW mZsβsW

0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ

mZsβsW −mZsβcW −µ 0











, (2)

where M1 and M2 are the UY(1) and SUL(2) gaugino mass parameters,
respectively, µ is the Higgsino mass parameter, and tan β = v2/v1 is the
ratio of the vacuum expectation values of the two neutral Higgs fields which
break the electroweak symmetry.

By redefinition of the fields, without loss of generality M2 can be taken
real and positive, so that the two remaining physical phases may be at-
tributed to M1 and µ:

M1 = |M1| eiΦ1 , µ = |µ| eiΦµ (0 ≤ Φ1, Φµ < 2π) . (3)
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For the symmetric matrix M, one unitary matrix N is sufficient to diag-
onalize it and to rotate the gauge eigenstate basis (B̃, W̃ 3, H̃0

1 , H̃0
2 ) to the

mass eigenstate basis of the Majorana fields χ̃0
i

Mdiag = N∗MN † . (4)

The mass eigenvalues mi (i = 1, 2, 3, 4) in Mdiag can be chosen real and pos-
itive by a suitable definition of the unitary matrix N and the corresponding
mass eigenstates have the form

χ̃0
i = Ni1B̃ + Ni2W̃

3 + Ni3H̃
0
1 + Ni4H̃

0
2 . (5)

In the CP conserving case, i.e. when all elements of the mass matrix (2) are
real, for a given neutralino χ̃0

i the mixing matrix elements Niα are all either
real or purely imaginary.

3. Production and decays of neutralinos

Neutralinos can be produced in high energy colliders either directly or
in cascade decays of other particles. We focus here on neutralinos produced
in decays of selectrons ẽ±L .

In the e+e− collider production of selectrons occurs via an s-channel ex-
change of γ and Z bosons or a t-channel exchange of sneutrino. Contribution
from the Higgs bosons exchange is strongly suppressed by the tiny electron
mass, hence it can be neglected. We focus on the production process fol-
lowed by selectrons decays to the lightest neutralino and the second lightest
neutralino, i.e.

e+e− → ẽ+
R ẽ−L → e+χ̃0

1e
−χ̃0

2 ,

e+e− → ẽ+
L ẽ−L → e+χ̃0

1e
−χ̃0

2 , (6)

with a subsequent decay of neutralino χ̃0
2 as in Eq. (1).

Another possibility for studying decays of 100% polarized neutralinos
would be at a photon linear collider running in the eγ mode, a possible
extension of the e+e− linear collider programme. The possibility of having

e−γ → χ̃0
1ẽ

−
L → χ̃0

1e
−χ̃0

2 (7)

would be particularly useful if the selectron pair production at e+e− colli-
sions turns out to be kinematically shut. Nevertheless, this process needs
further studies to assess the possibility of having the χ̃0

2 neutralino rest frame
fully reconstructed in a realistic experimental setup.

Three diagrams contributing to the three-body leptonic decay of neu-
tralinos χ̃0

2 → χ̃0
1ℓ

+ℓ− are shown in Fig. 1. We neglect the exchange of
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neutral Higgs bosons since their coupling to e and µ are suppressed by small
lepton masses. After a simple Fierz transformation of slepton exchange con-
tributions the decay matrix element has a vector-current product form:

D
(

χ̃0
2 → χ̃0

1ℓ
+ℓ−

)

=
e2

m2
2

Dαβ

[

ū(χ̃0
1)γ

µPαu(χ̃0
2)

][

ū(ℓ−)γµPβv(ℓ+)
]

, (8)

with the bilinear charges Dαβ (α, β =L,R) containing internal propagators
and couplings [2].

χ̃0
2

χ̃0
1

Z
ℓ−

ℓ+

χ̃0
2

ℓ−

ℓ̃L,R
χ̃0

1

ℓ+

χ̃0
2

ℓ+

ℓ̃L,R
χ̃0

1

ℓ−

Fig. 1. Diagrams contributing to the leptonic three-body neutralino decay χ̃0
2 →

χ̃0
1ℓ

+ℓ−.

In the rest frame of the decaying neutralino the neutralino χ̃0
2 spin vector

n̂ = (0, 0, 1) defines the direction of the z-axis. The x–z plane and the angle
θ are fixed by the momentum vector of the negative lepton. The angle α
determines the neutralino decay plane, so that by rotating this plane by −α
around ℓ− momentum direction it is brought to the x–z plane, as shown
in Fig. 2. In this reference frame, after neglecting lepton masses, we can
write the differential decay distribution in terms of two dimensionless energy
variables, x− = 2Ee−/m2, x+ = 2Ee+/m2, and two angles, θ and α, as

d4Γ

dx−dx+dzdα
=

α2 m2

16π2

[

F0(x−, x+) + (q̂− · n̂)F1(x−, x+)

+ (q̂+ · n̂)F2(x−, x+) + n̂ · (q̂− × q̂+) F3(x−, x+)

]

, (9)

where z = q̂− · n̂ = cos θ, q̂± = ~q±/|~q±|, and ~q± are the leptons momenta in
the χ̃0

2 rest frame. The four kinematic functions Fi(x−, x+) (i = 0-3) depend
on the dimensionless energy variables, x− and x+, and the bilinear charges,
but not on the orientation angles θ and α.

By applying the CP transformation to the decay matrix element (8) we
can derive two relations between bilinear charges, which are consequences of
the Majorana nature of neutralinos:
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z

x

ℓ−, x−

ℓ+, x+

χ̃0
1

θ

χ

n̂

α

Fig. 2. Kinematic configuration of momenta and the spin vector in the neutralino

χ̃0
2 rest frame.

DLR = η1η2DRR(t ↔ u) ,

DRL = η1η2DLL(t ↔ u) , (10)

where η1,2 = ±i are the intrinsic CP parities of χ̃0
1,2, respectively [7]. These

lead to the following CP relations for the kinematic functions (9):

F0(x−, x+) = +F0(x+, x−) ,

F1(x−, x+) = −F2(x+, x−) ,

F3(x−, x+) = −F3(x+, x−) . (11)

On the other hand, applying the CPT̃1 transformation to the decay
matrix element results in the following relations among the bilinear charges:

DLR = −D∗
RR(t ↔ u) ,

DRL = −D∗
LL(t ↔ u) , (12)

in the approximation of neglecting particle widths. Consequently for the
kinematic functions we get:

F0(x−, x+) = +F0(x+, x−) ,

F1(x−, x+) = −F2(x+, x−) ,

F3(x−, x+) = +F3(x+, x−) . (13)

1 The naive time reversal transformation T̃ reverses directions of all 3-momenta and
spins, but does not exchange the initial and final states.
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4. Numerical analyses

For the numerical analyses of the results derived in Sec. 3 we adopt
an MSSM scenario defined at the electroweak scale by the following set of
parameters:

|M1| = 80GeV, M2 = 158GeV, µ = 415GeV, tan β = 10 . (14)

In this analysis we take µ to be real and vary only the phase Φ1 of M1. For
the neutralino masses we find:

mχ̃0
1

= 78.1GeV, mχ̃0
2

= 148.5GeV, (15)

and for the selectron and sneutrino masses we take:

mẽ
L

= 207.7GeV, mẽ
R

= 173.1GeV, mν̃e
= 192.1GeV . (16)

The cross sections for selectron pair production processes with unpolarized
e+e− beams at

√
s = 500 GeV and the branching ratios relevant for our

analysis are as follows [8]:

σ{ẽ±R ẽ∓L } = 113.5 fb , σ{ẽ+
L ẽ−L } = 80.7 fb ,

BR(ẽL → χ̃0
2e) = 28.4% , BR(ẽL → χ̃0

1e) = 21.4% ,

BR(χ̃0
2 → χ̃0

1e
+e−) = 4.5% , BR(χ̃0

2 → χ̃0
1µ

+µ−) = 4.6% . (17)

Approximately 2 × 105 events of ẽ±R ẽ∓L and ẽ+
L ẽ−L production at an inte-

grated luminosity of 1000 fb−1 are expected. After combining with the
branching ratios in Eqs. (17) a sufficient number of events for the decays
χ̃0

2 → χ̃0
1e

+e− and χ̃0
2 → χ̃0

1µ
+µ− can be selected. In our Monte Carlo anal-

ysis we conservatively assume that at least 1000 neutralino decay events can
be reconstructed.

4.1. Lepton energy distribution

The spin averaged differential decay distribution reads:

d2Γ

dx−dx+

∝ F0(x−, x+) . (18)

The first relation of Eqs. (11) implies that the function F0 has to be symmet-
ric with respect to the energy variables x+ and x− in the CP invariant case
(and to a good approximation in the CP non-invariant case). Hence one of
the clear signatures of the Majorana nature of neutralinos is the symmetric
distribution of events in the (x−, x+) Dalitz plane [6].

The left panel of Fig. 3 shows the Dalitz plot of the decay χ̃0
2 → χ̃0

1ℓ
+ℓ−

for the parameter set (14) with Φ1 = 0. We find that the asymmetry in the
number of events with sign(x− − x+) = − and sign(x− − x+) = + is small,
∆Nev = 24 which is within the statistical error of ∆Nstat =

√
Nev ≃ 32 for

Nev = 1000.
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Dalitz Plot
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Fig. 3. Left: the Dalitz plot for the neutralino χ̃0
2 decay in the (x

−
, x+) Dalitz

plane. Middle: the normalized lepton angle distribution (19); the solid line is for

the negative charge lepton and the dotted line for the positive charge lepton. Right:

the Φ1 dependence of the slope parameter η
−

for the parameter set (14).

4.2. Lepton angular distribution

Another interesting distribution is the lepton angle distribution with
respect to the neutralino polarization vector; the angle distribution with
respect to the beam direction in the e+e− center of mass frame is discussed
in [3]. The normalized lepton angle distribution in terms of θ± (defined as
the polar angle between the ℓ± momenta and n̂) can be written as

1

Γ

dΓ

dz±
=

1

2
(1 ± η± z±) , (19)

with z± = q̂± · n̂ = cos θ±. As a result of the CPT̃ invariance and the
Majorana nature of neutralinos we get η− = η+, irrespective of whether the
theory is CP invariant or not.

The middle panel of Fig. 3 shows the lepton angle distribution for the
parameter set (14) with the phase Φ1 = 0. A simple numerical analysis

based on the number of events Nev = 1000 shows that the CPT̃ relation and
the Majorana nature of neutralinos can be confirmed within 1-σ statistical
uncertainty of about 10% for the range2 of | cos θ±| < 0.8. The dependence
of the slope parameter η− on the Φ1 phase for the parameter set (14) is
shown in the right panel of Fig. 3.

4.3. Lepton invariant mass and opening angle distribution

The next interesting observables are the lepton invariant mass and the
lepton opening angle distributions. They give us the possibility to check
the relative CP parities of two neutralinos involved in the decay (1). Near

2 The cut may be necessary to avoid distortions of the ℓ
± distributions by experimental

selection criteria [9].
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the end point of the lepton invariant mass distribution the neutralino χ̃0
1

is produced nearly at rest. In this case we can expand the squared matrix
element in powers of the neutralino velocity β ∼

√

1 − mℓℓ/(m2 − m1):

|D|2 ∼ r21 (1 − r21)
2

[

ℜ(DLL)2 + ℜ(DLR)2
]

+ O(β2) , (20)

where r21 = m1/m2. If neutralinos χ̃0
1 and χ̃0

2 are of the same (oppo-
site) parity then all bilinear charges are purely real (purely imaginary) and
the invariant mass distribution exhibits a characteristic steep S-wave (slow
P-wave) decrease proportional to β (β3) near the maximum of mℓℓ, as can
be seen in the left panel of Fig. 4.
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Fig. 4. The lepton invariant mass distribution (left panel) and the opening angle

distribution (middle panel) in the three-body leptonic neutralino decay. The solid

lines are for Φ1 = 0, (when neutralinos have the same CP parities) and the dotted

lines for Φ1 = π, (when neutralinos have the opposite CP parities). The right

panel: the Φ1 dependence of the CP-odd and CPT̃-even asymmetry ACP of the

triple scalar product for the parameter set (14).

Another way of probing the relative CP parities of two neutralinos is the
opening angle distribution. The invariant mass of two leptons with respect
to the opening angle χ of the lepton pair is given by

m2
ℓℓ =

m2
2

2
x+x− (1 − cos χ) . (21)

At its maximum, for cos χ = −1, directions of lepton momenta are opposite.
Because the helicities of leptons coupled to a vector current are opposite,
the angular momentum conservation forces the orbital angular momentum
to be zero. On the other hand, since the selection rule of the orbital angular
momentum L by the CP symmetry reads:

1 = −η1η2(−1)L , (22)
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for neutralinos of the same (opposite) parity the opening angle distribution
is enhanced (suppressed) near cos χ = −1, as can be seen in the middle
panel of Fig. 4.

4.4. CP-odd triple spin-momentum product

If CP is violated, using the CP and CPT̃ relations (11) and (13) we can

construct a CP-odd but CPT̃-even distribution:

FCP(x−, x+) =
1

2
[F3(x−, x+) + F3(x+, x−) ] . (23)

We observe in (9) that this distribution is connected with a triple neutralino
spin and leptons momenta product:

OCP = n̂ · (q̂+ × q̂−) . (24)

With this observable we can construct a CP-odd asymmetry:

ACP ≡ N(OCP > 0) − N(OCP < 0)

N(OCP > 0) + N(OCP < 0)

=

∫

D

1
2
sin χFCP(x−, x+) dx−dx+

∫

D

F0(x−, x+) dx−dx+

, (25)

where D denotes the kinematically allowed (x−, x+) region in the Dalitz
plot, see Fig. 3.

The right panel of Fig. 4 shows the Φ1 dependence of the asymmetry ACP.
This asymmetry would enable us to measure the CP violating phases in the

neutralino system with a 1-σ statistical uncertainty of
√

(1 − A2
CP)/Nev ≃

3.1% for 1000 events.

5. Summary

The leptonic decay of a polarized neutralino in its rest frame can provide
us with a powerful tool for probing the Majorana nature of neutralinos and
their CP properties.
The Majorana nature of neutralinos can be checked through:

• the lepton energy distribution,

• the lepton angle distribution with respect to the neutralino polariza-
tion vector.
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The relative CP parity of two neutralinos can be identified using:

• the threshold behavior of the lepton invariant mass distribution,

• the opening angle distribution of the lepton pair.

Finally, if CP is violated, one can measure CP violating phases in the neu-
tralino system using the CP-odd quantity built from the neutralino spin
vector and two lepton momenta.

I would like to thank the organizers for their hospitality during the con-
ference and for the possibility to give this talk. I would also like to thank
my collaborators on this project: S.Y. Choi, B.C. Chung, J. Kalinowski and
Y.G. Kim.
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