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Perturbative unitarity for W+

L
W−

L
→ W+

L
W−

L
scattering is discussed

within the Randall–Sundrum theory with two 3-branes. It is shown that
the exchange of massive 4D Kaluza–Klein gravitons leads to amplitudes
growing linearly with the CM energy squared. If the curvature, m0, of the
metric is too small, the gravitational contributions lead to a violation of
unitarity. However, m0 must be small enough relative to the 5D Planck
mass, MPl 5, to avoid quantum gravitational effects. As a result, we find
that there is only a small range of m0/MPl for which the model is con-
sistent. The width of the window is determined by the size of the 4D
cutoff of the theory. The extension of the Randall–Sundrum scenario to
include curvature-Higgs mixing is also considered and limits on the mixing
parameter are determined.

PACS numbers: 11.10.Kk, 04.50.+h, 11.15.–q, 11.80.Et

1. Introduction

The Standard Model (SM) of electroweak interactions describes success-
fully almost all existing experimental data, however the model suffers from
many theoretical drawbacks. One of these is the hierarchy problem: namely,
the SM cannot consistently accommodate the weak energy scale O(1 TeV)
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and a much higher scale such as the Planck mass scale O(1019 GeV). There-
fore, it is commonly believed that the SM is only an effective theory emerg-
ing as the low-energy limit of some more fundamental high-scale theory that
presumably could contain gravitational interactions. In the last few years
there have been many models proposed that involve extra dimensions. These
models have received tremendous attention since they could provide a so-
lution to the hierarchy problem. One of the most attractive attempts has
been formulated by Randall and Sundrum (RS) [1], who postulated a 5D
universe with two 4D surfaces (“3-branes”). All the SM particles and forces
with the exception of gravity are assumed to be confined to one of those
3-branes called the visible brane. Gravity lives on the visible brane, on the
second brane (the “hidden brane”) and in the bulk. All mass scales in the
5D theory are of order of the Planck mass. By placing the SM fields on the
visible brane, all the order Planck mass terms are rescaled by an exponential
suppression factor (the “warp factor”) Ω0 ≡ e−m0b0/2, which reduces them
down to the weak scale O(1 TeV) on the visible brane without any severe fine
tuning. To achieve the necessary suppression, one needs m0b0/2 ∼ 35. This
is a great improvement compared to the original problem of accommodating
both the weak and the Planck scale within a single theory.

The model is defined by the 5D action:

S = −
∫

d4x dy
√

−ĝ

(
R̂

ǫ2
+ Λ

)

+

∫
d4x

√−ghid(Lhid − Vhid) +

∫
d4x

√−gvis(Lvis − Vvis) . (1)

In order to obtain a consistent solution to the Einstein’s equations cor-
responding to a low-energy effective theory that is flat, the branes must
have equal but opposite cosmological constants and these must be pre-
cisely related to the bulk cosmological constant; Vhid = −Vvis = 12m0

ǫ2
and

Λ = −12m2

0

ǫ2 . Then the following metric is a solution of the Einstein’s equa-
tions:

ĝbµbν(x, y) =

(
e−2m0b0|y|ηµν | 0

0 | −b2
0

)
. (2)

After an expansion around the background metric we obtain the following
non-standard gravity-matter interactions

Lint = − 1

Λ̂W

∑

n 6=0

hn
µνT µν − φ0

Λφ
T µ

µ , (3)

where hn
µν(x) are the Kaluza–Klein (KK) modes of the graviton field hµν(x, y),
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φ0(x) ≡
√

6MPle
−m0(b0+b(x))/2 is the radion field, Λ̂W ≃

√
2MPlΩ0, where

Ω0 = e−m0b0/2, and Λφ =
√

3Λ̂W .
The key advantage of the RS model is a possibility of solving the hier-

archy problem. In particular, the 4D electro-weak scale is given in terms of
the O(MPl) 5D Higgs vev, v̂ , by the following relation:

v0 = Ω0v̂ = e−m0b0/2v̂ ∼ 1 TeV for m0b0/2 ∼ 35 . (4)

The RS model can be naturally extended (for details see [2] and [3]) by
including mixing between gravitational end electroweak degrees of freedom:

Sξ = ξ

∫
d4x

√
gvisR(gvis)H

†H , (5)

where R(gvis) is the Ricci scalar for the metric induced on the visible brane.
The action (5) leads to the following exotic kinetic terms for the Higgs boson
(h0) and radion (φ0) fields:

L = −1

2

{
1 + 6γ2ξ

}
φ0 φ0−

1

2
φ0m

2
φ0

φ0−
1

2
h0( +m2

h0
)h0−6γξφ0 h0 , (6)

where γ ≡ v0/Λφ.
The states that diagonalize both the kinetic energy and mass terms and

have canonical normalization are h and φ:

h0 =

(
cos θ − 6ξγ

Z
sin θ

)
h +

(
sin θ +

6ξγ

Z
cos θ

)
φ ≡ dh + cφ ,

φ0 = − cos θ
φ

Z
+ sin θ

h

Z
≡ aφ + bh ,

where the mixing angle θ is defined through

tan 2θ ≡ 12γξZ
m2

h0

m2
φ0

− m2
h0

(Z2 − 36ξ2γ2)
, (7)

for Z2 ≡ 1+6ξγ2(1−6ξ). The diagonal Higgs and radion masses are denoted
by mh and mφ, respectively.

It is useful to note that in order to have Z2 > 0, ξ must lie in the region:

ξmin ≡ 1

12

(
1 −

√
1 +

4

γ2

)
≤ ξ ≤ 1

12

(
1 +

√
1 +

4

γ2

)
≡ ξmax . (8)

Also needed are the vector boson couplings to scalars. After adopting the
diagonal basis for the Higgs boson and radion, these couplings relative to

SM strength are gV V h = d + γb and gV V φ = c + γa (V = W,Z).
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2. Vector boson scattering

Let us begin by reviewing the limit on the Higgs-boson mass in the
SM from requiring that W+

L W−
L → W+

L W−
L scattering be unitary at high

energy. The constraint arises when we consider the elastic scattering of
longitudinally polarized W bosons. The amplitude can be decomposed into
partial wave contributions: T (s, cos θ) = 16π

∑
J(2J + 1)aJ (s)PJ (cos θ),

where aJ(s) = 1
32π

∫ 1
−1 T (s, cos θ)PJ(cos θ)d cos θ . In the SM, the partial

wave amplitudes take the form aJ = AJ

(
s

m2

W

)2
+ BJ

(
s

m2

W

)
+ CJ , where

s is the center of mass energy squared. Contributions that are divergent in
the limit s → ∞ appear only for J = 0, 1 and 2. The A-terms vanish by
the virtue of gauge invariance, while, as is very well known, the B-term for
J = 1 and 0 (B2 = 0) arising from gauge interaction diagrams is canceled by
Higgs-boson exchange diagrams. In the high-energy limit, the result is that
aJ asymptotes to an mH-dependent constant. Imposing the unitarity limit
of |Re aJ | < 1/2 implies the Lee–Quigg–Thacker bound [4] for the Higgs
boson mass: mH <∼ 870 GeV.

We will now show that within the RS model and its extensions the uni-
tarity requirement yields important constraints on model parameters when
gravitational contributions to W+

L W−
L → W+

L W−
L scattering are included.

The various contributions to the amplitude are given in Table I. From the
table, we see that the SM high-energy divergent contributions are confined
to J = 0, 1 and 2; however, J = 2 contributions cancel between the t-channel
and contact terms, so that effectively the SM contributes to J = 1 and 0
only. Further, in the SM limit where R2 = 1, all the SM contributions can-
cel at O(s2) and O(s1). Note that the leading O(s) t-channel G exchange
does not yield a well-defined partial-wave amplitude as the corresponding
integral over cos θ diverges at cos θ = ±1. However, since the graviton being
exchanged is massive the full t-channel contribution leads to finite partial-
wave decomposition with well-defined aJ .

It is important to note that even though graviton exchange leads to the
same divergence as the SM vector boson and the contact interactions, i.e.

∝ s, its angular dependence is different (J = 2 vs J = 1); therefore, the
graviton cannot replace the Higgs boson and restore correct high-energy
unitary behavior of the amplitude.

As is well known, the cancellation of the O(s2) contributions in Table I
between the contact term and s- and t-channel gauge-boson exchange di-
agrams is guaranteed by gauge invariance. Even more remarkable is the
cancellation of the most divergent graviton exchange terms. Indeed, a naive
power counting shows that the graviton exchange can yield terms at O(s5),
while the actual calculation shows that only the linear term ∝ s survives;
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TABLE I

The leading contributions to the W+

L
W−

L
→ W+

L
W−

L
amplitude for R2 ≡ g2

V V h +
g2

V V φ = 1 − γ2(1 − 6ξ)2/Z2. G denotes a single KK graviton.

diagram O( s2

v4 ) O( s1

v2 )

γ, Z s-channel − s2

g2v4 4 cos θ − s
v2 cos θ

γ, Z t-channel − s2

g2v4 (−3 + 2 cos θ + cos2 θ) − s
v2

3

2
(1 − 5 cos θ)

WWWW contact − s2

g2v4 (3 − 6 cos θ − cos2 θ) − s
v2 2(−1 + 3 cos θ)

G s-channel 0 − s

24Λ̂2

W

(−1 + 3 cos2 θ)

G t-channel 0 − s

24Λ̂2

W

13+10 cos θ+cos
2 θ

−1+cos θ

(h-φ) s-channel 0 − s
v2 R2

(h–φ) t-channel 0 − s
v2

−1+cos θ
2

R2

all the potentially divergent terms O(s5, s4, s3, s2) cancel. The mechanism
behind the cancellation is as follows. In the high-energy region the graviton
propagator behaves as k2. The graviton couples to the energy-momentum
tensor Tµν , so the amplitude for a single graviton exchange is of the form
TµνDµν,αβTαβ . Since the energy-momentum tensor is conserved, kµTµν = 0,
all the contributions from the numerator of the graviton propagator which
are proportional to the momentum do not contribute. (Note that for this ar-
gument to apply, all the external particles must be on their mass shell.) This
removes two potential powers of s in the amplitude. In order to understand
the disappearance of two additional powers of s, let us calculate the energy-
momentum tensor for the final state consisting of a pair of longitudinal W
bosons. A direct calculation in the asymptotic region yields

〈0|T µν |W+
L W−

L 〉 ∝ s . (9)

Note that the factor 1/m2
W , which comes from the vector boson polarization

vectors has been canceled by two powers of mW coming from on-shellness
of the longitudinal vector bosons, i.e. m2

W replaces s which originate from
T µν1. In short, when the two vertices are contracted with the propagator of
the virtual graviton, four potential powers of s disappear leading to a single
power of s 2. These arguments apply equally to s- and t-channel diagrams.

1 For transverse W ’s the energy-momentum tensor would also behave as s, however
this time in accordance with naive power counting. Note that for transverse vector
bosons the polarization vector does not provide any additional power of momentum.
Consequently, for graviton exchange, in contrast to gauge theories, amplitudes grow
as s both for longitudinal and transverse polarization of the vector bosons involved.
For an illustration of a calculation for transverse vector boson polarizations, see [5].

2 For fermions in either initial or final state the amplitude behaves as s
1/2.
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For the divergent (∝ s) and constant terms we obtain the following
contributions from graviton, SM vector bosons and φ–h exchange for the
J = 2, 1 and 0 partial waves:

a2 = − 1

192πΛ̂2
W

{[
91 + 30 log

(
m2

G

s

)]
s +

[
241 + 210 log

(
m2

G

s

)]
m2

G

+32g2v2

}

+ O(s−1) , (10)

a1 = − 1

384πΛ̂2
W

{[
73 + 36 log

(
m2

G

s

)]
s + 36

[
1 + 3 log

(
m2

G

s

)]
m2

G

+37g2v2

}

+
1

32π

[
s

v2
(1 − R2) + R2g2 +

12 cos2 θW − 1

2 cos2 θW
g2

]
+O(s−1) ,

(11)

a0 = − 1

384πΛ2
W

{[
11 + 12 log

(
m2

G

s

)]
s −

[
10 − 12 log

(
m2

G

s

)]
m2

G

+19g2v2

}

+
1

32π

[
s

v2
(1 − R2) + R2g2 − 4

m2
scal

v2

]
+ O(s−1) , (12)

where m2
scal = g2

V V hm2
h + gV V φm2

φ. We note that 1 − R2 = γ2(1 − 6ξ)2/Z2

deviates from 0 as a consequence of the non-orthogonality of the “rotation”
which diagonalizes (with canonical normalization) the Higgs-radion sector.
Only in the conformal limit of ξ = 1/6 does the scalar kinetic mixing have no
physical consequences. Eqs. (10)–(12) show that radion mixing gives rise to
incomplete cancellation of the s1/v2 terms3. Also note that unitarity limits
are sensitive to the weighted Higgs-radion mass: m2

scal = g2
vvhm2

h + g2
vvφm2

φ.
It should be emphasized that the mixing effects are not directly related

to the particular gravitational background involved. Thus, in this respect,
the RS model serves only as a possible illustration. In contrast, the spec-
trum of heavy gravitons is an intrinsic feature of the warped nature of the
background and directly impacts the unitarity analysis.

To analyze the consequences of unitarity constraints, it is crucial to keep
in mind that we are dealing with a cutoff theory that should only be re-
liable, in particular unitary, for energies up to some fraction of the cutoff.
Constraints on the theory will arise when the increasing s/v2 terms lead to
a violation of unitarity for energies below the cutoff scale. To illustrate this
in more detail, let us first consider what Eq. (12) implies if KK graviton

3 This was also noticed in [6].
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exchanges are neglected. The leading terms for a0 are:

a0 =
1

32π

[
f(s) + g2R2 − 4

m2
scal

v2
+ graviton contributions

]
, (13)

where [3,6] f(s) = s
v2 (1−R2) = − s

Λ2

φ

[
(1−6ξ)

Z

]2
, with Z2 ≡ 1+6ξγ2(1− 6ξ).

For ξ = ξmax, ξmin [see Eq. (8)] the leading contribution f varies between
10 and 100 (100 and 700) for mh = 0.1 TeV and mφ = 0.2 ÷ 1.0 TeV if
Λφ = 2 TeV (5 TeV) for s = (2Λφ/3)2, while, at the same time, R remains
within a reasonable perturbative range of 1 ÷ 2. As a result, the range of ξ
for which the theory is unitary for s up to a cutoff scale of O(Λ2

φ) is limited.
In Fig. 1, we plot the boundaries of the ξ ranges consistent with unitarity,

|Re a0,1| < 1/2, for s < smax = Λ̂2
W . In order to separate the radion effect,

the graviton contribution is neglected in the figure. The vertical boundaries
in Fig. 1 are those from the unitarity limit; they are essentially independent
of mφ. The hour-glass-shaped boundaries are from requiring theoretical
consistency of the model. The exact bounds on ξ depend on the value of
smax. If the higher cutoff of smax = Λ2

φ is employed, the restrictions are more
severe. It is worth noticing that for low mh, the mass-dependent terms are
not very important. It is only as mh approaches the SM unitarity limit that
the mass-dependent terms become a really significant factor.

Fig. 1. For a variety of Λφ values, we plot the bounds on ξ as a function of mφ

coming from theoretical consistency and unitarity when KK gravitons are omitted.

We have taken mh = 120 GeV and used smax = Λ̂2
W for the effective theory. The

vertical boundaries are those arising from the unitarity constraints. The hour-

glass-shaped portions of the boundary arise from theoretical consistency of the

model.
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Let us now discuss pure KK graviton effects. The relevant parameters

here are Λ̂W ≃
√

2MPlΩ0, mn = m0xnΩ0, and Λφ =
√

6MPlΩ0 =
√

3Λ̂W ,
where mn is the mass of the n-th graviton KK mode and the xn are the
zeroes of the Bessel function J1 (x1 ∼ 3.8, x2 ∼ 7.0). To solve the hierarchy
problem, Ω0MPl = e−m0b0/2MPl should be of order of TeV. A useful relation
following from the above equations is:

mn = xn
m0

MPl

Λφ√
6

. (14)

If the ratio m0/MPl was known then all the KK masses would be determined
and therefore our predictions for aJ would be unique. However, to set the
scale of m0 independently of b0 (m0b0 ≃ 70 is required by the hierarchy prob-
lem) requires additional arguments. For our discussion, the most important
restriction is that reliability of the RS approach requires [1] m0/MPl ≪ 1 in

order that the ratio of the bulk curvature m0 to MPl 5,
m0

MPl 5

∼
[

m0

MPl

]2/3
, is

small.

Summing over all KK excitations with 2mn <
√

smax, 4 keeping only the
m2

G-dependent terms in a0,1,2 in Eqs. (10), (11) and (12), we obtain the re-
sults for the partial wave amplitudes shown in Fig. 2. When m0/MPl is small,
Eq. (14) implies that one is summing over a very large number of KK ex-
citations. As m0/MPl increases, the number summed over slowly decreases.
One finds a requirement of m0/MPl >∼ 0.05 for smax = Λ2

φ and of >∼ 0.01 for

smax = Λ̂2
W . These lower bounds on m0/MPl are quite strong and interesting

given that the RS model should not be trusted [1] for m0/MPl > 0.1. Using

smax = Λ̂2
W , only the range 0.01 < m0/MPl < 0.1 is consistent with both

bounds. An alternative view is also possible. Namely, if m0/MPl is known,
then the perturbative unitarity argument can be adopted to determine the
cutoff of the effective 4D theory.

Now, let us combine graviton KK and Higgs–radion exchanges. The
effects are, of course, most dramatic if the m0/MPl values are chosen near the
lowest values for which unitarity is satisfied with KK graviton contributions

only. So, for smax = Λ2
φ, we employ m0/MPl = 0.070 and for smax = Λ̂2

W ,

we use m0/MPl = 0.019. The limits on ξ for Λφ = 2 TeV and 5 TeV are
displayed in Fig. 3, where a0,1,2 are all required to be within unitarity limits.

4 This choice of the highest KK modes included in the sum is somewhat arbitrary.
However, it turns out that the major part of the result comes from the lowest KK
states so that the precise point at which the KK sum is terminated is not very relevant.
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Fig. 2. The amplitudes a0,1,2(s = Λ2
φ) and a0,1,2(s = Λ̂2

W ) are plotted as functions

of m0/MPl, after summing: aJ(s) =
∑

n,2mn<
√

s aJ(mG = mn, s). The plotted

values of ai terminate when m0/MPl is such that 2m1 exceeds Λφ =
√

3Λ̂W or Λ̂W ,

for the two respective s values above. Higgs–radion terms are not included.

Fig. 3. The unitarity limits on ξ after summing over all KK graviton excitations

with 2mn <
√

s.

3. Discussion and conclusions

We have discussed perturbative unitarity for W+
L W−

L → W+
L W−

L within
the Randall–Sundrum theory with two 3-branes and shown that the ex-
change of massive 4D Kaluza–Klein gravitons leads to amplitudes growing
linearly with the CM energy squared. We have found that the gravitational
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contributions can cause a violation of unitarity for s below the cutoff of
the theory if the curvature, m0, of the RS background metric is too small.
On the other hand, m0, must be small enough relative to the 5D Planck
mass, MPl 5 in order to avoid quantum gravitational effects. Consequently,
there is only a small range of m0/MPl for which the model is fully consis-
tent. The width of the window is determined by the size of the 4D cutoff of
the theory. The extension of the Randall–Sundrum scenario to include the
curvature-Higgs mixing was also considered. We found that the limits on ξ
derived from unitarity could be altered by the inclusion of the full tower of
KK graviton exchanges for certain choices of m0/MPl.
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