
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 12

POMERON LOOPS IN HIGH ENERGY QCD∗
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We discuss the QCD evolution equations governing the high energy
behavior of scattering amplitudes at the leading logarithmic level. This
hierarchy of equations accommodates normal BFKL dynamics, Pomeron
mergings and Pomeron splittings. Pomeron loops are built in the course of
evolution and the scattering amplitudes satisfy the unitarity bound.
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1. Introduction

Over the last three decades, one of the main active fields of research
within QCD has been the study of its behavior in the high energy limit. In
general, a scattering process will be considered as a high energy one, when
the (square of the) total energy s of the colliding (hadronic) objects is much
larger than the momentum transfer Q2 between them. At the same time one
hopes to approach the problem via analytical methods, since in this limit
there is the possibility of a large kinematical window s ≫ Q2 ≫ Λ

2
QCD,

where one can apply weak coupling methods.
The first approach to the problem was done in the mid seventies when

the BFKL (Balitsky, Fadin, Kuraev, Lipatov) equation [1], one of the central
equations governing the approach to high energy, was derived. It was under-
stood that certain Feynman diagrams in perturbation theory are enhanced
by logarithms of the energy and therefore they have to be resummed. This
equation was solved in a special case (for the forward amplitude), and a
total cross section growing as a power of the energy emerged. This growth
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may not be so surprising (at least) a posteriori, since at high energies the
wavefunction of a hadron can contain a large number of partons, mainly
gluons, due to the available phase space for virtual fluctuations and due to
the triple-gluon coupling in QCD. In general, QCD at high energy will be
characterized by high densities and increasing (but constraint) cross sections.

Afterwards, in the early to mid eighties, it was realized that one needs
to find a mechanism to tame the too steep increase of the partonic densi-
ties as predicted by the BFKL equation and the concept of saturation was
introduced as a dual description of unitarity in high energy scattering. The
gluon density at a given momentum should never exceed a value of order
O(1/αs), and as the mechanism to fulfill this saturation bound a non-linear
term was proposed [2] to be added to the (linear) BFKL equation. Later
on a proof of that equation in a special limit (the double logarithmic limit,
which nowadays is known not to be a good approximation for a high den-
sity system) was given [3]. At the same time another step of progress was
made, as the solution of the BFKL equation for non-forward scattering, or
equivalently at fixed impact parameter, was obtained [4].

In the mid nineties, one can say that there was a major breakthrough. It
was also the time when various subfields were created, as different approaches
to address and approach the high energy problem started to develop. The
color dipole picture [5–8] was formulated as a description for the wavefunc-
tion of an energetic hadron, a picture which goes beyond the BFKL equa-
tion in the sense that it also contains transitions between different number
of Pomerons in the multi-color limit (with a Pomeron defined, more or less,
as an object which evolves with energy according to the BFKL equation).
This allowed one to calculate higher moments of the gluon densities while at
the same time the approach to unitarity limits could be studied. A program
to calculate the vertices for these Pomeron transitions (beyond the large-Nc

limit) was started in [9]. Roughly at the same time a somewhat different
problem was studied, namely the saturation of densities in the wavefunction
of a fast moving large nucleus, due to the strong coherent classical fields
generated by the large number of its valence partons [10]. Even though
there was no QCD evolution in that model, the ideas introduced proved
of great significance for what followed in the forthcoming years. Moreover,
that period faced the first attempts to attack the high energy problem by the
method of effective actions [11–13]. Finally a Hamiltonian, equivalent to an
integrable system, was given for a particular configuration of n “reggeized”
gluons [14, 15].

Even more progress was seen during the last years of the previous decade
and the beginning of the current one. The idea that the wavefunction of an
energetic hadron can be described in terms of strong classical color fields,
which was introduced earlier [10], was used properly in order to derive
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an equation describing the evolution to higher and higher energies. This
functional equation, called the JIMWLK (Jalilian-Marian, Iancu, McLer-
ran, Weigert, Leonidov, Kovner) equation [16–19], gives the evolution of the
probability to find a given configuration of a color field associated with the
hadronic wavefunction. In general, the physical system which is supposed
to be described by such an equation, like a fast moving proton, nucleus or
a quarkonium, was called a Color Glass Condensate (CGC) [17], for rea-
sons to be explained later. In turn, the JIMWLK equation can be used to
derive equations for the scattering amplitudes of given projectiles off the
evolved hadron, and the outcome is, what is known by today as, the Bal-
itsky hierarchy [20]. This is a set of non-linear equations, which under a
mean field and/or large-Nc approximation collapses to a single one [21] giv-
ing the evolution of the amplitude for a color dipole to scatter off the CGC.
As a byproduct, the odderon problem (scattering with an odd number of
gluon exchanges) introduced in the early eighties [22–24] was reformulated
and extended to its non-linear version [25, 26]. During that period another
important accomplishment was the calculation of the next to leading order
correction to the BFKL equation, which was finally completed in [27, 28],
while there was an effort to calculate the vertices for Pomeron transitions,
their properties and consequences [29–33], a task which is still ongoing.

Until the beginning of the last year it was thought, at least in some part
of the “high energy community”, that the JIMWLK equation was a more
or less “complete” and self-consistent description of the high energy limit of
QCD (at the leading logarithmic level). However, a calculation done within
the dipole picture resulted in some large corrections [34] for the saturation
momentum (the momentum scale at a given energy at which gluonic modes
saturate). This result was clearly different from what was known up to
that time, and the discrepancy was initially attributed to the difference
between the JIMWLK equation and its mean field version. Shortly it was
understood that these corrections are an effect of the low density fluctuations
in the dilute, high-momentum, tail of the wavefunction [35] and in fact the
significance of these fluctuations in the evolution of the system had been also
observed and realized much earlier from numerical simulations within the
dipole picture [36, 37]. The understanding that the JIMWLK equation does
not describe properly the low density region of the hadronic wavefunction
came soon [38, 39], and a generalization of the Balitsky equations at large-
Nc was given. This new hierarchy does not allow any kind of mean field
approximations and contains loops of Pomerons, in contrast to the Balitsky–
JIMWLK one which contains only “one-way” Pomeron transitions. And
in fact, the possibility to allow for the formation of Pomeron loops in the
course of evolution is of crucial importance for a self-consistent approach to
unitarity. Not surprisingly, within this QCD description and under certain



3596 D.N. Triantafyllopoulos

logical approximations, the results in [34, 35] were reproduced. Triggered by
these observations, facts and derivations, there has been an ongoing effort to
the direction of constructing a Hamiltonian formulation and a generalization
of the equations at finite-Nc [40–45].

In these lectures we will start by introducing in the next section the
BFKL Pomeron and the BFKL equation in coordinate space as was derived
in the dipole picture. In Sec. 3 we will discuss its pathologies and in Sec. 4
the concepts of saturation and Pomeron mergings will be proposed as the
resolution to the problem, while at the same time a non-linear equation
will naturally emerge. In Sec. 5 the Color Glass Condensate, the JIMWLK
equation and the Balitsky equations will be presented, and in Sec. 6 the cal-
culation for the energy dependence of the saturation momentum within this
formulation will be given. In Secs. 7 and 8 we will try to explain what are the
main problems encountered within the JIMWLK evolution and what is the
most crucial missing element. In Sec. 9 the dipole picture will be reviewed
and the significance of fluctuations will be stressed, while in Secs. 10 and
11 the new hierarchy will be derived, and then the way Pomerons loops are
generated will be quite obvious. In the next three sections we will discuss the
approach to formulate the problem at the Hamiltonian level, a remarkable
(possible) property of the Hamiltonian and the approach to the general-
ization of the theory beyond the multi-color limit. In the last section the
saturation momentum will be revisited, since its energy dependence will be
influenced by the low density behavior of the effective theory. As it is clear
the presentation will be mostly based on the dipole picture and the Color
Glass Condensate formulation of the high energy problem, and over the years
there have been nice lectures and reviews on both approaches [46–55]. We
shall not discuss at all any phenomenological aspects of the theory and the
possible importance of high density phenomena in the relevant experiments.
Nevertheless, we need to say that there have been successful qualitative and
sometimes quantitative descriptions of the low-x data in deep inelastic lep-
ton hadron scattering (DIS) [56–59] and of the observed particle spectra in
heavy-ion collisions [60–66].

2. The BFKL Pomeron and the BFKL equation

We start these lectures by introducing the concept and the significance of
the BFKL Pomeron and by giving a heuristic, but also intuitive, derivation of
the BFKL equation. Imagine that we want to measure the gluon distribution
of a generic hadron. One way to do this, is by probing the hadron with a
small, in size, color dipole. If the dipole size is r = |x − y| ≪ Λ

−1
QCD, where

x and y are the coordinates of its quark and antiquark legs respectively, it
will probe the gluonic components of the hadron with momenta such that
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Q ∼ 1/r ≫ ΛQCD. Clearly, the condition that the dipole be small, is
dictated by the requirement that the QCD coupling constant be small and
thus the problem can be approached by analytical methods. Such a probe is
not only a good theoretical object due to its overall color neutrality, but it
can also be “created” as a fluctuation of the virtual photon in deep inelastic
lepton-hadron scattering (DIS). Therefore, if one is able to calculate the
dipole–hadron scattering amplitude, one can obtain the cross section for
DIS, since the probability for the creation of the dipole is determined by
a lowest order calculation in QED. The latter can be easily performed and
therefore we shall restrict ourselves to the analysis of the dipole–hadron
scattering.

Let us assume that the hadron, to which we shall frequently refer as the
target, is right-moving, while the projectile dipole is left-moving. We shall
also assume that the target is energetic enough, so that a partonic description
of its wavefunction is meaningful, while the dipole is slow enough so that it
is “bare”; that is, there are no additional components, through higher order
radiative corrections, in the dipolar wavefunction.

At lowest order in QCD perturbation theory, the dipole and the hadron
will interact via a two-gluon exchange as shown on the left part of Fig. 1.
Now let the hadron be boosted at very high energy and let p+ be the

−→

Fig. 1. From lowest order in pQCD to the BFKL Pomeron.

(light-cone) longitudinal momentum of a “valence” parton of the hadronic
wavefunction1. Then, and as we show in Appendix A in more detail, the
probability to emit a soft gluon with longitudinal momentum in the interval
from k+ to k++ dk+, with k+ = xp+ ≪ 1, is proportional to αs dk+/k+ =
αs dx/x. When x is small enough and due to the QCD triple-gluon coupling,
the gluon with momentum fraction x can be generated through the interme-
diate emission of one or more gluons which have their longitudinal momenta
strongly ordered, i.e. they satisfy x ≪ xn ≪ · · · ≪ x1 ≪ 1, where xı is

1 Since we are interested in the high energy limit, any possible masses will be always
taken to be zero.
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the momentum fraction of the ı-th gluon in this sequence of emissions of n
intermediate gluons. This process, when compared to the direct emission of
the soft gluon at k+ from the valence parton at p+, is of order2

αn
s

1∫

x

dx1

x1
. . .

xn−1∫

x

dxn

xn
=

1

n!

(
αs ln

1

x

)n

, (1)

where the logarithms have been clearly generated from the integration over
the available longitudinal phase space for the intermediate emissions. At
high energies, the rapidity Y , defined as Y = ln(1/x), can compensate the
smallness of the coupling αs, so that αsY & 1. Thus one needs to resum all
these (αsY )n enhanced terms and such a resummation gives rise to the so-
called BFKL Pomeron. It is obvious in Eq. (1), that this procedure will lead
to an exponential, in Y , increase of the gluon density and this will be verified
shortly and in more detail when we also take into account the degrees of free-
dom in the transverse phase space. The interaction of an energetic hadronic
target with a color dipole is shown in the right-part of Fig. 1, where the
summation over the gluon ladder represents the BFKL Pomeron or equiv-
alently the small-x components of the hadronic wavefunction. Notice that
this figure corresponds already to the square of a diagram in perturbation
theory, since we are interested in determining the probability to find a given
mode inside the hadronic wavefunction.

Instead of performing the resummation of diagrams, one can equivalently
study the evolution of the target wavefunction or of the scattering ampli-
tude under a step ∆Y in rapidity. Furthermore, one can also view the last
soft gluon as being emitted from the projectile dipole, which is a simple
object and therefore its evolution can be easily studied. In the large-Nc

limit the soft gluon can be represented by a quark-antiquark pair, and thus
the final system is composed of two dipoles (x,z) and (z,y), with z the
transverse coordinate of the emitted soft gluon. As we show in Appendix A
the differential probability for this splitting process is [5]

dP =
ᾱs

2π

(x − y)2

(x − z)2(z − y)2
d2z dY ≡ ᾱs

2π
Mxyz d2z dY, (2)

where ᾱs = αsNc/π, with Nc the number of colors. In the above equation,
dY = d ln(1/x) = −dk+/k+ represents the differential enhancement in the
longitudinal phase space as shown in detail in Appendix A, while the kernel
Mxyz contains all the QCD dynamics in the transverse phase space. Now,

2 We shall always let the coupling be fixed (only in Sec. 6 we shall briefly discuss some
extensions to running coupling) and for the reasons explained earlier we shall consider
it to be small.
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each of the two final dipoles can scatter off the target and therefore the
evolution equation for the imaginary part of the scattering amplitude T
reads

∂〈Txy〉
∂Y

∣∣∣∣
BFKL

=
ᾱs

2π

∫

z

Mxyz [〈Txz〉 + 〈Tzy〉 − 〈Txy〉] ≡ ᾱsKBFKL⊗ 〈Txy〉,(3)

where the last term is the virtual contribution arising from the normaliza-
tion of the dipole wavefunction, and with the average to be taken over the
target wavefunction, even though this is irrelevant for the moment. This
is the BFKL equation [1] in coordinate space [5] and its diagrammatic rep-
resentation is shown in Fig. 2. Notice that it is free of any divergencies,
since the potential singularities arising from the poles of the dipole kernel
cancel. For example, when z = x, the last two terms in the square bracket
cancel each other, while the first term vanishes due to color transparency.
In Appendix C we give a more rigorous derivation of Eq. (3), by using the
corresponding BFKL equation for the density of dipoles which is derived in
Sec. 9.

ᾱs∆Y−→ + −

Fig. 2. The BFKL equation for the dipole–hadron scattering amplitude.

The BFKL equation is a linear one, and therefore the solution can be
obtained by studying the corresponding eigenvalue problem. Let us first
look at the simplified case where the scattering amplitude is integrated over
the impact parameter b ≡ (x + y)/2 to give the total cross section, and is
invariant under rotations. Then it depends only on the magnitude r ≡ |x−y|
of the projectile dipole. As we show in Appendix D the solution to this
eigenvalue problem is

KBFKL ⊗ r2(1−γ) = χ(γ) r2(1−γ), (4)

where

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), (5)

with ψ(γ) the logarithmic derivative of the Γ -function. The eigenvalue func-
tion χ(γ) is plotted in Fig. 3. Thus, one can write the solution to the BFKL



3600 D.N. Triantafyllopoulos

Γr

ΧHΓL

Χ HΓsL
��������������������
1 - Γs

4 ln2

Γs ΓP0 1

Fig. 3. The BFKL eigenvalue χ(γ) as a function of γr when γi = 0, with γ = γr+iγi.

The single poles at γ = 0, 1 correspond to the collinear (double logarithmic) limits.

The saddle point for the Pomeron intercept occurs at γP = 1/2, while γs ≃ 0.372

corresponds to the relevant anomalous dimension for saturation (see Secs. 6 and 15).

equation as the superposition of the, evolved with rapidity, eigenfunctions,
namely

〈T (r, Y )〉 =
2πα2

s

µ2

∫

C

dγ

2πi
T (0)

γ exp
[
ᾱsχ(γ)Y + (1 − γ) ln

(
r2µ2

)]
. (6)

In the above equation, µ is a momentum scale related to the target, T
(0)
γ is

proportional to the Mellin transformation of the cross section at Y = 0, for
instance it is 1/[2γ2(1−γ)2] for dipole–dipole scattering, and the integration
contour C is parallel to the imaginary axis with 0 < Re(γ) < 1. At high
energies, i.e. when Y → ∞, and with the dipole size r being fixed, one
can perform a saddle point integration in Eq. (6). The saddle point of the
χ-function occurs at γP = 1/2, with corresponding value χ(1/2) = 4 ln 2, as
shown in Fig. 3, and then the dominant asymptotic energy dependence of
the amplitude is given by

〈T 〉 ∼ αs〈ϕ〉 ∼ α2
s 〈n〉 ∼ α2

s exp[ωPY ], (7)
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where ωP = 4ᾱs ln 2 is the so-called hard Pomeron intercept3. In Eq. (7),
ϕ represents the gluon density of the hadron, while n will be its dipole
density if we assume that it is composed of dipoles and this is the case
in the large-Nc limit. The exponential increase is not surprising, since the
BFKL equation is a linear one; in each step of the evolution, the change in
the amplitude is proportional to its previous value. After all, this is what
we had already expected from the summation of the series whose n-th term
is given in Eq. (1). Notice also, even though not explicitly written in Eq. (7)
but easily inferred from Eq. (6), that the dominant r-dependence of the
amplitude will be proportional to r. This is to be contrasted with the result
of fixed order perturbation theory which is proportional to r2. The fact that
the anomalous dimension differs from this perturbative result by a finite
pure number is a unique characteristic feature of the BFKL dynamics.

The BFKL equation has also been solved in its most general case, i.e.

without assuming rotational symmetry and for a given, but arbitrary, im-
pact parameter [4]. In that case, the system evolves “quasi-locally” in impact
parameter space, and therefore the dominant energy dependence of the so-
lution, as Y → ∞, with r and b fixed, is still given by Eq. (7), since the
same eigenvalue dominates the corresponding integration.

3. Pathologies of the BFKL equation

There are two major problems associated with the BFKL equation. The
first is the violation of unitarity bounds. As we saw in Sec. 2 the amplitude
at a fixed impact parameter increases exponentially with the rapidity Y , or
equivalently as a positive power of the total energy s in the process, since
Y = ln(s/s0) (the precise value of the scale s0 is not important for our
arguments). However, it should satisfy the unitarity bound4

T (r, b) ≤ 1. (8)

One should stress that this bound is different from the well-known Froissart
bound [67–70], which states that any hadronic total cross section σtot should

3 The expression for 〈T 〉 in Eq. (7) vanishes in the strict large-Nc limit (ᾱs = fixed,
α2

s → 0), because of its prefactor which is proportional to the initial value of the
amplitude. But there is no real problem with that. First of all, and as we will see
later on, the BFKL equation remains valid at finite-Nc. Furthermore, one can always
assume a “modified” large-Nc limit where all quantities, like the r.h.s. of Eq. (7), which
are suppressed by 1/N2

c
factors, are taken as leading order effects provided they are

enhanced by appropriate powers of the energy [6, 7]. For instance α4
s exp[2ωPY ] is a

leading effect, while α4
s exp[ωPY ] is subdominant.

4 This will be totally clear later on. See Eq. (24), where the precise definition of
T (r, b) is given in terms of Wilson lines, thus including an arbitrary number of gluon
exchanges with the target.
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not grow faster than the square of the logarithm of the energy, more precisely

σtot ≤
π

m2
π

ln2 s, (9)

withmπ the pion mass. Of course, we should not expect to satisfy this bound
by weak coupling methods. The BFKL equation, and all the equations that
we will present later on in this article, will never treat properly the “edges”
of the hadron, where long range forces become important and therefore
the problem is genuinely non-perturbative. Nevertheless, there is no reason
a priori, which would imply that Eq. (8) cannot be fulfilled in perturbation
theory. Notice that Eq. (8) is equivalent to the condition that the maximal
allowed gluon density in QCD should be of order 1/αs. Indeed, one has,

ϕ ∼ a†a ∼ A2 .
1

g2
∼ 1

αs
, (10)

where a† and a are gluonic creation and annihilation operators, while A is the
gauge field associated with the wavefunction of the hadron. This maximal
value of order 1/αs can be obtained in a heuristic way by setting the cubic
and the quartic in A terms in the QCD Lagrangian to be of the same order.

The second problem is the sensitivity to non-perturbative physics. As
already said, the longitudinal momenta are strongly ordered in the course
of the evolution. However, the transverse coordinates of the dipoles (or
equivalently the transverse momenta of the gluons) are not strongly ordered,
and therefore the dipole kernel is non-local as clearly seen in Eq. (2)5. This
non-locality results in a diffusion factor which accompanies the dominant
asymptotic behavior given in Eq. (7), and which can be easily obtained by
performing the Gaussian integration over γ in Eq. (6) around the saddle
point γP = 1/2. This factor reads

ψP =
1√

πDPY
exp

[
− ln2(r2µ2)

DPY

]
, (11)

with DP = 2ᾱsχ
′′(1/2) = 56ᾱsζ(3). The form of the function ψP suggests

that it can be written as the solution to the 1-dimensional diffusion equation.
That is, after the dominant exponential behavior has been isolated, the
evolution can be viewed as a random walk in ln(r2µ2). Thus, independently
of how small the initial dipole is, and after some critical value of rapidity,
there will be diffusion to the infrared; dipoles with sizes bigger than Λ

−1
QCD

5 In DGLAP [71] evolution, where one resums enhanced powers of αs ln(Q2/µ2) one
encounters the “opposite” situation; the transverse momenta are strongly ordered,
while the longitudinal ones are not. Therefore, the corresponding DGLAP kernel is
local in Q, but non-local in Y .
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will be created and the weak coupling assumption will not be valid any
more. One needs to emphasize that this is true even if we want to calculate
the amplitude in the perturbative region. Since the diffusion equation is of
second order, one can formulate the problem as a path integral from the
initial dipole size to the final one. Then, clearly there are paths which go
through the non-perturbative region. In this sense the BFKL equation is
not self-consistent.

Before moving to the next section, where we will discuss the solution
to these problems, let us mention that the next to leading BFKL equation
[27, 28] shares the same pathological features. In that case one resums powers
of the form αs(αsY )n, and this procedure gives rise to a contribution of order
O(αs) to the Pomeron intercept ωP, as compared to the leading one.

4. Unitarity, saturation and mergings of Pomerons

Let us continue our heuristic approach and try to find out which is the
basic element that is missing from the procedure we have followed so far. The
first diagram in Fig. 4 shows one of the contributing diagrams to the BFKL
equation. As indicated, this is of order ᾱs∆YO(αsϕ), where the factor ᾱs∆Y

+ or

ᾱs∆Y O(αsϕ) ᾱs∆Y O(α2
sϕ

2) ᾱs∆Y O(α2
sϕ

2)

Fig. 4. Estimation of diagrams contributing to the first Balitsky equation.

comes from the evolution step, the factor αs comes from the two couplings
at the lowest part of the diagram and the factor ϕ, the target gluon density,
is simply the upper part of the diagram. It is clear that the other two BFKL
diagrams, which are not shown here, are of the same order. Following the
same reasoning, the second diagram is of order ᾱs∆YO(α2

sϕ
2), since now

there are four vertices at the lowest part, while one also probes the gluon pair
density of the hadron. This diagram is suppressed with respect to the BFKL
ones when ϕ≪ 1/αs, i.e. at low densities, or equivalently when T ≪ 1 and
in that case it can be neglected. However, it is equally important in the
high density limit6, precisely in the region where the unitarity problem of
the BFKL evolution appears. Therefore, following this “active” point of view
in the projectile evolution as before, i.e. the r.h.s. of the equation contains

6 In that case, this is a just typical diagram, since, in general, diagrams with more than
two-gluon exchanges per dipole will be equally important.
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what we have after the evolution step, we see that we should add to the
BFKL equation the term which corresponds to the simultaneous scattering
of the two dipoles (x,z) and (z,y), that is

∂〈Txy〉
∂Y

∣∣∣∣
merge

= − ᾱs

2π

∫

z

Mxyz 〈TxzTzy〉. (12)

The resulting evolution equation is the first Balitsky equation [20]. There are
a couple of points which need to be clarified in the above equation. The first
is the notation “merge” for this particular term. This comes from the fact
that the second diagram in Fig. 4 is equivalent to the third one. The latter
corresponds to the evolution of the hadron in a “passive” point of view;
now the horizontal gluon is supposed to be emitted in the wavefunction
of the target, and the two Pomerons, which existed before the evolution
step, merge to give rise to a contribution to the single dipole scattering
amplitude. However, one should be very careful about the terminology and
the interpretation of this merging process. When the hadron is boosted
to higher and higher energies, there is no process which would lead to the
“mechanical” recombination of the partons that it is composed of. The term
merging corresponds to the 4 → 2 vertex connecting the upper part of the
diagram, the hadron, and the lower part, the dipole. The second point
that needs to be explained, is the minus sign in Eq. (12). Intuitively, one
would indeed expect this term to be negative, since, in almost any physical
system, a merging process is supposed to tame the growth of the particle
density. A better way to justify the sign, is to notice that we can express
the first Balitsky equation in a more compact form, by introducing the
S-matrix Sxy = 1 − Txy. Then we have

∂〈Sxy〉
∂Y

=
ᾱs

2π

∫

z

Mxyz [〈SxzSzy〉 − 〈Sxy〉] , (13)

which has a clear interpretation; the S-matrix for the dipole-pair to scatter
off the target multiplied by the splitting probability gives the change in
the S-matrix for the dipole–hadron scattering (after we subtract the term
proportional to 〈Sxy〉 which gives the survival probability for the parent
dipole).

One can proceed and perform certain approximations to this equation.
When the target hadron is a large nucleus, and for not too high energies,
one can perform a sort of mean field approximation, by assuming that the
two projectile dipoles scatter independently off the target, namely

〈TxzTzy〉 ≃ 〈Txz〉〈Tzy〉 (14)
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and similarly for the S-matrices. Then one obtains a closed equation, the so-
called Balitsky–Kovchegov (BK) equation [20, 21] (see also [72]). We imme-
diately notice that this equation has two fixed points; (i) 〈T 〉 = 0 ⇔ 〈S〉 = 1,
which is an unstable fixed point, since no matter how small the initial am-
plitude is, it will start to grow and (ii) 〈T 〉 = 1 ⇔ 〈S〉 = 0, which is the
black-disk limit, and which is a stable fixed point for any perturbation in
〈T 〉. Therefore the BK equation is much better behaved than the BFKL
equation. It seems that the amplitude will never exceed the unitarity bound
Tmax = 1, and the gluon density will saturate at a value of order O(1/αs).
Furthermore the non-linear term cuts all the diffusion to the infrared [73, 74]
and there is no sensitivity to non-perturbative physics any more. In fact,
all diffusive paths that go beyond the saturation line (see below), will be
eliminated by the non-linear evolution.

Here it is appropriate to introduce the concept of the saturation mo-
mentum Qs. This is a line in the ln(r2µ2)−Y plane (in general, the satu-
ration momentum depends also on the impact parameter), along which the
amplitude satisfies 〈T (r = 1/Qs)〉 = const < 1. It is simply the border
between the region where BFKL dynamics can be safely applied and the re-
gion where saturation has been reached and unitarity corrections have to be
taken into account. At this moment, it is not hard to understand that more
and more gluonic modes in the wavefunction of the hadron will be saturated,
as we keep increasing its energy. As we shall see later on in a detailed anal-
ysis, the saturation momentum increases exponentially with rapidity, i.e.

Q2
s ≈ Λ

2
QCD exp(λsY ). Thus, when the rapidity is large enough, one will

have α(Qs) ≪ 1, which means that the use of weak coupling techniques is
justified. It is conceptually important to realize that this is a “QCD phase”
where the physical system is dense but the coupling constant is weak.

By no means we have given a rigorous derivation of the first Balitsky
equation in this section. For example, when high density effects become sig-
nificant, one should not restrict oneself to the two-gluon exchange approxi-
mation (even though we did not really make any use of it) when considering
the scattering of a single dipole with the hadron. Indeed, each coupling of
either the quark or the antiquark of the dipole with the classical field A as-
sociated with the target is of order gA ∼ √

αsϕ, and thus in the high density
limit ϕ ∼ 1/αs all multi-gluon exchanges are equally important. Neverthe-
less, as we shall see in the next section, the first Balitsky equation remains
as given here, even when we include multiple gluon exchanges.
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5. The Color Glass Condensate, the JIMWLK equation

and the Balitsky hierarchy

Perhaps the most elegant, modern and complete approach to describe the
merging of Pomerons is the Color Glass Condensate (CGC) and its evolution
according to a Renormalization Group Equation (RGE). This is an effective
theory within QCD, and its name is not accidental, since it corresponds to
some of the basic features that it accommodates. Color stands for the color
charge carried by the gluons, Glass stands for a clear separation of time
scales between the fast and slow degrees of freedom in the wavefunction,
and Condensate stands for the high density of gluons which can reach values
of order O(1/αs).

The essential motivation for the formulation of the CGC is the separation
of scales in the longitudinal momenta between the fast partons and the
emitted soft gluons. Denoting by pµ and kµ the corresponding light-cone
4-momenta, one has k+ ≪ p+. This translates to an analogous separation
in light cone energies k− = k2/2k+ ≫ p− = p2/2p+, which in turn leads
to a separation of time-scales; the lifetime ∆x+ ∼ 1/k− of the soft gluons
will be very short in comparison with the typical time scale ∼ 1/p− for the
dynamics of the fast partons. Thus, even though the fast partons are virtual
fluctuations in reality, they appear to the soft gluons as being a “source”
which is x+ independent, i.e. as a static source. Furthermore, the source
is random, since it corresponds to the color charge seen by the soft gluons
at the short period of their virtual fluctuation; this happens at an arbitrary
time and it is instantaneous compared to the lifetime of the source. The
color charge density ρa(x

−,x) associated with this source at the scale p+,
propagates along the light cone x− ≃ 0 and the corresponding current has
just a + component. This source is localized near the light cone within a
small distance ∆x− ∼ 1/p+, which is non-zero, but much smaller than the
longitudinal extent ∼ 1/k+ of the slow partons. One of the consequences
is that the size of the hadron will extend in the longitudinal direction with
increasing energy.

Based on the above kinematical considerations, one can represent the fast
color sources by a color current Jµ

a (x−,x) = δµ+ρa(x
−,x), and the small-

x gluons correspond to the color fields as determined by the Yang–Mills
equation in the presence of this current, namely

(DνF
νµ)a (x) = δµ+ρa(x

−,x). (15)

In principle, and in reality in certain gauges, one can solve this classical
equation and obtain the gauge field A(ρ) as a function of a given source.
Then, any observable O which is related to the field, for example the gluon
occupation number or the amplitude for an external dipole to scatter off the
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hadron, can be expressed in terms of ρ, and its expectation value will be
given by the functional integral

〈O〉 =

∫
DρZY [ρ]O(ρ). (16)

It is obvious that ZY [ρ] serves as a weight measure and it gives the proba-
bility density to have a distribution ρ at a given rapidity Y (we assume that
ZY [ρ] is normalized to unity). This probabilistic interpretation for the source
relies on its randomness mentioned above; there is no quantum interference
between different ρ configurations. In other words, one performs a classical
calculation for a fixed configuration of the sources, and then one averages
over all the possible configurations with a classical probability distribution.

So far, in Eqs. (15) and (16) we have not used at all the small-x QCD
dynamics, and it is obvious that this must be encoded in the probability
distribution ZY [ρ], which is the only quantity in Eq. (16) depending on ra-
pidity. But before analyzing this aspect in more detail, we have to say that
this idea to describe the soft modes of the hadronic wavefunction in terms of
classical fields and probability densities was introduced in the MV (McLer-
ran,Venugopalan) model [10], where a nucleus with large atomic number
(A ≫ 1) was considered. In this “static” model the only color sources are
assumed to be the A×Nc valence quarks, which are taken to be uncorrelated
for transverse separations such that |∆x| . Λ

−1
QCD, so that the probability

density is given by the Gaussian [10, 75]

ZMV[ρ] ≈ exp


−

1

2

Λ
−1∫
d2x

ρa(x) ρa(x)

µ2(x)


 , (17)

where µ2 ∼ Λ
2
QCDA

1/3 is the average color charge density squared. Even
though there is no Y -dependence in the model, a strong coherent color field
of order O(1/g) can be created due to the large number of nucleons and the
solution to, the non-linear, Eq. (15) will lead to the saturation of the gluon
density at a value of order O(1/αs), and with a saturation scale Q2

s (A) ≈
Λ

2
QCDA

1/3 lnA.
Now let us see how and why the evolution of the probability distribution

arises. Indeed, at rapidity Y , one should include in the source all those modes
with longitudinal momenta (much) larger than k+, where Y = ln(1/x) =
ln(P+/k+), with P+ the total longitudinal momentum of the hadron. Now
let us imagine that we increase the rapidity from Y to Y +∆Y . Then, some
modes that previously were slow, now they become fast and they need to be
integrated over in order to be included in the source. This is a procedure
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which will crucially depend on the actual QCD dynamics and will lead to a
change in the probability distribution. Still, we should emphasize that the
theory at the new “scale” Y + ∆Y is again defined through Eqs. (15) and
(16), if we simply let Y → Y + ∆Y . A simple pictorial interpretation of the
evolution with Y of the probability distribution is shown in Fig. 5, where
the horizontal gluon at the rapidity Y ′ is a representative of the “semi-fast”
modes which are integrated, i.e. Y ≪ Y ′ ≪ Y + ∆Y .

Fig. 5. Evolution of the probability distribution of color charges.

We shall not present here the derivation of this RGE, which is called
the JIMWLK equation. It can be found in the original papers [16–19] (see
also [76, 77]), while rather simple derivations can be found in [44, 55, 78].
The basic element is the resummation of ᾱs ln(1/x) enhanced contributions
in the presence of a background color field. The latter is allowed to be strong
in general, since one aims to describe properly the physics in the high density
region. This equation can be given an elegant Hamiltonian formulation, and
its most compact representation arises when it is expressed in terms of the
color field α(x−,x) ≡ A+(x−,x) in the Coulomb gauge. It reads

∂

∂Y
ZY [α] = H

[
α,

δ

δα

]
ZY [α], (18)

where the explicit form of the Hamiltonian is [17, 18, 26]

H = − 1

16π3

∫

uvz

Muvz

[
1 + Ṽ †

uṼv − Ṽ †
uṼz − Ṽ †

z Ṽv

]ab δ

δαa
u

δ

δαb
v

. (19)

The dipole kernel is readily recognized, while the Wilson lines Ṽ in the
adjoint representation arise from the gluon propagator of the integrated
modes and they are given by

Ṽ †
x[α] = P exp


i g

∞∫

−∞

dx−αa(x−,x)T a


 . (20)

The longitudinal coordinate in the functional derivatives is to be taken at
∞, since x− ∼ 1/k+ ∼ eY /P+ → ∞; as we pointed out earlier, the hadron
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extends in the longitudinal direction, and all the “action” is expected to take
place at the last layer of rapidity. Finally, the two functional derivatives
appearing in Eq. (19) correspond precisely to the two outgoing legs in the
bottom of the diagrams in Fig. 5. The appearance of only two such legs is
related to the certain class of diagrams which are effectively resummed by
the JIMWLK equation; during a single evolution step, only the two point
correlation function 〈ρρ〉 changes, and this comes from the fact that the
color field, or equivalently the sources, are assumed to have values (much)
larger than g. This is certainly a well-defined approximation, but with a
decisive influence on the outcomes of the theory. We shall not discuss more
details here, but we shall return to this issue and to its proper treatment, in
the next sections.

Given a Hamiltonian, the natural question that one may ask is what
the observables are. They can be nothing else than the quantities already
appearing in the Hamiltonian, and to be more precise, they will be gauge
invariant operators built from Wilson lines. For our purposes, we shall only
consider Wilson lines in the fundamental representation and then the most
generic form of such an operator will read

O[α] = Tr
(
V †

x1
Vx2

V †
x3
Vx4

. . .
)
Tr
(
V †

y1
Vy2

. . .
)
. . . . (21)

Notice that a Wilson line has a direct physical interpretation. Let us con-
sider the scattering of a left-moving quark off the classical field created by
the (right-moving) hadron. The general expression for the S-matrix in the
interaction picture is

S = T exp


−i

∞∫

−∞

d4x′HI(x
′)


 , (22)

where T stands for a time ordered product, and the relevant part of the
QCD Hamiltonian for this process is HI = −gψ̄γ−A+ψ. Here we have used
the fact that the quark is a fast left mover and therefore the γ− matrix
dominates the inner product. Now, since the trajectory is “eikonal”, the
transverse and + coordinates of the particle are fixed, and they are chosen
to be x′ = x, and (by convention) x′+ = x+ = 0. Therefore, so long as the
color independent part is concerned, one can make the substitution

ψ̄(x′) γ−A+(x′)ψ(x′) → δ(x′ − x) δ(x′+ )A+(x). (23)

Since x− is increasing along the trajectory, one can replace the T-product by
a Path ordered product. Therefore the S-matrix is equal to the Wilson line

V †
x, which is given by Eq. (20), but in the fundamental representation, i.e.
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one needs to do the replacement T a → ta. Notice that all kind of multiple
exchanges are included in this procedure, and they can be recovered by
expanding the Wilson lines to a given order in the coupling constant. It is
not hard to understand that the S-matrix for a dipole (x,y) to scatter off
the target, will be given by the gauge invariant expression

Sxy =
1

Nc
Tr
(
V †

xVy

)
= 1 − Txy = 1 − g2

4Nc
(αa

x − αa
y)2 + O(g3), (24)

where we have also expanded to second order to obtain the scattering am-
plitude in the two-gluon exchange approximation for later convenience, and
with the field αa in this expansion being integrated over x−.

As discussed earlier, the evolution of the expectation value of a generic
operator O will come from the evolution of the probability distribution
ZY [ρ]. Using Eqs. (16), (18) and (19), and after a functional integration
by parts we find

∂ 〈O〉
∂Y

=

∫
DαZY [α]H O = 〈H O〉 . (25)

Now we are ready to write the equations obeyed by the scattering ampli-
tudes. Naturally, we start from the scattering of a single projectile dipole.
Using Eqs. (19), (24) and (25), and as we show explicitly in Appendix E, we
arrive at the first Balitsky equation which we rewrite here for convenience

∂〈Sxy〉
∂Y

=
ᾱs

2π

∫

z

Mxyz〈SxzSzy − Sxy〉. (26)

Notice that the above equation is valid for a finite number of colors and the
same will be true for the BFKL equation which arises in the limit 〈T 〉 =
1− 〈S〉 ≪ 1. As we have discussed earlier, this is not a closed equation and
one needs to find how 〈SxzSzy〉 evolves with rapidity. Following the same
procedure, and as we show again in Appendix E, one obtains the second
Balitsky equation, which reads

∂〈SxzSzy〉
∂Y

=
ᾱs

2π

∫

w

Mxzw 〈(SxwSwz − Sxz)Szy〉

+
ᾱs

2π

∫

w

Mzyw 〈Sxz(SzwSwy − Szy)〉

+
1

2N2
c

ᾱs

2π

∫

w

(Mxyw−Mxzw−Mzyw)〈Qxzwy+Qxwzy〉, (27)
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where we have defined the “quadrupole” operator

Qxzwy ≡ 1

Nc

[
Tr
(
V †

xVwV
†
zVyV

†
wVz

)
− Tr

(
V †

xVy

)]
. (28)

At this point, a few comments need to follow. We immediately notice that
the first two terms in the 2nd Balitsky equation can be obtained just by
applying the Leibnitz differentiation rule to the first Balitsky equation. This
has a natural interpretation in terms of projectile evolution as the two dipoles
(x,z) and (z,y) can evolve independently; either of these two dipoles can
split into two new dipoles which subsequently scatter off the unevolved target
hadron. However, there is the third term which goes beyond this simple
dipolar evolution. This is not surprising since the small-x gluon emitted by
the one of the two original dipoles can be absorbed by the other dipole (more
precisely, emitted by the other dipole in the complex conjugate amplitude
when calculating the wavefunction of the projectile) and therefore no dipole
survives after the evolution step. Thus, the projectile system is led to a
more complicated multipolar state, which can be naturally called a color
quadrupole because of its dependence on four transverse coordinates. For
the next step one will have to write not only the evolution equation for
the three-dipole operator, but also the one for this quadrupole operator.
It becomes clear that the complexity in the structure of this hierarchy of
equations, which is called the Balitsky hierarchy, will rapidly increase as we
proceed to describe the evolution of “higher-point” functions. Following this
“active” point of view in the projectile evolution, we see that its wavefunction
will be successively composed of

one dipole → two dipoles → three dipoles + quadrupole

→ . . . → dipoles + higher multipolar states.

Furthermore, we should emphasize that no factorization like the one in
Eq. (14) will solve the infinity hierarchy. Nevertheless, we see that the
two fixed points of the BK equation, when generalized properly, exist in this
system of equations. (i) When the classical color field αa vanishes there is
no scattering; the expectation values of all the Wilson lines become equal to
unity, i.e. 〈S〉 = 〈SS〉 = 〈Q〉 = · · · = 1 and (ii) when the color field becomes
large, we reach the black-disk limit; the Wilson lines oscillate rapidly [85]
and their expectation values vanish; i.e. 〈S〉 = 〈SS〉 = 〈Q〉 = · · · = 0.

One expects drastic simplifications in the large-Nc limit, where the de-
grees of freedom can be chosen to be the color dipoles. Indeed, the last
(quadrupole) term in Eq. (27) is of order O(1/N2

c ), negligible at large-Nc

when compared to the first two (dipolar) terms which are of order O(1) and
therefore the evolution will proceed only through dipolar states. Now one
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can see that the hierarchy becomes consistent with a factorization of the
form [79, 80]

〈Sx1y1
. . . Sxκyκ

〉 = cκ−1〈Sx1y1
〉 . . . 〈Sxκyκ

〉, (29)

with c an arbitrary constant. Then the whole large-Nc hierarchy collapses
to a single equation, the BK equation but with a coefficient c in front of the
〈Sxz〉〈Szy〉 term. The asymptotic fixed point of this equation is clearly 1/c,
but it is not clear whether a value c 6= 1 has a simple physical interpretation
or not. In any case, if the initial conditions at a rapidity Y0 are of factorized
form, this factorization will be preserved by the large-Nc evolution. But even
if the initial conditions are not of this type, no new “correlations” will be
generated by this large-Nc evolution; only the initial ones will be propagated
to higher rapidities.

6. The saturation momentum

With the theory of the Color Glass Condensate being theoretically es-
tablished, one of the central problems has been the determination of the
saturation momentum Qs, which, as we discussed at the end of Sec. 4, is the
momentum scale at which we start to approach unitarity limits. In principle,
one should be able to calculate the energy (rapidity) dependence of Qs (at
least asymptotically), since all the dynamics is contained in the JIMWLK
equation, however its precise value cannot be determined since it will depend
on initial conditions and thus on details of non-perturbative physics. Recall
that the saturation momentum is an intrinsic property of the target hadron,
since it is also the scale where the gluon density saturates. And the only
scale associated with the hadron is ΛQCD. Given the above considerations,
and the fact that the pure BFKL evolution leads to an exponential growth,
one may guess that the saturation momentum will be of the form (for fixed
coupling, neglecting the impact parameter dependence and at asymptotic
energies)

Q2
s ≃ cΛ2

QCD

exp(λY )

Y β
, (30)

where the constants λ and β should be calculable, while the constant c would
require the knowledge of the non-perturbative structure of the hadron.

Even though the problem seems difficult at a first sight, due to the com-
plicated structure of the Balistky–JIMWLK equations, one can do certain
logical simplifications that render the calculation tractable. As we saw, the
hierarchy reduces to the much simpler BK equation in the large-Nc limit
and under a mean field approximation, and then, presumably, the most that
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one may lose is 1/N2
c corrections. Furthermore, one can in fact use BFKL

dynamics, if one is careful enough to treat properly the effects of the linear
terms. In turn, this means that we may not even lose the possible 1/N2

c
corrections, since the BFKL equation is valid at finite-Nc.

Now let us have a look at Fig. 6 where the expected qualitative behavior
of the scattering amplitude in the logarithmic plane ln(Q2/µ2)−Y is shown.
Here Q should be thought as the inverse of the dipole size or as the transverse
momentum of a gluon in the hadron. Along Line-1, which corresponds to an
anomalous dimension γ → 0, the amplitude decreases since the momentum
increases too fast. This corresponds to DGLAP evolution (in the double
logarithmic limit) where one resums powers of αs ln(Q2/µ2) (× ln(1/x)). In
this case there is again a cascade of partons inside the hadron, but these
partons are very small in size and they will never overlap to form a high
density system. Along Line-2, which corresponds to an anomalous dimen-
sion γ = 1/2, the amplitude increases, since the energy increases while the
momentum remains fixed. This is the hard Pomeron intercept line that cor-
responds to the saddle point of the BFKL eigenvalue function. Starting from
a value of order O(α2

s ) and after covering a rapidity interval ∼ ln(1/α2
s )/ωP,

the amplitude will eventually “hit” the unitarity/saturation region.
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Fig. 6. Scattering amplitude and saturation momentum in logarithmic plane.

Therefore, there must be some “critical” line between those two lines
which belongs to the region of linear evolution and along which the amplitude
remains constant, for example of order O(αs) ≪ 1. Clearly this line must
correspond to an anomalous dimension, say γs, such that 0 < γs < 1/2.
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Then the saturation line which corresponds to constant amplitude of order
O(1) but smaller than 1, for example 1/2, will be parallel to the critical line,
and therefore characterized by the same anomalous dimension and energy
dependence. The reason why the two lines are parallel, may not be so clear
at the moment, but we will try to justify it in a while.

The question is whether or not we can use the BFKL dynamics to deter-
mine this critical line. Even though the line belongs to the linear region, the
answer is negative if one wants to get the prefactors correct, i.e. the value of
β in Eq. (30). The reason is that as the system evolves along this line, and
after we have isolated the leading exponential behavior, there will be some
paths, really in the functional integral sense, that go through the saturation
region and then return to the linear one. These diffusive paths are absent
when the full BK equation is considered, and therefore should be cut. This
can be done by using an absorptive boundary just beyond the saturation
line, which will mimic the effects of the non-linear terms for the problem
under consideration. Put it another way, this procedure is equivalent to a
self-consistent solution of the BFKL equation with the boundary condition
〈T (Q = Qs(Y ))〉 = c < 1.

Now we are ready to determine the “slope” of the critical, and therefore
of the saturation, line. We impose two conditions for the exponent in the
solution to the BFKL equation as given in Eq. (6). First we require that
the exponent is zero so that the amplitude be constant. Second, we impose
a saddle point condition, which is a valid approximation in the asymptotic
limit ᾱsY ≫ 1. Then we find that the anomalous dimension is determined
by the saddle-point of χ(γ)/(1 − γ) and is given by [2, 74, 81–83]

χ(γs) + (1 − γs)χ
′(γs) = 0 ⇒ γs ≃ 0.372 . (31)

The energy dependence of the saturation momentum is better expressed in
terms of its logarithmic derivative which reads [74, 83]

λs ≡
d lnQ2

s

dY
= ᾱs

χ(γs)

1 − γs
− 3

2(1 − γs)

1

Y
≃ 4.88 ᾱs −

2.39

Y
, (32)

while for the scattering amplitude one obtains [74, 83]

〈T 〉 =

(
Q2

s

Q2

)1−γs
(

ln
Q2

Q2
s

+ c

)
exp

[
− ln2(Q2/Q2

s )

DsY

]
, (33)

a form which is valid in the region Q2
s ≪ Q2 ≪ Q2

s exp(DsY ), and where
the diffusion coefficient is Ds = 2ᾱsχ

′′(γs) ≃ 97ᾱs.
Now let us discuss the results. As we see in Eq. (31), whose graphical

solution is shown in Fig. 3, the relevant value of the anomalous dimension



Pomeron Loops in High Energy QCD 3615

for saturation lies indeed in the interval (0, 1/2). We should say that the
eigenvalue χ(γs) will be selected, so long as the initial condition contains the
corresponding eigenfunction and this will be true for all interesting cases.
Notice that γs is a pure number, and this would have never been obtained
by applying pure DGLAP evolution. The latter always gives anomalous
dimensions which start at order O(αs).

In Eq. (32) we see that the leading contribution to the “intercept” of the
saturation line is totally fixed by BFKL dynamics. It is not too difficult
to see how the subleading correction arises, and to this end let us go a few
steps back in the derivation of Eqs. (32) and (33). After we have performed
the Gaussian integration around the saddle point γs, the solution reads T ∝
(Q2

0/Q
2)1−γsψs, with Q0 containing only the leading behavior of Qs, and

where ψs satisfies the diffusion equation. The “standard” solution of the
diffusion equation behaves as Y 1/2 (times the exponential diffusion factor),
but in the presence of an absorptive boundary the survival probability of
the “particle” becomes smaller and ψs is proportional to 1/Y 3/2. Thus,
by combining this prefactor and the leading behavior Q0, one obtains the
correction written in Eq. (32). Notice that the saturation effects lead to a
slower increase of the saturation momentum, as they should. Even though
the second term vanishes when Y → ∞, it cannot be neglected, since upon
integration of Eq. (32) it will generate a Y -dependent prefactor in Qs. This
1/Y term in the logarithmic derivative of the saturation momentum should

be interpreted as 1/R2
D, where RD ∼

√
Y is the diffusion radius. This radius

is practically the available phase space in logarithmic units of transverse
momentum. In reality this phase space extends to infinity, since there is no
boundary to the ultraviolet, but in practice it is only the space inside the
diffusion radius which will contribute to the subsequent steps of evolution.

Finally, as we see in Eq. (33), the scattering amplitude has a scaling form
[74, 82], so long as ln(Q2/Q2

s ) ≪
√
DsY so that the exponential diffusion

factor can be set equal to unity. That is, the amplitude does not depend on
Q2 and Y separately, but only through the variable Q2/Q2

s . The pure power
is not an unexpected result; the BFKL evolution generates the anomalous
dimension γs which modifies the behavior ∼ 1/Q2 of fixed order perturbation
theory. The logarithm is generated by the absorptive boundary when solving
the diffusion equation. Notice that both terms in Eq. (33), the power and
the power modified by the logarithm, are exact degenerate solutions of the
BFKL equation, and thus the final solution is just their linear combination.
Such a scaling behavior, which will be preserved even in the running coupling
case (but in a more narrow window in Q2), but which will be violated by
the evolution equations that we will discuss later on in Sec. 10, is consistent
with fits [56, 57, 59] of the low-x data in DIS.
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Here it is appropriate to mention that the solution of the BK equation
close to the unitarity limit Λ

2
QCD ≪ Q2 ≪ Q2

s is also of scaling form and as

we show in Appendix F it reads [37, 84, 85]

〈S〉 = 1 − 〈T 〉 ≈ exp

[
− 1 − γs

2χ(γs)
ln2 Q

2
s

Q2

]
. (34)

Thus, one naturally expects the scattering amplitude to satisfy scaling every-
where from deep inside the saturation region up to momenta which belong in
the region of linear evolution. This explains why the critical and saturation
lines are parallel to each other.

Eqs. (31), (32) and (33) have been confirmed by studying the analogy
to the (nonlinear) FKPP (Fisher, Kolmogorov, Petrovsky, Piscounov) equa-
tion [83, 86]. Furthermore, the last asymptotic term of λs(Y ) which is in-
dependent of the initial conditions, and whose behavior is ∼ 1/Y 3/2 has
been obtained in the same fashion in [87]. The full JIMWLK hierarchy has
been solved numerically on the lattice [88] and the results agree with the
ones we presented in this section. Moreover, it was found that violations of
factorization in the scattering amplitude correlations are extremely small.

Before closing this section, let us see how these results are modified when
we consider BFKL dynamics at the next to leading level. The calculation
of the next to leading order (NLO) correction to the BFKL kernel was com-
pleted in [27, 28]. However, this negative correction turned out to be larger
in magnitude than the leading contribution for reasonable values of the cou-
pling, say ᾱs ≈ 0.25. Even worse, when ᾱs & 0.05 the full kernel has two
complex saddle points which lead to oscillatory cross sections [89]. But it
was immediately recognized that these large corrections emerge from the
collinearly enhanced physical contributions [90–93]. A method was devel-
oped to resum collinear effects to all orders in a systematic way and the
resulting renormalization group (RG) improved BFKL equation was consis-
tent with the leading order DGLAP [71] equation by construction.

But before going to the NLO case, let us consider the leading BFKL
kernel, but with a running coupling αs(Q

2). One expects two major changes
with respect to the fixed coupling case. Since the saturation momentum
increases with rapidity, the coupling will decrease as we evolve close to the
saturation line, and Qs will increase much slower. Moreover, the integration
of the quadratic fluctuations around Qs will be affected by the fact that the
coupling is not a constant quantity, and therefore the mechanism of diffusion
will be modified. An analytical expression can be given and it reads [74, 94]
(with the leading terms already known from [2, 82])

λs =
χ(γs)

b(1 − γs)

(
1

τ
− |ξ1|Dr

4

1

τ5/3

)
=

1.80√
Y + Y0

− 0.893

(Y + Y0)5/6
(35)
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for the logarithmic derivative of the saturation momentum, and

〈T 〉 =

(
Q2

s

Q2

)1−γs

τ1/3Ai

(
ξ1 +

ln(Q2/Q2
s ) + c

Drτ1/3

)
exp

[
−2 ln2(Q2/Q2

s )

3χ′′(γs)τ

]
(36)

for the scattering amplitude. Here we have defined b = (11Nc−2Nf )/(12Nc),

τ =
√

2χ(γs)(Y + Y0)/[b(1 − γs)] , Dr = {χ′′(γs)/[2χ(γs)]}1/3 = 1.99 ,
Ai is the Airy function and ξ1 ≃ −2.33 is the location of its leftmost zero.
The second expression for λs corresponds to Nf = 3 flavors. Notice that the
first term in λs is equal to the fixed coupling result, in the sense that it may
be written as χ(γs)ᾱs(Q

2
s )/(1− γs). The second term is negative since it ac-

counts for the contribution of the boundary (and the prefactors) and it has

a parametric form α
5/3
s [94], a well-known type of correction in NLO BFKL

dynamics [92, 95]. We should notice that in this case, Qs will be always pro-
portional to ΛQCD at high rapidities Y ≫ Y0. This is in contrast to the fixed
coupling case where Qs is proportional to the initial saturation scale, if such
one exists. For example if the target hadron is a large nucleus, the square
of the initial saturation momentum and thus the constant c in Eq. (30) is
proportional to A1/3 lnA. Finally we note that the expression for the scat-
tering amplitude takes a scaling form in the window ln(Q2/Q2

s ) ≪ Drτ
1/3,

and this form is exactly the one found in the fixed coupling case.

Even though one cannot have such nice analytic expressions when con-
sidering the improved kernels, the results are not so hard to obtain since they
involve the numerical solution of algebraic transcendental equations [94]. We
summarize all cases in the plots in Fig. 7. In order to understand properly
all the results, we have also plotted the first three lines which correspond to
the analytic expression given in Eq. (35). Line-a is the first term with Y0 = 0
while Line-b corresponds to the same term but with a typical value for Y0

which is of order O(1). Line-c stands for the full expression in (35). Line-d
and Line-e represent the improved kernels at leading and next to leading
order, respectively. Notice that all the lines will “merge” together at very
high values of rapidity, since the leading term will become more and more
dominant over the corrections as the coupling decreases along Qs. The NLO
result is stable in the sense that it adds a small correction to the leading one.
We should mention that the NLO result is practically constant, λs ≃ 0.3 in
the region Y = 5–10. This is in good agreement with the phenomenol-
ogy [56–59]. However, it is not clear whether this theoretical value should
be trusted or not. As we shall see in the forthcoming sections, the JIMWLK
equation misses important contributions, which result in corrections that are
much more significant than any NLO BFKL correction.
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Fig. 7. The logarithmic derivative of the saturation momentum λs as a function of

the rapidity Y for running coupling.

7. Deficiencies of the Balitsky–JIMWLK hierarchy

Even though the Balitsky–JIMWLK hierarchy encompasses nicely the
BFKL evolution and the merging of Pomerons at finite-Nc, it faces certain
crucial problems. These problems, which we will immediately discuss, are
related to each other, and therefore it seems that some unique element is
missing from the CGC effective theory in the form it has been developed so
far.

(i) The first problem is the extreme sensitivity of the JIMWLK equation
to the ultraviolet. Since in the high momentum region the non-linearities
are unimportant, we understand that this issue can be analyzed within the
BFKL evolution. Let us try to reconstruct the solution in two (or more)
global steps by completeness. To be more precise, let us first assume that
we find the solution T (Q,Y ) by evolving the system from zero rapidity to
rapidity Y . Now let us imagine that we evolve from zero to, say, Y/2.
Then we can consider the solution T (Q,Y/2) as the initial distribution and
subsequently evolve to Y to obtain T (Q,Y ). As we show in Appendix G, the
solution obtained from this procedure will coincide with the one obtained
from the single global evolution step, as long as we include (at least) the
contributions from all momenta such that ln(Q2/Q2

s ) .
√
DsY , in the initial

condition at Y/2. Of course there is no reason to cut the momenta that lie
outside the diffusion radius, but this algorithm reveals the width of the
momentum phase space which is important for a self-consistent solution.



Pomeron Loops in High Energy QCD 3619

This feature brings us in a quite embarrassing situation; as Y increases, this
phase space will open up more and more to momenta above the saturation
line, and moreover the big numerical value of the coefficient Ds will make the
problem even worse. For instance, when one finds the saturation momentum
to be a few GeV, at the same time one is sensitive to momenta a few orders of
magnitudes above. Notice, that this explains why in the numerical solutions
of both the BK [63, 73, 96–99] and the JIMWLK equation [88], one had
to go very far to the ultraviolet in order to obtain a reasonably accurate
solution. In the running coupling case the situation is somewhat better,
since the coupling decreases at higher momenta, and thus the effects of
these seemingly non-physical contributions are reduced. Indeed, as we saw
in Sec. 6, the “diffusion” radius increases much slower, namely RD ∼ Y 1/6.
Nevertheless, the theoretical problem still exists.

(ii) Quite surprisingly, the second problem is the violation of unitarity.
Here we shall not analyze the argument in detail [34], but only indicate its
essence. Assume that we want to calculate the amplitude close to, but above,
the saturation line in the two ways we described in the previous paragraph.
Then one will have

1 > c = T ∼ 1

α2
s

T1 T2, (37)

where T1 and T2 denote the contributions of the two successive steps. It
is clear that for T1 < α2

s the above equation imposes that the second step
satisfy T2 > 1. Thus, all the paths which go through the region to the right of
the fluctuation line (the terminology will be understood in a while) in Fig. 6
will violate unitarity in the intermediate steps of the evolution. Returning
to the problem we discussed in (i), and noticing that the diffusion radius
extends to the region where the amplitude can be much smaller than α2

s ,
we see that these contributions from the ultraviolet region must be indeed
non-physical.

These unitarity violating paths were “discovered” when dipole–dipole
scattering was studied in the presence of saturation with the additional,
but clearly natural, condition that the amplitude be Lorentz invariant [34],
even though at that time it was not realized that they are part of JIMWLK
evolution. A calculation of the saturation momentum was performed by
cutting these paths with an absorptive UV boundary (in addition to the IR
one), and the corrections found were huge. In Sec. 15 we shall review/obtain
this result in a very simple way. We should say here, that in [35] a spec-
tacular analogy with the physics and the results of the stochastic FKPP
(sFKPP) equation was observed, and the significance of fluctuation effects
in the low density region T ∼ α2

s ⇔ ϕ ∼ αs was understood. Still, the fact
that one needs to go beyond the JIMWLK equation was not yet realized.
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(iii) The third problem in the evolution equations we have discussed
so far, is the absence of Pomeron splittings [38]. As we have seen, the
mechanism of Pomeron mergings, which was essential to describe properly
the physics near the unitarity limit, is described by the JIMWLK equation.
If we expand the Hamiltonian in powers of g, then each term will involve at
least two factors of the color field α and exactly two functional derivatives
with respect to α. Then a typical term in the evolution equation of the
n-th point correlator of the color fields will have the structure (suppressing
the coordinates’ dependence, which is not important for the forthcoming
argument)

∂〈αn〉
∂Y

= 〈H αn〉 ∼
〈
αα . . . α︸ ︷︷ ︸

≥2

δ

δα

δ

δα
αn

〉
∼ 〈αm〉 with m ≥ n. (38)

So, as we already knew, the JIMWLK Hamiltonian can describe BFKL
dynamics and Pomeron mergings. But the natural question at this point is,
“how could we have two or more ladders in the first place?” Clearly JIMWLK
cannot do that, since one would need m < n in Eq. (38). One option would
be to consider a large nucleus target, which contains many valence quarks
and antiquarks. These sources can evolve with rapidity and produce many
BFKL Pomerons, which will merge when saturation becomes important.
However, this is just a special case because of its particular initial condition,
and the dynamical problem is not solved. Furthermore, even in the nucleus,
there will always be some dilute “tail” corresponding to the high momentum
modes. After some evolution, and since the saturation momentum increases,
these modes will need to saturate. But still there is no dynamics to produce
the corresponding Pomerons which will eventually merge. Thus, the only
solution to this problem is to find how QCD will give rise to the Pomeron
splittings. Then indeed, one could start, for example, even from a single
bare dipole, and end up with a fully saturated wavefunction. As we shall
see in the following sections, when “completing” the theory by including the
diagrams which were “forgotten” [38, 39], and which lead to the splittings of
Pomerons, we will also automatically solve the two problems presented in
(i) and (ii).

8. The missing diagrams

Since one of the basic problems of the JIMWLK equation is the absence
of Pomeron Splittings, one should consider diagrams like the third one in
Fig. 8 in order to resolve the issue. Indeed, this diagram corresponds to
a transition from one to two Pomerons. If one wants to “measure” two
Pomerons, and in the two-gluon exchange approximation, one needs to probe
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ᾱs∆Y O(α2
sϕ

2) ᾱs∆Y O(α3
sϕ

3) ᾱs∆Y O(α3
sϕ)

Fig. 8. Diagrams contributing to the evolution of two BFKL Pomerons. The third

diagram was “missed” in JIMWLK.

the hadron wave function with two projectile dipoles, and this is what is
shown in the typical diagrams in Fig. 8. The first diagram corresponds to
normal BFKL evolution, with the one of the Pomerons being a spectator.
As indicated, it is of order ᾱs∆YO(α2

sϕ
2); ᾱs∆Y for the evolution step, α2

s

for the four fermion–gluon vertices and ϕ2 since there were two Pomerons
before the step. Similarly the second diagram, which corresponds to a 2 → 1
Pomeron transition, with the third Pomeron being a spectator, is of order
ᾱs∆YO(α3

sϕ
3). Both diagrams are described by the JIMWLK equation7.

The third diagram is of order ᾱs∆YO(α3
sϕ), since there are six vertices and

one Pomeron before the step. Clearly this diagram is suppressed with respect
to at least one of the first two diagrams when ϕ≫ αs, and this is the reason
why it was neglected in the derivation of the JIMWLK equation, which
aimed to describe a high density system. However, due to the non-locality
of the evolution kernel which leads to the ultraviolet diffusion, this diagram
will give significant contributions through the intermediate evolution steps.
It is rather crucial to notice that this diagram becomes important when
ϕ ∼ αs or equivalently when T ∼ α2

s , which corresponds precisely to the
line at which JIMWLK faces its unitarity problem. This is the fluctuation
line we have already shown in Fig. 6, and which divides the region of normal
BFKL evolution from the low density region. The latter is characterized by
fluctuations and this explains in a way why we need (at least) two projectiles
dipoles. By probing with one dipole we will measure only the “one-point”
function, say the gluon occupation number. But this will not release any
information about the two-point function, since in a dilute system the pair
density is affected by the fluctuations and is not simply the square of the
single density. Thus one needs to probe with two dipoles in order to measure
the non-trivial low density correlations. This analysis also implies that,
presumably, the first Balitsky equation will not change. But of course, any
mean field approximation to this equation will not be valid any more, since

7 Also diagrams like the first one, but with the soft gluon connecting the two ladders are
included; these diagrams are of the same order in αs and ϕ, but they are suppressed
at large Nc.
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the presence of fluctuations will have a significant impact on its non-linear
term. In the next section we shall shortly describe some elementary but
essential, for our purposes, features of the color dipole picture. We shall
return to give a more quantitative analysis of what we discussed here, in
Sec. 10.

9. Evolution of dipoles

Since we have realized that what we need to correct in the JIMWLK
equation is its low-density limit, let us look more carefully at the non-
saturated part of the wavefunction of a hadron. We will first consider the
large-Nc limit case, that is, the hadron is supposed to be composed of color
dipoles. When the dipole density is not too high, i.e. when n ≪ 1/α2

s , the
emission of a soft gluon from a dipole will not be affected by the remain-
ing surrounding dipoles. We have already written the (positive and well-
defined) probability for this emission in Eq. (2) with the derivation given
in Appendix A. From now on we shall not present the original formulation
of this dipole picture [5–8], rather we will follow the procedure developed
in [100] which is better suited to our purposes.

One can write a master equation describing the evolution of the probabil-
ities to find a given configuration. To be more specific a given configuration
is characterized by the number of dipoles N and by N−1 transverse coordi-
nates {zı} = {z1,z2, . . . ,zN−1}, such that the coordinates of the N dipoles
are (z0,z1), (z1,z2),. . . ,(zN−1,zN ), with z0 ≡ u0 and zN ≡ v0, assuming
that the initial state was a dipole (u0,v0). The probability PN ({zı};Y ) to
find a given configuration at rapidity Y obeys

∂PN (z1, ...,zN−1;Y )

∂Y
=
ᾱs

2π

N−1∑

ı=1

M(zı−1,zı+1,zı)PN−1(z1, ..., /zı, ...,zN−1;Y )

− ᾱs

2π

N∑

ı=1

∫

z

M(zı−1,zı,z)PN (z1, ...,zN−1;Y ), (39)

where a slashed variable is omitted. The interpretation is quite obvious;
while the gain (first) term describes the formation of an N -dipoles state
through the splitting of a dipole in a pre-existing state withN−1 dipoles, the
second term describes the emission of a soft gluon from the N -dipoles state,
which leads to a state with N+1 dipoles and therefore to a loss of probability.
It is straightforward to show that the total probability is conserved, which is
one of the requirements that Eq. (39) be well-defined. The expectation value
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of an operator O, which depends only on dipole coordinates, is given by

〈O(Y )〉 =

∞∑

N=1

∫
dΓN PN ({zı};Y )ON ({zı}), (40)

where the phase space integration is simply dΓN = d2z1d
2z2 . . . d

2zN−1.
Then by using the master equation (39) one can show that

∂〈O(Y )〉
∂Y

=
ᾱs

2π

∞∑

N=1

∫
dΓN PN ({zı};Y )

N∑

i=1

∫

z

M(zı−1,zı,z)

× [−ON ({zı}) + ON+1({zı,z}) ] , (41)

where the z argument in ON+1 is to be placed between zı−1 and zı. In what
follows, we shall use Eq. (41) to derive evolution equations for the dipole
number densities. Consider first the average number density of dipoles at
(u,v). The corresponding part for an N -dipole configuration is

nN (u,v) =

N∑

=1

δ(z−1 − u)δ(z − v), (42)

so that 〈nuv〉 will be given by the r.h.s. of Eq. (40) if we let ON → nN .
Then by making use of Eq. (41) and after relatively simple manipulations
one arrives at the evolution equation for the average of the dipole number
density 〈nuv〉 which reads

∂〈nuv〉
∂Y

=
ᾱs

2π

∫

z

[Muzv〈nuz〉 + Mzvu〈nzv〉 −Muvz〈nuv〉]

≡ ᾱs

2π

∫

z

Kuvz ⊗ 〈nuv〉. (43)

This is simply the BFKL equation for the dipole density, and its pictorial
representation is given in Fig. 9. This equation should be read in the “pas-
sive” point of view, in contrast to Eq. (3). That is, as it was obvious in
the derivation, the right-hand side contains what was existing before the
evolution step. The first term is proportional to the probability for a dipole
(u,z) to split into two new dipoles (u,v) and (v,z) times the initial density
at (u,z). Since we want to find the change in the density at (u,v) only the
first of these two child dipoles is measured. Similarly for the second term.
The last term is proportional to the probability for a dipole (u,v) to split
into two new dipoles times the initial density at (u,v) and naturally gives
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Fig. 9. Evolution of the dipole density for a dilute hadron at large Nc.

a negative contribution. Notice that the loss term in Eq. (39) was crucial in
order to obtain this virtual contribution. As we show in Appendix C, this
equation leads to the BFKL equation, Eq. (3), for the scattering amplitude
of a projectile dipole off the dilute hadron, when we assume the two gluon
exchange approximation which is appropriate in this dilute limit.

Now we can follow the same procedure to derive the analogous equation
for the dipole pair density [38]. The corresponding part for a given N -dipole
configuration is

n
(2)
N (u1v1;u2,v2) =

N∑

,k=1
 6=k

δ(z−1− u1)δ(z− v1)δ(zk−1− u2)δ(zk− v2), (44)

and following the same procedure as in the case of the dipole density, we
arrive at the evolution equation

∂〈n(2)
u1v1;u2v2

〉
∂Y

=
ᾱs

2π

[ ∫

z

Ku1v1z ⊗ 〈n(2)
u1v1;u2v2

〉

+ δu2v1
Mu1v2u2

〈nu1v2
〉
]

+ 1 ↔ 2 (45)

with the notation introduced in Eq. (43). The two terms on the right-hand
side correspond to the two typical contributing diagrams in Fig. 10. The
first term (which in turn is a sum of three terms) corresponds to the BFKL
evolution of the first dipole while the second dipole remains a spectator. The
second term corresponds to a single dipole initial density and the mother
dipole splits into two new dipoles both of which are “measured”. We shall
refer to this term as the “splitting” term, in the sense that a lower moment
of the density gives rise to a higher moment of the density.

Of course, one can continue and write the evolution equation for the
κ-th density [101]. We shall not do it here, since it is just a matter of
proper combinatorics. It is clear that there will be κ terms corresponding
to normal BFKL evolution where only one dipole is evolving and κ−1 are
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Fig. 10. Evolution of the dipole pair density for a dilute hadron at large Nc. The

loss term of the normal BFKL evolution is not shown.

spectators. Furthermore, there will be κ(κ−1) splitting terms, according to
the terminology we just defined, which will be proportional to the κ−1-th
density where the κ−2 dipoles will be spectators.

These splitting contributions, or to be more precise their analogue, were
not included in the JIMWLK equation. We already start to see the conse-
quences, since it is trivial to show that the hierarchy of equations obeyed
by the density moments, is not consistent with any sort of factorization, for
example

〈n(2)
u1v1;u2v2

〉 6= c〈nu1v1
〉〈nu2v2

〉. (46)

This factorization is “broken” because of the splittings terms which become
important in the region n ∼ 1 (or equivalently when T ∼ α2

s ), that is,
when fluctuations in the number density of particles become a significant
effect. We need to say here that in the original formulation of the dipole
picture, the equation for the dipole-pair density (and the higher moments)
was not written as given in Eq. (45), but in an equivalent form, in which the
fluctuations were more difficult to recognize. Nevertheless, based on that
picture, these low-density fluctuations and some of their consequences were
in fact “seen” in the numerical simulations of the wavefunction of an evolved
dipole and of the approach to unitarity8 [36, 37].

10. Splittings of Pomerons, large-Nc equations

and the Langevin equation

Now that we have derived the equation for the dipole-pair density, it is
not hard to transform to the corresponding equation for the amplitude of
two given external dipoles to scatter off the target. To the order of accu-
racy it is enough to consider that dipoles scatter in the two-gluon exchange
approximation. This elementary scattering amplitude for two dipoles (x,y)

8 In Sec. 12 we will briefly explain how unitarity comes in that picture.
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and (u,v) is calculated in Appendix B and it reads (see e.g. [102, 103])

T0(xy|uv) =
α2

s

8

N2
c − 1

N2
c

ln2

[
(x − v)2(y − u)2

(x − u)2(y − v)2

]

≡ α2
s

N2
c − 1

N2
c

A0(xy|uv). (47)

For what follows, we shall set the fraction involving the color factor equal
to one, since we have already assumed the large-Nc limit in our analysis.
To this end, the amplitude for the projectile dipole (x,y) to scatter off the
target will be

〈Txy〉 = α2
s

∫

uv

A0(xy|uv) 〈nuv〉 ⇒ 〈nuv〉 + 〈nvu〉 =
4

g4
∇2

u∇2
v〈Tuv〉, (48)

where in the second part, valid for u 6= v, we have inverted the equation
to obtain the symmetrized dipole density in terms of the amplitude for our
later convenience. Now let us consider the scattering of a pair of dipoles
(x1,y1) and (x2,y2) off the target. Then the extension of Eq. (48) reads

〈Tx1y1
Tx2y2

〉 = α4
s

∫

uıvı

A0(x1y1|u1v1)A0(x2y2|u2v2) 〈n(2)
u1v1;u2v2

〉. (49)

Clearly, in writing the above equation, we have assumed that two dipoles do
not interact with the same dipole. We need to say that neither a large-Nc

nor a small coupling argument justifies this assumption. Nevertheless, such
processes will be suppressed at higher energies, as they will grow like a single
BFKL Pomeron. Now by differentiating Eq. (49) and using the last, linear in
〈n〉, term in Eq. (45) for the evolution of the dipole pair density (the bilinear
terms give rise to the normal BFKL evolution of 〈TT 〉, which we already
know how to write), we obtain the splitting contribution to the evolution of
the dipole-pair amplitude, which reads [38–40, 43] (see also [104])

∂〈Tx1y1
Tx2y2

〉
∂Y

∣∣∣∣
split

=
(αs

2π

)2 ᾱs

2π

∫

uvz

Muvz A0(x1y1|uz)A0(x2y2|zv)

×∇2
u∇2

v 〈Tuv〉. (50)

Notice that the poles of the kernel cancel with the zeros of the dipole–dipole
scattering amplitude. The pictorial interpretation of this equation is given
in Fig. 11. A dipole (u,v) of the target splits into two new dipoles (u,z) and
(z,v), leading to the dipole kernel in Eq. (50). The two daughter dipoles
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scatter with the two projectile dipoles, as represented by the two A0’s in the
equation. Finally, the last term is proportional to the initial dipole density,
which has been expressed in terms of the single scattering amplitude by
making use of Eq. (48).

Fig. 11. Splitting contribution to the dipole pair scattering.

This is the term that we would like to add to the r.h.s. of the second
(large-Nc) Balitsky equation. It corresponds to the splitting of one Pomeron
into two, and this is really the mechanism for the generation of correlations
in higher-point functions which have important consequences to the subse-
quent evolution of the system. For example, through Eq. (50) the single
scattering amplitude will give rise to correlations in the dipole-pair scatter-
ing amplitude and their significance will be realized when they feedback to
the single amplitude through the first Balitsky equation.

It is trivial to add the corresponding splitting term in the κ-th equation
of the large-Nc Balitsky hierarchy. In the r.h.s. of the evolution equation for
the amplitude for κ dipoles there will be κ(κ−1)/2 terms proportional to the
amplitude for κ−1 dipoles, and where in each term κ−2 dipoles will be simply
spectators. Therefore, the new hierarchy can be easily inferred from Eqs. (3),
(12) and (50), since in the κ-th evolution equation the relevant processes
are 1 → 1, 1 → 2 and 2 → 1 Pomeron transitions, with all other Pomerons
being just spectators, and one just needs to take into account all the possible
permutations. Thus, it is not necessary to present the full set of equations
here (we shall give an equivalent compact form in Eq. (52) below), rather we
shall indicate only its structure by suppressing the transverse coordinates.
It reads

∂〈T κ〉
∂Y

= κ ᾱs 〈T κ〉 − κ ᾱs 〈T κ+1〉 +
κ(κ − 1)

2
ᾱs α

2
s 〈T κ−1〉, (51)

where the κ-dependent coefficients stand for the number of terms arising
from the permutations.

For the reasons analyzed in Sec. 9, it is clear that our hierarchy is not
consistent with any sort of factorizing solution; the low density behavior of
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the theory has totally changed with respect to the theory without Pomeron
splittings. Therefore, one has to find alternative ways to deal with this set
of equations. One way to do that is to reformulate the problem as a single
stochastic equation. Indeed, the Langevin equation

∂Txy

∂Y
=
ᾱs

2π

∫

z

Mxyz [Txz + Tzy − Txy − TxzTzy]

+
αs

2π

√
ᾱs

2π

∫

uvz

A0(xy|uz)
|u − v|
(u − z)2

√
∇2

u∇2
vTuv ν(uvz;Y ), (52)

where the noise satisfies

〈ν(u1v1z1;Y )ν(u2v2z2;Y
′)〉 = δ(u1−v2)δ(v1−u2)δ(z1−z2)δ(Y −Y ′),(53)

and where all other noise correlators vanish, gives an equivalent descrip-
tion [39]. We show this equivalence in Appendix H for a simple zero-
dimensional model, while the generalization to the QCD problem at hand
is straightforward9. However, because of the complexity of the noise cor-
relation, this form may not be the best option in the search for numerical
solutions. Nevertheless, one can rely on certain approximations to gain a
first idea on the new features of the evolution. Assuming that the elemen-
tary dipole–dipole scattering amplitude is local in transverse coordinates,
performing a coarse-graining in impact parameter space and defining the
Bessel transformation ϕ of the scattering amplitude one arrives at [38]

1

ᾱs

∂ϕ(k)

∂Y
=

1

2π

∫

p

k2

p2(k − p)2

[
2

p2

k2
ϕ(p) − ϕ(k)

]
− ϕ2(k)

+
√

2 c α2
s ϕ(k) ν(k,Y ), (54)

with ν(k, Y ) a Gaussian white noise, i.e. the only non-vanishing correla-
tor is 〈ν(k1, Y ) ν(k2, Y

′)〉 = δ(ᾱsY − ᾱsY
′) δ(k2

1 − k2
2)k2

1, and where c is a
constant of order O(1). Notice that, up to an overall normalization factor
of order O(1/ᾱs), ϕ(k) is the unintegrated gluon distribution. A numeri-
cal solution to this equation has been given in [106]. Furthermore, if one
performs a saddle point approximation to the BFKL kernel in Eq. (54), the

9 We should note here, that also the JIMWLK equation can be reformulated as a
Langevin problem [105]. However, in that case the physics is totally different since
the noise describes color fluctuations, rather than particle number fluctuations which
is the case here.
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resulting equation is the stochastic FKPP equation which has been studied
numerically in [107]. As far as the energy dependence of Qs is concerned, the
results from these numerics are consistent with the ones from the analytical
approach that we will present in Sec. 15.

It is appropriate to make here a few important comments on the hierar-
chy we have derived, and which is compactly written in the “exact” Langevin
Eq. (52). The first concerns the strength of each term. In the low density
region where T ∼ α2

s , one can see in the Langevin equation, that both the
noise (splitting) term and the BFKL terms are of the same order, while the
merging term is suppressed by a factor O(α2

s ). In the intermediate region
where α2

s ≪ T ≪ 1, the BFKL terms dominate, and in the region near the
unitarity limit T ∼ 1, the BFKL terms and the merging term are of the
same order, while the noise term is subdominant by a factor O(α2

s ). The
second comment we should make is that, as in the case of the Balitsky equa-
tions, T = 1 is still a fixed point of the evolution; the noise term in the
Langevin equation vanishes for constant T due to the presence of the Lapla-
cians. Finally, we should say that we do not expect the term we added to
describe properly the Pomeron splittings in the high density region, since we
have heavily relied on the two-gluon exchange approximation. In fact, even
though we expect on general grounds the Pomeron splittings to be positive,
the term we added can be negative in some regions [108]. Nevertheless, this
is not very worrisome, since Pomeron splittings are supposed to dominate
in the low density region, and to this end the leading contribution has been
taken into account. In that region the r.h.s. of Eq. (50) is clearly positive,
since ∇2

u∇2
vTuv is in fact proportional to the dipole density which is positive,

while away from that region the term is anyway suppressed with respect to
the other contributions as we have just seen.

Before closing this section, and in order to cross-check that our approach
was correct, let us compare with a well-known result obtained from the
construction of Pomeron vertices in perturbative QCD. By neglecting the
non-linear evolution terms, it is clear that one arrives at a solvable prob-
lem. Thus, by first solving the BFKL equation, and subsequently solving
the second equation in the hierarchy, which is an inhomogeneous one, and
assuming the initial condition 〈TT 〉 = 0, we find [39]

〈Tx1y1
Tx2y2

〉=
(αs

2π

)2 ᾱs

2π

Y∫

0

dy

∫

uvz

Muvz AY −y(x1y1|uz)AY −y(x2y2|zv)

×∇2
u∇2

v〈Tuv〉. (55)

This coincides with the large-Nc triple Pomeron vertex as given in [31].
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11. Loops of Pomerons

Since the hierarchy presented in the previous section contains both split-
tings and mergings of Pomerons, it is clear that Pomeron loops will be
generated in the course of evolution. For example, let us find the minimal
loop, which will be formed after a two step evolution. This is depicted in
the middle diagram of Fig. 12. In the first step the dipole emits a soft gluon
which, as always, can be considered as a quark-antiquark pair and the two
daughter dipoles “radiate” two “elementary” Pomerons. In the second step,
the two Pomerons merge into one through the emission of another soft gluon.

Of course, one understands that a “real” Pomeron loop will be formed
after a large number of steps, if we dress all parts of the process with normal
BFKL evolution. Following this procedure we can construct the Pomeron
loop vertex and let us make a short digression here, to say that one can do
the same for all kinds of such Pomeron vertices (i.e. vertices integrated over
a large rapidity interval) that one can imagine. Of course, this is a very
tedious procedure, and at the end one has to embed all possible allowed
combinations of these vertices into a huge diagram, which has the two initial
colliding objects at its two ends. Furthermore, given the non-linearities of
the system, it is not clear whether this approach to the problem can be
successful or not. Therefore, it seems that, instead of trying to calculate
the building blocks of the theory, it is more advantageous to deal with the
full theory as a whole, i.e. the hierarchy of equations we just presented,
or its generalization to finite-Nc (when the latter becomes available). Of
course, in order to construct the evolution equations it is necessary to know
the “reggeized” gluon transition vertices (i.e. the vertices for a single step
in rapidity). In the large-Nc limit, and for the specific observables that we
were interested in, we only needed to have the 2 → 4 vertex in coordinate
space which is simply the dipole kernel Mxyz.

Let us now return to the calculation of the minimal Pomeron loop, since
the result will reveal some very interesting features. In terms of the evolu-
tion equations, and starting from the single scattering amplitude 〈T 〉, the
diagram in Fig. 12 corresponds to the generation of 〈TT 〉, through the fluc-
tuation (splitting) term given in Eq. (50), which subsequently gives feedback
to 〈T 〉, through the non-linear term of the first Balitsky equation10. Assum-
ing that the initial state of the target was described by a single dipole at
(u,v) and the projectile dipole is at (x,y), it is straightforward to find
that [43]

10 In terms of the language used in the forthcoming Sec. 12, this procedure corresponds
to the successive operation H†

1→2H
†
2→1 on the single amplitude.



Pomeron Loops in High Energy QCD 3631

Fig. 12. Formation of a loop under a two step evolution.

PL
0 = −2α4

s

( ᾱs

2π

)2
∫

zw

Mxyz Muvw A0(xz|uw)A0(zy|wv) (56)

times a factor of order (∆Y )2= step2, which we have suppressed. We imme-
diately see that this result is free of any possible divergencies, since the poles
of the dipole kernels are canceled by the zeros of the A0’s. Furthermore, and
as expected, the contribution of the Pomeron loop is negative and leads to
a decrease of the scattering amplitude(s) in the course of evolution.

Even though we were thinking that we put the “whole” evolution in the
wavefunction of the target dipole (u,v), it is clear that Eq. (56) serves
for an alternative interpretation, as shown in the last diagram in Fig. 12.
Both the original, target and projectile, dipoles split into two child dipoles
(each of them), processes which are represented by the two dipole kernels
times ᾱ2

s . Afterwards, the ensuing dipoles scatter with each other at the
two-gluon exchange level, and this gives rise to the two A0’s accompanied
by a factor α4

s . Therefore one arrives at the conclusion, that the merging
of Pomerons in the one of the scattering objects (here the target) can be
equivalently considered as a splitting of Pomerons in the other object (here
the projectile). Of course, one should keep in mind that whichever is the way
we want to view the process, the soft gluon (the red horizontal gluon in the
figures) is always emitted in the wavefunction of the one of the two objects.
This feature of exchanging splittings with mergings by jumping from the one
wavefunction to the other, was already valid at the level of the Balitsky–
JIMWLK evolution, where the mergings à la JIMWLK could be viewed as
splittings à la Balitsky. But Eq. (56) contains more than that, since it allows
for both types of processes inside the same wavefunction. Putting all these
properties together, we shall see in the next section that we can formulate
a precise duality condition, which is satisfied by the Hamiltonian governing
the evolution of the hadronic system.
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12. COM frame, duality and a Pomeron effective theory

Now we will discuss a remarkable duality property which is presumably
satisfied by the complete Hamiltonian at high energy and at the leading
logarithmic level. Here we shall describe the simplified case where the two
colliding hadrons are described by non-saturated wavefunctions [43], while
an approach to the general proof has been given in [42], where the idea of
the duality was explicitly written for the first time.

So let us consider the scattering of two evolved dipoles. Assuming that
the right (R) moving object is evolved by Y − y and the left (L) moving one
by y, one can write the average S-matrix as [100]

〈S〉 =

∫
DαR DαL ZY−y[αR]Zy[αL] exp


i

∫

z

ρa
L(z)αa

R(z)


 . (57)

The last exponential factor stands for the S-matrix for a given state of both
the R and L evolved dipoles, and it is just the eikonal coupling between the
color charge in the L object and the field created by the R object. Notice
that it can be brought into a symmetric form under the exchange R↔L,
by using the Poisson equation ∇2

zα
a
R/L(z) = −ρa

R/L(z) and integrating by

parts. To obtain the average S-matrix we simply integrate over all possible
configurations for both wavefunctions. This formula would be exact in QED,
however it has a restricted range of validity in QCD. As we have seen in QCD,
and if one wants to include all multiple scattering contributions, one needs
to use path order exponentials to account for non-commutativity of the color
matrices in the interaction vertices, so Eq. (57) cannot be correct in general.
Nevertheless, it contains the possibility that any number of projectile dipoles
interact with the same number of target dipoles, even though each individual
dipole interacts, at most, only once. This simultaneous scattering of many
dipoles is equivalent to a “multiple Pomeron exchange” and one expects the
final result to respect unitarity limits. Thus, Eq. (57) goes much beyond
the BFKL equation. We can show that all the above approximations and
conclusions, are meaningful in a frame which is not fully asymmetric, i.e.

when y = κY , with κ a constant of order O(1), but of course smaller than
one, for example in the center of mass (COM) frame y = Y/2. Requiring that
the two wavefunctions be unsaturated, one determines the critical rapidity
Yc up to which the approach will be valid. In the center of mass frame one
will have

nR/L(Y/2) ∼ α2
s exp[ωPY/2] . 1 ⇒ Yc ∼

2

ωP

ln
1

α2
s

, (58)

while in the case of a not fully symmetric frame one has to replace the factor
of 2 in Yc with 1/max(κ, 1−κ) > 1. But the onset of unitarity will come at
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a much lower rapidity [7]. Indeed, for Y = Yc/2, with Yc given by Eq. (58),
the contributions of the previously mentioned simultaneous scatterings is

[
α2

s nR(Yc/4)nL(Yc/4)
]n ∼ 1, (59)

while in the case of a not fully symmetric frame unitarity will come at
Y ∼ max(κ, 1−κ)Yc ∼ (1/ωP) ln(1/α2

s ) < Yc, which is of course a frame
independent value as it should. Simply, the choice of the COM frame is the
optimal one, if one wants to study unitarity without having to worry about
saturation. The integer n in Eq. (59) refers to the number of Pomeron
exchanges, for example n = 1 simply gives the BFKL contribution. By
proper summation of all these terms, which are of the same strength and of
order O(1), the total S-matrix will respect the unitarity constraints [7].

After this short digression to justify the use of Eq. (57), let us return to
the proof of the duality property, which is based on two natural conditions
[42, 43]. The first is that both objects are described by the same physics,
more precisely both wavefunctions appearing in Eq. (57) obey the same
evolution law in rapidity. The second is that the total averaged S-matrix
is independent of y, i.e. independent of the precise separation of the total
rapidity interval Y , a condition which is clearly dictated by Lorentz (boost)
invariance. Thus, by setting the derivative of Eq. (57) with respect to y
equal to zero, and assuming that the evolution Hamiltonian has the same
functional form for both hadrons, we easily find that

0 =

∫
DαR DαL exp


i

∫

z

ρa
L(z)αa

R(z)




×
{
ZY−y[αR]H

[
αL,

δ

iδαL

]
Zy[αL]−Zy[αL]H

[
αR,

δ

iδαR

]
ZY−y[αR]

}
. (60)

Now, by performing an integration by parts with respect to αR in the second
term, using the identity H[α, δ/(iδαR)]S = H†[δ/(iδρL), ρL]S, where S is
the exponential standing for the eikonal S-matrix, and finally performing
another integration by parts again in the second term, but with respect to
αL this time (recall that ∇2

zα
a
L(z) = −ρa

L(z)), we find

0 =

∫
DαR DαL exp


i

∫

z

ρa
L(z)αa

R(z)




×ZY−y[αR]

{
H

[
αL,

δ

iδαL

]
−H†

[
δ

iδρL
, ρL

]}
Zy[αL]. (61)
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The term in the square bracket must vanish and we arrive at the duality
property

H

[
α,

δ

i δα

]
= H†

[
δ

i δρ
, ρ

]
, (62)

where in H all the functional derivatives stand to the left, while in its Her-
mitian conjugate H† they stand to the right.

This duality constraint provides an alternative way to see that the
JIMWLK Hamiltonian given in Eq. (19) cannot be the end of the story.
Indeed, while it contains an arbitrary number of color fields αa (through
the expansion of the Wilson lines), it contains only two functional deriva-
tives with respect to those fields. Of course, Eq. (62) cannot determine the
“complete” Hamiltonian, but it could facilitate the search for it, or at least
help us to construct an “approximate” one which contains all the essential
physics. For example, we shall first try to find how the evolution equations
we presented in Sec. 10 can be put in a Hamiltonian form [43].

To this end, we shall recall the Hamiltonian proposed in [40] in order to
describe the splittings of Pomerons. For our purposes, it is more convenient
to present it in the form

H†
1→2 = − g2

16N3
c

ᾱs

2π

∫

uvz

Muvz ρ
a
u ρ

a
v

[
δ

δρb
u

− δ

δρb
z

]2 [ δ

δρc
z

− δ

δρc
v

]2

. (63)

The notation 1 → 2 is clear, since the Hamiltonian contains two factors of ρ
and four factors of δ/δρ and therefore can lead to a transition from one to
two Pomerons (or equivalently from two to four exchange gluons). Indeed,
the dipole density is bilinear in the charge density, more precisely

n̄uv ≡ nuv + nvu

2
= − 1

g2Nc
ρa

u ρ
a
v, (64)

and then by acting the Hamiltonian on n̄u1v1
n̄u2v2

, which corresponds to
the, symmetrized under the exchange of quark and antiquark legs, dipole-
pair density (with the appropriate assumptions that the two dipoles have
not zero size and cannot coincide), it is straightforward to show that the
outcome is the splitting term in Eq. (45). For this to happen, one needs to
assume the large-Nc limit, and this means that one neglects the terms arising
from the action of two derivatives with the same color index on two sources
of different color. Similarly, and as a cross-check, we can act on Tx1y1

Tx2y2
,

which corresponds to the simultaneous scattering of two external dipoles
off the target. Assuming the two-gluon exchange approximation (for each
dipole), and making use of the Poisson equation, we obtain the splitting
term as given in Eq. (50).
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Of course, this Hamiltonian is not the dual of the JIMWLK one, as
can be seen by just comparing the relevant expressions, two of the reasons
being that the latter does not involve any large-Nc approximation and it
can describe any n → 2 vertex, with n ≥ 2. However, in order to build
our approximate Hamiltonian let us construct the dual part of Eq. (63). By
letting ρ→ −iδ/δα and δ/δρ → iα we find

H†
2→1 =

g2

16N3
c

ᾱs

2π

∫

uvz

Muvz [αa
u − αa

z]2[αb
z − αb

v]2
δ

δαc
u

δ

δαc
v

. (65)

By acting on the dipole scattering amplitude Txy, again at the two-gluon ex-
change level, we see that we obtain the non-linear term in the first Balitsky
equation. To complete the construction, within the present approximations,
let us extract the BFKL part of the JIMWLK Hamiltonian. By expanding
Eq. (19) to quadratic order in the color field αa, integrating over the lon-
gitudinal coordinate x− and “taking the large-Nc limit by an appropriate
contraction of color indices” [43], we obtain

H†
0 =

1

2N2
c

ᾱs

2π

∫

uvz

Muvz[αa
u − αa

z][αa
z − αa

v]
δ

δαb
u

δ

δαb
v

. (66)

This part of the Hamiltonian will generate the normal BFKL evolution for
the amplitude for a projectile dipole to scatter off the target (always at the
two-gluon exchange level). Furthermore, it is self-dual; if we let α→ −iδ/δρ
and δ/δα → iρ, the obtained Hamiltonian will generated the normal BFKL
evolution for the target dipole density, which is equivalent to the evolution
of Txy, as we show in Appendix C.

By adding the three pieces given in Eqs. (63), (65) and (66), we obtain
the total Hamiltonian

H† = H†
0 +H†

1→2 +H†
2→1, (67)

which gives rise to the hierarchy of equations we have presented in Sec. 10. It
satisfies the self-duality condition (62) and it describes κ→ κ, κ→ κ+1 and
κ + 1 → κ Pomeron transitions, where, in all cases, κ − 1 of the Pomerons
are simply spectators. Of course, we should emphasize again that this is
not the complete solution. Nevertheless, it contains the essential features of
“Pomeron dynamics” and a possible numerical solution to this Hamiltonian
problem would presumably describe the approach to unitarity in a realistic
way.

Before closing this section, and in order for any possible confusion to
be avoided, we should stress that the duality transformation interchanges
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Pomeron splittings with Pomeron mergings within the same wavefunction,
i.e. it changes the physical process. Thus, if the Hamiltonian contains both
processes, then it will be self-dual, i.e. invariant under the transformation.
On the other hand, a given process can be always viewed either as a Pomeron
splitting in the wavefunction of the one hadron, or as a Pomeron merging in
the wavefunction of the other hadron.

13. The dual of JIMWLK

Before proceeding to the quest of a complete Hamiltonian, let us try to

construct a generalization of the splitting Hamiltonian H†
1→2 [40] written in

the previous section. Recall that the JIMWLK Hamiltonian is written in
terms of Wilson lines and can describe any n → 2, with n ≥ 2, transition
vertex at finite-Nc, as sketched in the left part of Fig. 13. Therefore, it seems
reasonable to try and find a similar way to describe all 2 → n vertices, as
shown in the right part of Fig. 13, without restricting ourselves to the large-
Nc limit. We shall not give the derivation here, but rather we shall present
the answer as the dual of JIMWLK, which reads [41] (see also [44])

H̄ =
1

16π3

∫

uvz

Muvz ρ
a
u ρ

b
v

[
1 + W̃uW̃

†
v − W̃uW̃

†
z − W̃zW̃

†
v

]ab
, (68)

where the Wilson lines in the adjoint representation are defined through

W̃x = P exp


g

∞∫

−∞

dx+ δ

δρa(x+,x)
T a


 , (69)

and with the sources appearing in H̄ evaluated at light-cone time x+ = ∞.
One way to see why the light-cone time x+ appears in the above equations
(while at the same time x− is absent, or better it has been integrated over),
is that the 2 → n vertex inside the wavefunction of the right mover (target)
can be also viewed as an n → 2 vertex inside the wavefunction of the left
mover (projectile). Then the appropriate longitudinal variable for this left
mover is x+. In general when one applies the duality transformation, one
needs to let x+ ↔ x−.

Thus, given this Hamiltonian we could write the equations of motion
for our observables. Here, we shall do things in a way which is a little
bit different than, but equivalent to, the one we followed in the JIMWLK
case. The variables appearing in Eq. (68) are the color charges ρa and the
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Fig. 13. Vertices of JIMWLK and its dual.

temporal Wilson lines W̃ , which satisfy the commutation relationships

[
ρa

u, W̃
bc
v

]
= g
(
T aW̃u

)bc
δuv = −igfabdW̃ dc

u δuv,[
W̃ ab

u , W̃ cd
v

]
= 0,

[
ρa

u, ρ
b
v

]
= −igfabcρc

u δuv, (70)

where the first two arise from the definition of the Wilson line in Eq. (69),
while the last is imposed by the Jacobi identity

[
ρa

u,
[
ρb

v, W̃
cd
z

]]
+
[
ρb

v,
[
W̃ cd

z , ρa
u

]]
+
[
W̃ cd

z ,
[
ρa

u, ρ
b
v

]]
= 0. (71)

Perhaps the non-commutativity of the color charges should not come as a
surprise since we are interested in describing a system whose density is not
high. In fact, close to the fluctuation line we defined earlier, the dipole
density is of order O(1), and therefore charge densities are of order O(g) (of
course 〈ρ〉 = 0 due to color neutrality, but 〈ρρ〉 = O(g2) and so on). For the
same reasons, in the JIMWLK evolution there was not such an issue, since ρ
was always much bigger than g, and the commutator was subleading. Now
the evolution equation for an appropriate observable O may be written in
the form

∂〈O〉
∂Y

= 〈[H̄,O]〉. (72)

Based on the above considerations, it becomes obvious that if we consider
gauge invariant observables built from the temporal Wilson lines in the fun-

damental representation, and starting from Tr(WxW
†
y), we shall generate

the dual of the Balitsky hierarchy. This is not so surprising after all, since
the diagram on the right part of Fig. 13 when viewed upside-down corre-
sponds to the JIMWLK evolution of a left mover, while the correlators of
the temporal Wilson lines correspond to the amplitudes for right movers
to scatter of these evolved left movers. But of course, this trivial aspect is
not what we were looking for, rather we are interested to see how H̄ can
describe the low density fluctuations. Before that, and as a first check, one
can see that Eq. (72), with O the bilinear of the charge density as defined
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in Eq. (64), will lead to the BFKL equation for the dipole density of the
target hadron. To measure the fluctuations we need to consider a higher
order correlator of charges, for example the dipole pair density n̄u1v1

n̄u2v2
,

with n̄ defined in Eq. (64). Here, one will obtain Eq. (45) but there will be
additional terms to the right hand side of the equation. The same will hap-
pen if we consider the scattering of two projectile dipoles in order to probe
these fluctuations. Acting with H̄ on Tx1y1

Tx2y2
, at the two-gluon exchange

approximation, we obtain the normal BFKL evolution terms, the splitting
term in Eq. (50) plus additional terms. Some of these terms will be sup-
pressed in the large-Nc limit, but some will not. For example there will be
terms which correspond to the simultaneous scattering off the same target
dipole, and this process is not subdominant in the multicolor limit. More
generally, the two dipoles could scatter off more complicated combinations
of the target color sources.

One may have already seen that there are some subtleties associated with
the dual Hamiltonian and the particular observables that we are interested
in. Since the color charges are non-commutative, one has a difficulty in
defining the observables at equal time x+. For example, even though there
is no problem with the single dipole density, since [ρa

u, ρ
a
v] = 0, there is an

ambiguity in defining the dipole-pair density since [n̄u1v1
, n̄u2v2

] 6= 0 and
similarly for the dipole-pair scattering amplitude, since the color field αa

is related to the charge ρa through the solution of the Poisson equation.
Thus one needs a prescription to circumvent the problem, for example by
considering symmetrized observables.

Of course, these difficulties should disappear when one assumes that the
target be composed of dipoles. The dipoles are color neutral, and therefore
there should be no non-commutativity issues any more. In that case, one

may ask if the dual Hamiltonian H̄ will reduce to H†
1→2 in Eq. (63) since

the latter was derived on the basis of the dipole picture. But one cannot
really answer this question, since the assumption that the relevant degrees
of freedom are dipolar, is a condition to be imposed on the wavefunction of
the system and is not a property of the Hamiltonian. So let us assume that
the wavefunction is of the form

ZY [ρ] =
∞∑

N=1

∫
dΓN PN ({zı};Y )

N∏

ı=1

1

Nc
Tr
(
Wzı−1

W †
zı

)
δ(ρ), (73)

with the notation introduced in Sec. 9. Now in order to find the evolution
equation of 〈O〉, it is much easier to obtain first the evolution of the wave-
function ZY [ρ], then multiply with O and finally integrate over ρ. When
we apply this procedure to the dipole-pair density we obtain the standard
evolution equation given in Eq. (45), provided that during the calculation
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we drop terms which are suppressed in the multicolor limit [109–111]. Still,

this description contains more than the one given by H†
1→2. In the latter,

only two gluons could be radiated from each color dipole in the wavefunction
of the target, while in the former there is no such restriction and a dipole
can radiate an arbitrary number of gluons. In particular, this means that
two projectile dipoles are allowed to scatter off the same target dipole.

14. Effective action

The next natural task should be to construct an effective theory which
takes into account all the vertices describing m→ n transitions, with m and
n arbitrary (and greater or equal to 2), like the generic one appearing in
Fig. 14. Whether this is the full set of vertices contributing at the leading
logarithmic level in ᾱs ln(1/x) or not (presumably not), is a separate issue
and if not it could turn out that the search for the “final solution” be a
formidable and too ambitious task. In any case, it seems reasonable to
avoid the discussion of this problem here.

The diagram in Fig. 14, and in the spirit of the CGC approach, corre-
sponds to the propagation of a semi-fast gluon (the horizontal red gluon) in
the presence of two types of background fields, and it represents the modes
that we need to integrate as we go to higher and higher values of rapidity.

Fig. 14. Generic vertex for an m→ n transition.

The two background fields (in the Coulomb gauge) are the A+ component
of the color field, represented by the vertical gluons above the semi-fast one,
and the radiative part of the A− component, represented by the vertical
gluons below the semi-fast one. The semi-fast gluon will be slow with re-
spect to the A+ component of the background field, so it will appear to the
latter as moving fast to the positive x− direction. Thus it will couple to that
component through a Wilson line in the longitudinal direction. Similarly, it
will be fast with respect to the A− component, it will appear to the latter
as moving fast in the positive x+ direction, and thus it will couple to that
component through a Wilson line in the temporal direction. Therefore, and
not surprisingly, both types of Wilson lines which we encountered (sepa-
rately) in the cases of the JIMWLK Hamiltonian and its dual will appear
in the final form of our effective action, and in fact these will be the only
degrees of freedom. In our current notation these Wilson lines in the adjoint
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representation (and by dropping the tilde we have been using so far) will
read

V †
x+(x) = P exp


i g

∞∫

−∞

dx−A+
a (x+, x−,x)T a


 , (74)

Wx−(x) = P exp


i g

∞∫

−∞

dx+A−
a (x+, x−,x)T a


 . (75)

Again we will just present the final result for the change of the effective
action under a rapidity step, and it can be given in the form [44]

∆Seff

∆Y
=

i

2πg2Nc

∫

x

Tr
[
V †
∞(∂iW−∞)(∂iV−∞)W †

∞

]
+ perm, (76)

where “perm” stands for the three more terms arising from the possible
permutations in the position of the spatial derivatives, and with the indices
in the longitudinal and temporal Wilson lines standing for their x+ and
x− dependence, respectively, in accordance to their definitions given above.
This expression for the effective action has also been obtained in [45] by
studying the scattering of two “shock waves” as developed in [112], while
an earlier stage of the same expression has been reached in [42]. The four
Wilson lines are not independent, rather they satisfy the constraint

V †
∞W−∞V−∞W

†
∞ = 1 ⇒ 1

N2
c − 1

TrW♦ = 1, (77)

where W♦ is the Wilson loop shown in Fig. 15. This loop encloses the
diamond defining the “interaction” area; the color field A+ has support in the
strip 0 ≤ x− ≤ x−Y ∼ x−0 eY and its width expands with increasing rapidity,

while the color field A− has support in the strip 0 ≤ x+ ≤ x+
Y ∼ x+

0 e−Y

and its width contracts with increasing rapidity. Notice that the value of
the effective action in Eq. (76) depends only on the value of the fields on the
boundary of this diamond-shaped area, and therefore, it seems that the high
energy problem reduces to a two-dimensional effective theory. Of course,
at the same time, one will not be able to probe x− and/or x+ dependent
correlations of the system (but this was the case in both JIMWLK and its
dual anyway), since the construction of Seff results in a coarse-graining along
these longitudinal and temporal directions.

This effective action is invariant under duality transformations as antic-
ipated [44]. Indeed, if we let

W∞ → V †
∞, W−∞ → V †

−∞, (78)
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Fig. 15. Wilson lines and the distribution of the background color fields in the

x+ − x− plane.

Seff transforms to an expression which is fully equivalent to the one given in
Eq. (76). Furthermore, the effective action will reduce to known expressions
in limiting cases. Expanding the temporal Wilson lines to lowest non-trivial
order, integrating over x+, letting A− → −iδ/δρ and using the Poisson
equation to relate ρ to A+ ≡ α, one obtains the JIMWLK Hamiltonian as
given in Eq. (19). Similarly, an expansion of the longitudinal Wilson lines
leads to the dual of JIMWLK as given in Eq. (68).

However, we should stress that Eq. (76) is not the complete answer to
our problem. What we would really like to have is a Hamiltonian, that
is, the effective action should be accompanied by well-defined commutators
satisfied by its degrees of freedom, i.e. the Wilson lines. Then we would be
able to find how the wavefunction of the system and the average values of
the observables evolve with rapidity, as we did in the two limiting (JIMWLK
and its dual) cases. For example, we have not been able to do the “simplest”
but most natural exercise; to write the evolution equations obeyed by the
dipole scattering amplitudes in this general case where all m → n transitions
are possible, as this would allow us to generalize the hierarchy presented in
Sec. 10. This problem is still “open” and therefore, we shall not discuss it
here. Let us just mention that the simple rule, for promoting an action into
a Hamiltonian, A− → −iδ/δρ and which is valid in the two limiting cases,
will presumably not work any more. First of all, A− is not the natural degree
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of freedom, rather the latter is given by the corresponding temporal Wilson
line. Furthermore, a replacement like the one mentioned above would lead
to commutators which depend on “broken” Wilson lines (lines in, say x−,
which run from −∞ to an upper limit different than ∞), a feature that
makes the whole approach ill-defined.

15. The saturation momentum revisited

In this last section we shall try to find the corrections in the energy de-
pendence of the saturation momentum, which are induced by the splitting
terms in the evolution equations. The result will be the one found in [34],
even though we shall present a much simpler calculation while at the same
time we will attempt to “improve” it. As claimed in [34] and in Sec. 7, one
needs to introduce an ultraviolet absorptive boundary to cut all the contri-
butions from the region where the amplitude is such that T . α2

s , since they
correspond to unitarity violating paths. Put it another way, a splitting of
Pomerons in the target point of view, corresponds to a merging of Pomerons
in the projectile point of view, and therefore this boundary is like a satura-
tion boundary for the projectile. The result of [34] has also been confirmed
in [35], by identifying and studying the analogy to a similar problem in sta-
tistical physics. Indeed, as we saw in Sec. 10, the full large-Nc hierarchy can
be reduced, under certain but justified for our purposes approximations, to
a Langevin problem [38] which is similar to the sFKPP equation. This equa-
tion shares the same features as the, deterministic, FKPP equation, when
the latter is supplied with a cutoff at α2

s .
Therefore we would like to solve the BFKL equation with two absorp-

tive boundaries11. The separation, in logarithmic units, between these two
boundaries, the saturation line and the fluctuation line, should be

∆ =
1

1 − γr
ln

1

α2
s

+ O(const), (79)

as shown in Fig. 6, since within ∆ the amplitude will drop from a value of
order O(1) to a value of order O(α2

s ), as determined from its leading power
behavior in Q2. The constant in Eq. (79) is not really under control, since
it can be affected, for example, by the precise value of T on the boundaries.
Even though this constant should not affect the leading correction, since it
is suppressed with respect to the leading term when αs → 0, it will turn
out to have an important influence on the results for small, but reasonable,
values of the coupling constant.

11 The BFKL equation, and more precisely the value of the hard Pomeron intercept,
in the presence of momentum cutoffs has also been studied in the “remote” past
[113, 114], but the origin of the cutoffs was much different.
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By making a change of variables, from (ln(Q2/µ2), Y ) to (z, Y ), with
z ≡ ln(Q2/Q2

s (Y )), one can write the BFKL equation as

[
χ

(
1 +

∂

∂z

)
− λs

∂

∂z

]
T = 0. (80)

The above expression has been set equal to zero, instead of (1/ᾱs) ∂T/∂Y ,
since we are looking for lines of constant scattering amplitude T , that is, Y -
independent solutions12 for T . In Eq. (80), λs is the logarithmic derivative
of the saturation momentum, which is to be determined. Now let us recall
that the BFKL eigenfunctions are exponentials in z, where the anomalous
dimension is in general complex, i.e. γ = γr + i γi, with obvious notation.
Then one can see that the unique real linear combination of eigenfunctions,
which satisfies the boundary conditions T (z = 0) = T (z = ∆) = 0 is

T ∝ exp[−(1 − γr) z] sin
πz

∆
. (81)

In the above equation, the sine has been obviously generated by the linear
combination of the parts of the two degenerate eigenfunctions that involve
the complex piece of the anomalous dimension, which is uniquely determined
in terms of ∆ and reads γi = π/∆. Furthermore, in order for Eq. (81) to
satisfy Eq. (80) and since the saturation momentum is a real quantity, the
constant λs must be given by

λs =
χ(γ)

1 − γ
with Im(λs) = 0. (82)

This last equation is the solution to our problem, since for a given value of
γi (that is, for a given ∆ or for a given αs), there will be a unique value of
the real part γr of the anomalous dimension which makes the logarithmic
derivative of the saturation momentum λs real. Notice that the solution will
not correspond to a saddle point of χ(γ)/(1 − γ), in contrast to the single
boundary case, cf. Eq. (31).

When the separation of the boundaries is large, or equivalently the cou-
pling is extremely small, i.e. ∆ ≫ 1 ⇔ αs ≪ 1, we can expand the r.h.s. of
Eq. (82) around the asymptotic anomalous dimension which is γs as expected
and as shown in Fig. 16. By setting the imaginary part of this expansion
equal to zero, we uniquely determine γr and then the real part gives λs. It

12 Of course, by making this assumption we will not be able to find the approach to the
asymptotics, i.e. Y -dependent corrections for λs. Nevertheless, due to the “strong
absorption”, these corrections drop very fast, more precisely exponentially, in this two
boundary problem.
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Fig. 16. The anomalous dimension in the two boundary approximation.

is not hard to find that in this expansion the logarithmic derivative of the
saturation momentum is given by [34]

λs

ᾱs
=

χ(γs)

1 − γs
− π2(1 − γs)χ

′′(γs)

2 ln2(α2
s )

= 4.88 − 150

ln2(α2
s )
, (83)

while the real part of the anomalous dimension reads

γr = γs +

[
1 +

(1 − γs)χ
′′′(γs)

3χ′′(γs)

]
π2(1 − γs)

2 ln2(α2
s )

= 0.372 − 0.562

ln2(α2
s )
. (84)

It is obvious that as we let the second boundary to infinity, i.e. when
αs → 0, we approach the results of the single boundary problem. The same
is true for the scattering amplitude too; as ∆ → ∞, Eq. (81) reduces to
the scaling part (the first two factors) of Eq. (33). Of course, it is not
surprising that the correction in λs is negative, since there is absorption
from the two boundaries. Moreover, we should notice that the denominator
in the correction of λs has again a simple interpretation; it is proportional
to the square of the “effective” transverse phase space, in logarithmic units,
for the evolution of the system, which here is ∆

2 ∼ ln2(α2
s ), as it was in

the single boundary case (cf. Eq. (32) and the discussion after that). A
rather important feature of these corrections, which are generated in reality
by the negative contribution of the Pomeron loops formed in the course of
the evolution, is that they appear to be much more significant that any next
to leading order correction; indeed the latter would simply add a term of
order O(αs) with respect to the leading term.

These corrections have the nice feature that they are universal, that is,
they do not depend on the precise width of the boundary. If we let αs → καs,
with κ = O(1), which amounts to the modification of the boundary width
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by an additive constant, the induced correction in Eqs. (83) and (84) will
be of order O(1/ ln3(α2

s )). But within the same reasoning, these equations
are as far as one can go by using analytical methods, since any higher order
correction will depend on the precise value of the boundary width, and thus
one cannot rely on the BFKL equation any more.

This brings us in a somewhat difficult situation, since the coefficient
in the correction of λs is huge, mostly due to the large value of χ′′(γs).
Indeed, for reasonable values of αs the correction will dominate the leading
contribution; λs as given in Eq. (83) will be negative so long as αs & 0.06.
Of course, this does not mean that there is something wrong neither with
Eq. (83) nor with the problem at hand. Eq. (83) is really supposed to be
valid at very small αs, while for a realistic value of αs we should rely on a
(numerical) solution of the full set of equations, i.e. including non-linearities
and fluctuations.

One can already see that the situation will be better if we decide not
to expand the BFKL kernel in the diffusion approximation, as we did while
going from Eq. (82) to Eq. (83). Eq. (82) is just an algebraic equation which
can be easily solved numerically for a given, but arbitrary, value of αs. In
Fig. 16 we show the solution for the anomalous dimension in the complex
plane, while in Fig. 17 we show the dependence of λs/ᾱs on αs.

0.05 0.1 0.15 0.2 0.25 0.3
Αs

1

2

3

4

5

Λ�Α
��

s

Fig. 17. The logarithmic derivative of the saturation momentum in the two bound-

ary approximation.

As we see in Fig. 16 and also in Eq. (84) there is an important correction
to the real part of the anomalous dimension, but not as huge as in the
case of λs. It is amusing, but also natural, that there is no solution for
values of γ such that γr ≥ 1/2. This is the point where the saturation line
becomes identical to the Pomeron intercept line. That means that the latter
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becomes a line of constant amplitude (like the saturation line); the negative
corrections induced by the boundaries will exactly cancel the leading value
ωP = 4ᾱs ln 2. Since the Pomeron intercept line corresponds to the line of
fastest increase, we conclude that there will be no high energy growth any
more, therefore no saturation, and thus no solution to our problem!

In Fig. 17 we see that λs starts from the, well-known by now, asymptotic
value 4.88ᾱs for vanishing αs and it decreases to become zero at a point which
is, of course, the same as the point in Fig. 16 where γr = 1/2 and there is no
solution any more. The change in the “speed” of the saturation momentum
is still significant, but the total result is positive in a much wider region of
possible values of αs, more precisely one has λs(αs . 0.3) > 0. Of course,
this is not really under control, since one is free to rescale αs by a factor
of order O(1). Nevertheless, this result behaves much better than Eq. (83),
while both are solutions to the same problem and under the same definition
for the boundary width ∆ as a function of αs. Thus, one expects that in
a (numerical) solution of the full problem, the outcome will presumably be
well-defined for all reasonable values of the coupling constant.

Our presentation would be incomplete, if at this point we would not
mention that the scaling behavior of the amplitude will not persist at very
high values of rapidity [34] due to the presence of the fluctuations terms in
the evolution equations [35, 38]. Since the system is of stochastic nature,
different events will lead to different profiles of the scattering amplitude
as a function of Q2 and at a given fixed rapidity Y [35]. These profiles
will be of the same form but shifted with respect to each other according
to a probability density, which at a first approximation can be taken as a

Gaussian with a diffusive radius which scales as
q

ᾱsY/ ln3(1/α2
s ). Averaging

over all the events, one finds that [35]

〈T (Q2, Y )〉 = F

(
ln(Q2/〈Q2

s 〉)
q

ᾱsY/ ln3(1/α2
s )

)
, (85)

which clearly violates the geometrical scaling of the amplitude. Such vio-
lations, and their consequences, for instance the breakdown of the BFKL
approximation in the high momentum region [38], have been seen in the
existing numerical solutions [106, 107], but the precise value of the critical
rapidity that they set in (which could depend on the initial conditions) is
not under real control yet.

16. Epilogue

In these lectures I have tried to give a simple introduction (and not only)
to the basic theoretical developments, during the last decade or so, in the
field of high energy (small-x) QCD. To this end, I have introduced, and relied
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mostly to, the dipole picture of high energy evolution and the Color Glass
Condensate formulation of an energetic hadron, since, to my opinion, these
are the simplest and perhaps most promising self-consistent approaches to
the problem. Even though I have not followed a step by step procedure in
the construction of the effective theory governing the dynamics at this high-
energy limit, I have tried to describe as much as possible the underlying
physical picture, and in the Appendices that follow I give the derivations of
some relevant equations in order to have a more complete presentation.

I feel that we have seen important progress in the field during the last
year, since we were able to derive evolution equations containing Pomeron
loops as one of their building blocks, which is really the mechanism that
eventually leads to the unitarization of scattering amplitudes and the satu-
ration of hadronic wavefunctions (even though for an accurate description
of the latter one may need to go beyond the large-Nc limit).

Of course, there are still many open questions and things to be done.
For instance, it would be natural to look for the extension of the evolution
equations to finite-Nc which allow transitions among arbitrary numbers of
Pomerons, even though the solution of such generalized equations may turn
out to be not much different for most interesting quantities (in the same
way that the BK and JIMWLK equations share, at some level, the same
features). So, at the moment, we would like to have a better analytical
insight to the current set of equations, and presumably this can be achieved
by analyzing their stochastic nature, while at the same time more accurate
solutions are needed. Clearly this is rather important if one aims to see the
implications at the phenomenological level. To this purpose, and for a more
complete analysis, one would really like to go beyond this hierarchy, which is
good for the description of total cross sections, and extend it, if possible, to
the case of diffractive scattering (such attempts, but restricted to BK and/or
JIMWLK evolution have been already made [115–117]). On the theoretical
side, I believe that it is important to investigate the relationship with the
other approaches to the problem and the possible equivalence between them,
so that at the end of the day one will have a unified and concrete description
of the dynamics in high-energy QCD.

I would like to thank the organizers, Andrzej Białas, Krzysztof Golec-
Biernat, and especially Michał Praszałowicz, for the invitation to lecture at
the summer school. I am grateful to my collaborators, and in particular to
Edmond Iancu, with whom some of the ideas developed and results discussed
here were obtained. I am indebted to Jean-Paul Blaizot for a careful reading
of the manuscript and for his critical comments.
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Appendix A

The dipole kernel

In this Appendix we will derive the expression given in Eq. (2) for the
dipole emission kernel [5]. Let us look at the left diagram in Fig. 18, where
a soft gluon is emitted by the quark line. With the 4-momenta of the quark
and the gluon being pµ = (p− = p2/(2p+) → 0, p+→∞,p → 0) and kµ =
(k− = k2/(2k+), k+ = xp+,k) respectively, the probability amplitude for
this emission in light-cone old fashioned perturbation theory is given by

Ma
λ(k+,k) =

g taǫ−λ√
(2π)32k+

1

k−
=

2g ta√
(2π)32k+

ǫλ ·k
k2

. (A.1)

Here, λ stands for the polarization of the gluon, g taǫ−λ is the quark gluon
vertex in the high energy approximation, 1/k− corresponds to the energy
denominator which is dominated by the gluon, and the square root factor
arises from the usual normalization of the color field. We have also used the
fact that, in the light cone gauge A+ = 0, the condition kµǫ

µ
λ = 0 implies

ǫ−λ = ǫλ ·k/k+. It is straightforward to perform a Fourier transformation
in order to obtain the probability amplitude in transverse coordinate space,
which reads

Ma
λ(k+,x−z) =

∫

k

exp [ik·(x−z)]

(2π)2
Ma

λ(k+,k)

=
1

2π

2ig ta√
(2π)32k+

ǫλ ·(x−z)

(x−z)2
. (A.2)

Similarly the probability amplitude for emission from the antiquark line of
the dipole will be Ma

λ(k+,z−y). Then the differential emission probabil-
ity in the interval d2z and from k+ to k+− dk+ (we anticipate that the
change in the probability will be positive when k+ decreases and therefore
the longitudinal phase space “opens up”) will be given by

dP = −(2π)2
∑

a,λ

∣∣Ma
λ(k+,x−z) + Ma

λ(k+,z−y)
∣∣2 d2z dk+. (A.3)

The factor (2π)2 arises when we transform the (square of the) wavefunction
of the initial state in momentum space to the one in coordinate space. By
using tata = (N2

c − 1)/(2Nc) → Nc/2 to sum over color indices in the large-
Nc limit, and

∑
λ ǫ

ı
λǫ

∗
λ = δı to sum over polarization indices, we finally

arrive at

dP =
ᾱs

2π

(x − y)2

(x − z)2(z − y)2
d2z dY. (A.4)
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Fig. 18. The two diagrams contributing to the splitting amplitude.

In the above equation, we have introduced the rapidity increment dY . No-
tice that this factor arises from the longitudinal phase space −dk+/k+ =
−dx/x = d ln(1/x) = dY .

Appendix B

The elementary dipole–dipole scattering amplitude

Here we will calculate the imaginary part of the dipole–dipole scattering
amplitude in the two-gluon exchange approximation. In this limit, only
tree diagrams need to be considered and one can simply use classical field
equations. Let us assume that the dipole (u,v) creates a field αa which is
“seen” from the dipole (x,y). In general, the amplitude for the dipole (x,y)
to scatter off a classical field αa is determined by

T (xy|α) =
g2

4Nc

[
αa(x) − αa(y)

]2
. (B.1)

When this field is created by a source ρa, it can be determined by the solution
of the Poisson equation in the Coulomb gauge, more precisely

∇2
zα

a(z) = −ρa(z) =⇒ αa(z) = − 1

4π

∫

w

ln
[
(z − w)2µ2

]
ρa(w). (B.2)

Then Eq. (B.1) becomes

T (xy|ρ) =
g2

64π2Nc



∫

w

ln

[
(x − w)2

(y − w)2

]
ρa(w)




2

. (B.3)

In the problem under consideration, the source consists of the quark and the
antiquark of the dipole (u,v), and therefore its charge is given by

ρa(w) = g ta [δ(w − u) − δ(w − v)] . (B.4)

Substituting the expression (B.4) into Eq. (B.3) and by making use of

tata =
N2

c − 1

2Nc
, (B.5)
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we finally arrive at

T0(xy|uv) =
α2

s

8

N2
c − 1

N2
c

ln2

[
(x − v)2(y − u)2

(x − u)2(y − v)2

]
. (B.6)

Notice that this is invariant under the exchange of the two dipoles, i.e.

xy ↔ uv and under the exchange of the quark and the antiquark within
the same dipole, i.e. x ↔ y and/or u ↔ v. The latter will not be true, in
general, when we relax the two-gluon exchange approximation.

One can also integrate over the impact parameter of the scattering, i.e.

over the relative distance b = (x+ y−u−v)/2 between the two dipoles,
average over the orientation of the two dipoles, and multiply by a factor of
2 to obtain a total cross section

σDD(r1, r2) = 2πα2
s r

2
<

(
1 + ln

r>
r<

)
. (B.7)

In the above equation r1 and r2 are the sizes of the two dipoles (x,y) and
(u,v), r< = min(r1, r2) and r> = max(r1, r2), while we have also set the
color factor equal to its large-Nc value. When either of the dipole sizes
vanishes, this total cross section vanishes due to color transparency.

Appendix C

The BFKL equation: from dipole densities to scattering amplitudes

The BFKL equation for the dipole density in the wavefunction of the
target reads

∂〈nuv〉
∂Y

=
ᾱs

2π

∫

z

[
−Muvz〈nuv〉 + Muzv〈nuz〉 + Mzvu〈nzv〉

]
. (C.1)

In the two-gluon exchange approximation, the amplitude for a dipole (x,y)
to scatter of the target is given by a linear transformation of the dipole
density, namely

〈Txy〉 =

∫

uv

T0(xy|uv) 〈nuv〉, (C.2)

with T0(xy|uv) the elementary dipole–dipole scattering amplitude at lowest
order in perturbation theory, and when the color-factor is set to its large-Nc

value, one has (cf. Eq. (B.6))

T0(xy|uv) =
α2

s

8
ln2

[
(x − v)2(y − u)2

(x − u)2(y − v)2

]
. (C.3)
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Differentiating Eq. (C.2) with respect to Y , using Eq. (C.1) and making
some trivial interchanges of variables we obtain

∂〈Txy〉
∂Y

=
ᾱs

2π

∫

uvz

Muvz

[
T0(xy|uz) + T0(xy|zv)−T0(xy|uv)

]
〈nuv〉. (C.4)

Let us concentrate on the integration over z, and make a change of variables
through the conformal transformation

z → z + c1
c2 z − 1

, (C.5)

with the parameters c1 and c2 given by

c1 = −x
−1 − y−1 + u−1 − v−1

(xu)−1 − (yv)−1
, c2 =

x− y + u− v

xu− yv
, (C.6)

and where we have defined the complex variable z = z1 + i z2, with z =
(z1, z2) (and similarly for x,y,u,v). This particular transformation for z

does not change the functional form of the integrand, composed of the dipole
kernel, the square bracket and the integration measure d2z, but simply per-
forms the mapping x ↔ u and y ↔ v. Therefore Eq. (C.4) becomes

∂〈Txy〉
∂Y

=
ᾱs

2π

∫

uvz

Mxyz

[
T0(xz|uv) + T0(zy|uv)−T0(xy|uv)

]
〈nuv〉, (C.7)

and now by making use of Eq. (C.2), we finally arrive at the equation de-
scribing the scattering amplitude of a single projectile dipole off the target
in the BFKL approximation which reads

∂〈Txy〉
∂Y

=
ᾱs

2π

∫

z

Mxyz

[
〈Txz〉 + 〈Tzy〉 − 〈Txy〉

]
. (C.8)

Appendix D

Eigenvalues of the BFKL equation

Here we shall find the eigenvalues of the BFKL equation in the simplified
case where the scattering amplitude satisfies Txy = T (r), where r = |r| ≡
|x − y| is the size of the dipole. The integration measure on the right-hand
side of Eq. (C.8) may be written as

d2z = 2πr1r2dr1dr2

∞∫

0

dℓ ℓ J0(ℓr)J0(ℓr1)J0(ℓr2), (D.1)
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with r1 and r2 the sizes of the child dipoles (x,z) and (z,y) respectively,
and where J0 is a Bessel function of the first kind. Then the right-hand side
of Eq. (C.8) (divided by ᾱs) becomes

Kǫ
BFKL ⊗ T (r)≡

∫

r1r2ℓ

1

r1−2ǫ
1

1

r1−2ǫ
2

r2ℓ J0(ℓr)J0(ℓr1)J0(ℓr2)

×[T (r1) + T (r2) − T (r)], (D.2)

with ǫ a positive regularization constant which at the end will be set equal
to zero. Since there is no mass scale appearing in the BFKL equation and
the kernel combined with the integration measure has no dimension, one
expects the eigenfunctions to be pure powers of the dipole size r. Indeed,
with T (r) = r2(1−γ) one can successively integrate over r1, r2 and ℓ in
Eq. (D.2) to obtain

Kǫ
BFKL⊗r2(1−γ)=

Γ (ǫ)

Γ (1−ǫ)

[
Γ (γ−2ǫ)Γ (1+ǫ−γ)
Γ (γ−ǫ)Γ (1+2ǫ−γ)−

Γ
(

1
2−ǫ

)

4ǫΓ
(

1
2 +ǫ

)
]
r2(1−γ)+4ǫ.(D.3)

Taking the limit ǫ→ 0 one finds

KBFKL ⊗ r2(1−γ) = χ(γ) r2(1−γ), (D.4)

where

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), (D.5)

with ψ(γ) the logarithmic derivative of the Γ -function, i.e.

ψ(γ) ≡ d lnΓ (γ)

dγ
. (D.6)

An alternative, and perhaps easier, derivation may be given by noticing
that the eigenvalue may be written as

χ(γ) =
1

π

∫

z

x2

z2(x − z)2

(
z2−2γ

x2−2γ
− x·z

x2

)
, (D.7)

where we have set y = 0, we have used the fact that the first two terms in
the BFKL equation give the same result and we have split the virtual term
into two parts using x2 = x ·z − x · (z−x), where both parts contribute
equally. Now we can make the change of variable z = xu to obtain

χ(γ)=
1

π

1∫

0

du

2π∫

0

dφ
u1−2γ + u2γ−1 − 2 cos φ

1 − 2u cos φ+ u2

= 2

1∫

0

du
u1−2γ + u2γ−1 − 2u

1 − u2
, (D.8)
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where we have transformed the integration over u from 1 to ∞ to an inte-
gration from 0 to 1, by letting u → 1/u. Now the integration over u leads
to Eq. (D.5).

Appendix E

The Balitsky equations

Here we derive the first two Balitsky equations starting from the
JIMWLK Hamiltonian. The latter is given by

H = − 1

16π3

∫

uvz

Muvz

[
1 + Ṽ †

uṼv − Ṽ †
uṼz − Ṽ †

z Ṽv

]ab δ

δαa
u

δ

δαb
v

(E.1)

and the evolution equation for a generic operator O is determined by

∂〈O〉
∂Y

= 〈HO〉. (E.2)

First we would like to find the action of the JIMWLK Hamiltonian on the
S-matrix

Sxy =
1

Nc
Tr
(
V †

xVy

)
, (E.3)

which describes the scattering of a single dipole off the hadronic target. The
action of the functional derivative on the Wilson lines is

δ

δαa
u

V †
x = igδxu t

aV †
x, (E.4)

δ

δαa
u

Vx = −igδxuVx t
a. (E.5)

Now we easily find that

δ

δαa
u

δ

δαb
v

Sxy → g2

Nc

[
δxuδyv Tr

(
tbtaV †

xVy

)
+ δxvδyu Tr

(
tatbV †

xVy

)]

→ 2g2

Nc
δxuδyv Tr

(
tbtaV †

xVy

)
, (E.6)

where we have dropped terms proportional to δuv since the kernel M van-
ishes when u = v, and we have anticipated that both terms in the square
bracket in the above equation will contribute the same. Let us consider the
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first term in the square bracket of Eq. (E.1). Using tata = (N2
c − 1)/(2Nc),

we find the first contribution to HSxy

first = −N
2
c − 1

2N2
c

ᾱs

2π

∫

z

Mxyz Sxy. (E.7)

Now consider the contribution coming from the second term in Eq. (E.1).
In order to transform the adjoint Wilson lines to fundamental ones, we shall
make use of

(
Ṽ †
)ba
tb = Ṽ abtb = V †ta V. (E.8)

Then it is straightforward to show that the contribution of the second term
is the same as the one of the first, that is

second = −N
2
c − 1

2N2
c

ᾱs

2π

∫

z

Mxyz Sxy. (E.9)

The third term involves

(
Ṽ †

x

)ac
Ṽ cb

z Tr
(
tb ta V †

xVy

)
= Tr

(
V †

z t
c VzV

†
x t

c Vy

)
, (E.10)

and by using the identity

Tr
(
taAtaB

)
=

1

2
Tr(A)Tr(B) − 1

2Nc
Tr(AB), (E.11)

which arises from the Fierz identity

(
ta
)ı(

ta
)kℓ

=
1

2
δıℓδk − 1

2Nc
δıδkℓ, (E.12)

we find that the corresponding contribution (which is also equal to the one
coming from the fourth term) is

third = fourth =
1

2

ᾱs

2π

∫

z

Mxyz

[
SxzSzy − 1

N2
c

Sxy

]
. (E.13)

Combining Eqs. (E.7), (E.9) and (E.13) we finally arrive at the first Balitsky
equation

∂〈Sxy〉
∂Y

=
ᾱs

2π

∫

z

Mxyz [〈SxzSzy〉 − 〈Sxy〉] . (E.14)
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Now we would like to scatter two dipoles (x1,y1) and (x2,y2) off the
hadron. The corresponding S-matrix is given by

S(2)(x1y1;x2y2) = Sx1y1
Sx2y2

(E.15)

with Sxy the S-matrix for a single dipole as determined by Eq. (E.3). In
order to find the evolution equation for this operator we need again to act
with the JIKWLK Hamiltonian. When both functional derivatives act on
the same dipole, then the other dipole is just a spectator and the evolution
equation can be trivially obtained as a result of the Leibnitz rule and the
first Balitsky equation. We have

∂〈Sx1y1
Sx2y2

〉
∂Y

=
ᾱs

2π

∫

z

Mx1y1z 〈(Sx1zSzy1
−Sx1y1

)Sx2y2
〉

+ {1 ↔ 2} + O
(
N−2

c

)
, (E.16)

where we have anticipated that the remaining terms will be suppressed at
large-Nc, something which will be verified in what follows. Let us consider
the terms which arise when each of the functional derivatives acts on a dif-
ferent dipole. For example, there will be a term coming from the action of

δ/δαa
u on V †

x1
and the action of δ/δαb

v on Vy2
. For this particular contribu-

tion we have

δ

δαa
u

δ

δαb
v

Sx1y1
Sx2y2

→ g2

Nc
δx1uδy2v Tr

(
taV †

x1
Vy1

)
Tr
(
tbV †

x2
Vy2

)
. (E.17)

Using the identity

Tr
(
taA
)
Tr
(
taB

)
=

1

2
Tr(AB) − 1

2Nc
Tr(A)Tr(B), (E.18)

which arises from the Fierz identity (E.12) we find that the contribution of
the first term in the square bracket in Eq. (E.1) is

first = − 1

4N3
c

ᾱs

2π

∫

z

Mx1y2z

[
Tr
(
V †

x1
Vy1

V †
x2
Vy2

)

− 1

Nc
Tr
(
V †

x1
Vy1

)
Tr
(
V †

x2
Vy2

)]
. (E.19)

Similarly, and by using Eq. (E.8), we find that the contribution of the second
term is

second= − 1

4N3
c

ᾱs

2π

∫

z

Mx1y2z

[
Tr
(
Vy1

V †
x1
Vy2

V †
x2

)

− 1

Nc
Tr
(
V †

x1
Vy1

)
Tr
(
V †

x2
Vy2

)]
, (E.20)
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while the third and the fourth term give

third = fourth=
1

4N3
c

ᾱs

2π

∫

z

Mx1y2z

[
Tr
(
V †

x1
VzV

†
x2
Vy2

V †
zVy1

)

− 1

Nc
Tr
(
V †

x1
Vy1

)
Tr
(
V †

x2
Vy2

)]
. (E.21)

Putting Eqs. (E.19), (E.20) and (E.21) together we obtain

1

4N3
c

ᾱs

2π

∫

z

Mx1y2z

[
2Tr

(
V †

x1
VzV

†
x2
Vy2

V †
zVy1

)
− Tr

(
V †

x1
Vy1

V †
x2
Vy2

)

−Tr
(
Vy1

V †
x1
Vy2

V †
x2

)]
. (E.22)

There are seven more terms like the one in Eq. (E.22). Three terms are
obtained when δ/δαa

u acts on the first dipole (and therefore δ/δαb
v acts on

the second dipole). They can be read from Eq. (E.22) with the replacement
Mx1y2z → My1x2z,−Mx1x2z,−My1y2z. The last four terms are obtained
when δ/δαa

u acts on the second dipole (and therefore δ/δαb
v acts on the

first dipole) and they can be simply read from the first four terms with
the replacement 1 ↔ 2. Putting everything together we finally find that
the non-leading (in the number of colors) contribution to the evolution of
〈Sx1y1

Sx2y2
〉 is given by

∂〈Sx1y1
Sx2y2

〉
∂Y

∣∣∣∣
NL

=
1

2N3
c

ᾱs

2π

∫

z

[
Mx1y2z + My1x2z−Mx1x2z−My1y2z

]

×
[
Tr
(
V †

x1
VzV

†
x2
Vy2

V †
zVy1

)
+ Tr

(
V †

x2
VzV

†
x1
Vy1

V †
zVy2

)

−Tr
(
V †

x1
Vy1

V †
x2
Vy2

)
− Tr

(
Vy1

V †
x1
Vy2

V †
x2

)]
. (E.23)

One sees that the terms in Eq. (E.23) are of non-dipolar structure and of
order O(1/N2

c ) when compared to the terms in Eq. (E.16), as one had antici-
pated. The second Balitsky equation is obtained by identifying the antiquark
of the first dipole with the quark of the second dipole. With the slight change
of notation x1 → x, y1 = x2 → z, y2 → y and z → w, we can write this
second equation as
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∂〈SxzSzy〉
∂Y

=
ᾱs

2π

∫

w

Mxzw 〈(SxwSwz − Sxz)Szy〉

+
ᾱs

2π

∫

w

Mzyw 〈Sxz(SzwSwy − Szy)〉

+
1

2N2
c

ᾱs

2π

∫

w

(Mxyw−Mxzw−Mzyw)〈Qxzwy +Qxwzy〉,

(E.24)

where the quadrupole operator Q is

Qxzwy ≡ 1

Nc

[
Tr
(
V †

xVwV
†
zVyV

†
wVz

)
− Tr

(
V †

xVy

)]
. (E.25)

Appendix F

Solving the BK equation in the high density region

Let us derive the limiting form of the S-matrix for dipole–hadron scatter-
ing in the region Λ

2
QCD ≪ Q2 ≪ Q2

s , with 1/Q the dipole size, as determined
from the solution of the BK equation, that is from the factorized form of
Eq. (26). Since we are looking for the solution in a regime where the S-matrix
approaches its black-disk limit, i.e. S → 0, we can neglect the quadratic in
S term in the BK equation. In order to do this properly, we need to restrict
the region of integration in the transverse coordinates according to

1

Q2
s

≪ (x − z)2, (z − y)2 ≪ 1

Q2
. (F.1)

The lower limit arises from the fact that Q2
s is the boundary determining the

transition from a region where the scattering is weak to a region where it
becomes strong, while the upper limit determines the dominant logarithmic
contribution to the r.h.s. of the BK equation. Thus, we easily find that

∂ ln〈S〉
∂Y

= −ᾱs

1/Q2∫

1/Q2
s

dz2

z2
= −ᾱs ln

Q2
s

Q2
. (F.2)
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Using the leading behavior for the energy dependence of Qs given in Eq. (32),
we can write the derivative with respect to Y as

∂

∂Y
=
∂ ln(Q2

s/Q
2)

∂Y

∂

∂ ln(Q2
s/Q

2)
= ᾱs

χ(γs)

1−γs

∂

∂ ln(Q2
s/Q

2)
. (F.3)

Then it is trivial to solve Eq. (F.2) to obtain [37, 84, 85]

〈S〉 ≈ exp

[
− 1 − γs

2χ(γs)
ln2 Q

2
s

Q2

]
. (F.4)

This form remains the same when one takes into account the effects of some
rare fluctuations, but with a coefficient in the exponent which is reduced by
a factor of 2 [118].

Appendix G

The diffusion to the ultraviolet

In this Appendix we shall show the significance of the high momenta
contributions to the evolution. Since at these high momenta the system is
dilute, we shall deal only with the BFKL equation and for simplicity we will
even suppress the effects of the absorptive IR boundary. So let us consider
the amplitude for a dipole of size 1/Q to scatter off a dipole of size 1/µ.
The general (rotationally symmetric and integrated over impact parameter)
solution is given by Eq. (6) with the replacement r → 1/Q. Now we would
like to find the solution for ᾱsY ≫ 1 and close to the momentum Q2

0 defined
by

Q2
0(Y ) = µ2 exp

[
ᾱsχ(γs)

1 − γs
Y

]
. (G.1)

Notice that this is a line parallel to the saturation one, if we neglect the
prefactors. In the diffusion approximation, we can write the solution to the
BFKL equation as

T (Q,Y ) =
2πα2

s

µ2
T (0)

γs

(
Q2

0

Q2

)1−γs 1√
πDsY

exp

[
− ln2(Q2/Q2

0)

DsY

]
. (G.2)

Now let us try to obtain the same solution, by performing two global evo-
lution steps, from 0 to Y1 and then from Y1 to Y . Then one can write the
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solution, which we denote as T̃ , in the form

T̃ (Q,Y ) =

∞∫

0

dQ2
1

Q2
1

T (Q1, Y1)

×
∫

C

dγ

2πi
exp

[
ᾱsχ(γ)(Y −Y1)−(1 − γ) ln

(
Q2/Q2

1

)]
, (G.3)

which has a simple interpretation; the amplitude at Y1 and for a given
momentum Q1 is evolved to Y , and then an integration is performed over the
initial condition (at Y1). Performing the integration over γ in the diffusion
approximation and using the solution given above in Eq. (G.2) with Q→ Q1

and Y → Y1, we obtain

T̃ (Q,Y ) =
2πα2

s

µ2
T (0)

γs

(
Q2

0

Q2

)1−γs 1√
πDsY1

1√
πDs(Y −Y1)

×
∞∫

0

dQ2
1

Q2
1

exp

[
− ln2(Q2/Q2

1)

Ds(Y −Y1)
− ln2(Q2

1/Q
2
0)

DsY1

]
. (G.4)

It is straightforward to show that the integration over Q1 will lead to a result
identical to the one in Eq. (G.2). But say, we want to find the region in Q1,
that contributes the most in order to get Eq. (G.2). Imposing an ultraviolet
cutoff at QUV and setting, for example, Y1 = Y/2, we find

T̃ (Q,Y )

T (Q,Y )
= 1 − 1

2
erfc

[
2 ln(Q2

UV/Q
2
0) − ln(Q2/Q2

0)√
DsY

]
, (G.5)

where erfc(x) is the complimentary error function, for which we recall that

erfc(x) =





2 +
exp(−x2)√

πx
for x≪ −1 ,

1 for x = 0 ,

exp(−x2)√
πx

for x≫ 1.

(G.6)

If we want to calculate the amplitude, say close to Q0, the second term in the
argument of the error function can be neglected. Therefore, the two results
T (Q,Y ) and T̄ (Q,Y ) will agree so long as ln(Q2

UV/Q
2
0) ≫

√
DsY . Thus,

even if at the final rapidity Y we are interested in the amplitude very close
to the “central line” Q0, at the intermediate steps of evolution all values of
Q that extend up to the diffusion radius contribute to the final result.
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Appendix H

The Langevin equation and the hierarchy

Let us show in a simplified zero-dimensional case, how a particular
Langevin equation is equivalent to an infinite hierarchy describing splitting
and merging processes. Consider the equation

dn

dY
= αn− β n2 +

√
γ n ν ≡ A+Bν, (H.1)

where ν(Y ) is a Gaussian white noise; 〈ν(Y )〉 = 0 and 〈ν(Y ) ν(Y ′)〉 =
δ(Y − Y ′), and with all other higher noise correlators vanishing. This
Langevin equation should be understood with the Ito prescription for the
discretization of time, namely, if one writes Y =  ǫ, where  is a non-negative
integer and ǫ the time step, Eq. (H.1) should read

n+1 − n

ǫ
= A +B ν+1 (H.2)

with 〈ν〉 = 0 and 〈νıν〉 = (1/ǫ) δı. Then it is a simple exercise to show
that the evolution of the expectation value of an arbitrary function F (n) is
determined by the equation

d〈F (n)〉
dY

= 〈AF ′(n)〉 +
1

2
〈B2F ′′(n)〉. (H.3)

With F (n) = nκ and with A and B as defined in Eq. (H.1), the above
equation leads to

d〈nκ〉
dY

= ακ 〈nκ〉 − β κ 〈nκ+1〉 + γ
κ(κ−1)

2
〈nκ−1〉. (H.4)

The generalization to the, two-dimensional and with non-local vertices,
large-Nc QCD case is straightforward.
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