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Solving the BKP equation and comparing with the structure function
of hadron for deep inelastic scattering processes we are able to find a rela-
tion between reggeized N -gluon states and anomalous dimensions of QCD.
To this end we perform analytical continuation of the Reggeon energy and
compare exponents of two different twist-series expansions for the hadron
structure function. This makes possible to calculate the anomalous dimen-
sions and determine the twist related to them.

PACS numbers: 12.40.Nn, 11.55.Jy, 12.38.–t, 12.38.–t

1. Introduction

During this talk I would like to present the work which was performed
about one year ago in collaboration with Korchemsky and Manashov [1].
This work describes the way one can calculate the anomalous dimensions of
QCD making use of the reggeized gluon states, i.e. Reggeons. This approach
was first used in 1980 by Jaroszewicz [2] who calculated anomalous dimen-
sions coming from N = 2 Reggeon state corresponding to twist n = 2. Later,
the cases for higher twists with N = 2 were computed by Lipatov [3, 4]. In
Ref. [1] we performed calculation for Reggeon states with N > 2.

In order to present the calculation, firstly, I will explain briefly what the
reggeized gluons are. Next, I will describe the way one can relate them to
the anomalous dimensions in QCD. Finally, I will show our results.
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2. Reggeized gluons and Deep Inelastic Scattering

Let us consider the deep inelastic scattering of hadron, P (p), off vir-
tual photon, γ∗(q), where the Bjorken x = Q2/2(pq) with Q2 = −q2µ and
M2 = p2

µ. In the Regge limit of small x:

M2 ≪ Q2 ≪ s2 = (p+ q)2 = Q2 1 − x

x
(1)

resuming appropriate Feynman diagrams one can formulate an effective field
theory in which compound states of gluons, i.e. reggeized gluons, play a role
of a new elementary field.

In the limit (1) the leading contribution to the structure function of
hadron F (x,Q2) comes from the Reggeons with total angular momentum
j → 1. Thus, the structure function can be expanded in terms of the mo-
ments

F̃ (j,Q2) ≡
1∫

0

dxxj−2F (x,Q2) =
∞∑

N=2

ᾱN−2
s F̃N (j,Q2) (2)

with the strong coupling constant ᾱs = αsNc/π, where

F̃N (j,Q2) =
∑

q

1

j − 1 + ᾱsEN (q)
β q

γ∗(Q)β q
p (M) . (3)

In the above formula the impact factors

βq
γ∗(Q2) =

∫
d2z0 〈Ψγ∗ |Ψq(~z0)〉, βq

P (M2) =

∫
d2z0 〈Ψq(~z0)|ΨP 〉 (4)

are the overlaps between the Reggeon wave-function Ψq(~z1, . . . , ~zN ; ~z0) and
the wave-functions of the scattering particles. The parameters {~zi}i=1,...,N

correspond to transverse Reggeon coordinates and are integrated out in the
scalar product (4) defined in (24). In order to find the quantized values of
EN (q) and q one has to solve the Schrödinger-like equation

HNΨq ({~zk}) = ENΨq ({~zk}) (5)

which was first formulated for N = 2 Reggeons by Balitsky, Fadin, Kuraev
and Lipatov [5–7] and later generalized for N ≥ 2 Reggeon by Bartels,
Kwieciński, Praszałowicz and Jaroszewicz [8–10].

It turns out that after performing the multi-color limit [11] Eq. (5) corre-
sponds to the Schrödinger equation of the non-compact Heisenberg SL(2,C)
spin chain magnet model [12–14] where the EN (q) plays a role of the total
energy. The system becomes integrable with the complete set of the integrals
of motion q = (q2, q̄2 . . . , qN , q̄N ) that are also called conformal charges. In-
troducing holomorphic and anti-holomorphic coordinates1 Eq. (5) separates

1 Variables from the anti-holomorphic sector are denoted by the barred characters.
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into two independent equations where

HN ∼
N−1∑

k=0

[H(zk, zk+1) +H(z̄k, z̄k+1)] (6)

with H(zk, zk+1) defined in Ref. [13]. The quantity EN (q) is also called the
Reggeon energy. The eigenvalue of the lowest conformal charge, q2, may be
parametrized by

q2 = −h(h− 1) +Ns(s− 1) , (7)

where in QCD (s = 0, s̄ = 1) are the complex spins of Reggeons and (h, h̄)
define a spin of N -Reggeon state

h =
1 + nh

2
+ iνh , h̄ =

1 − nh

2
+ iνh (8)

with nh ∈ Z and νh ∈ R. The Hamiltonian (6) is invariant under SL(2,C)
group transformation

zk → azk + b

czk + d
, z̄k → āz̄k + b̄

c̄z̄k + d̄
, ad− bc = 1 , ād̄− b̄c̄ = 1 (9)

and its eigenstates transform as

Ψq({~z}; ~z0) → (cz0 + d)2h(c̄z̄0 + d̄)2h̄

N∏

k=1

(czk + d)2s(c̄z̄k + d̄)2s̄
Ψq({~z}; ~z0) .

(10)
In order to solve (5) we use an algorithm based on the Q-Baxter method

[15]. It is very interesting, however complicated and the reader is referred
to Refs. [12–14,16] for details.

3. Anomalous dimensions and twist series

Due to the scaling symmetry of the Reggeon states (10) one can calculate
the dimensions of the impact factors as

βq
γ∗(Q2) = Cq

γ∗Q−1−2iνh , βq
p (M2) = Cq

p M
−1+2iνh , (11)

where Cq
γ∗ and Cq

p are dimensionless constants. Substituting (11) into (3)
one obtains

F̃N (j,Q2) =
1

Q2

∑

ℓ

∑

nh≥0

∞∫

−∞

dνh

Cq
γ∗ C

q
p

j − 1 + ᾱsEN (q)

(
M

Q

)−1+2iνh

, (12)
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where integer nh and ℓ = (ℓ1, . . . , ℓ2N−4) enumerate the quantized values of
conformal charges q = q(νh;nh, ℓ) [14, 17]. The integral over νh is calcu-
lated by performing analytical continuation of EN (q(νh)) into the complex
νh-plane, closing the integral contour in infinity and summing the residua
inside the contour at νh(j) defined by the condition

j − 1 + ᾱsEN (q(νh(j);nh, ℓ)) = 0 . (13)

Thus, the moment of the structure function for j → 1 is given by

F̃N (j,Q2) ∼
∑

res

1

Q2

(
M

Q

)−1+2iνh(j)

. (14)

The above formula will help us to relate the reggeized gluon states to the
anomalous dimensions.

On the other hand the moments of F (x,Q2) can be expanded in inverse
powers of the hard scale Q, i.e. in the twist series, as

F̃ (j,Q2) =
∑

n=2,3,...

1

Qn

∑

a

Ca
n(j, αs(Q

2)) 〈p |Oa
n,j |p〉 (15)

which is also called operator product expansion (OPE). The Wilson opera-
tors, Oa

n,j, satisfy

Q2 d

dQ2
〈p |Oa

n,j(0)|p〉 = γa
n(j) 〈p |Oa

n,j(0)|p〉 , (16)

where a enumerates operators with the same twist and the anomalous di-
mensions may be expanded as

γa
n(j) =

∞∑

k=1

γa
k,n(j)

(
αs(Q

2)

π

)k

. (17)

In the limit j → 1 the moment F̃ (j,Q2) takes a form

F̃ (j,Q2) =
1

Q2

∑

n=2,3,...

∑

a

C̃a
n(j, αs(Q

2))

(
M

Q

)n−2−2γa
n(j)

. (18)

Now we are ready to compare the exponents in (15) and (18) that results in

γn(j) =
n− 1

2
− iνh(j) =

n− (h(j) + h̄(j))

2
. (19)
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Combining (13) with (19) using the property that γn(j) → 0 for ᾱs → 0
we are able to compute the coefficients in Eq. (17) and to determine the
corresponding twist.

Thus making use of the above equations we can extract γn(j) from the
expansion of EN (q(νh(j))) in the vicinity of its poles:

EN (q) = −
[c−1

ǫ
+ c0 + c1 ǫ+ . . .

]
(20)

at iνh = iνpole
h + ǫ. Inverting Eq. (20) and using Eq. (19) one obtains

γn(j) = −c−1

[
ᾱs

j − 1
+ c0

(
ᾱs

j − 1

)2

+
(
c1c−1 + c 2

0

) (
ᾱs

j − 1

)3

+ . . .

]
,

(21)
where the coefficient ck = ck(n, nh, ℓ) are defined by (20). Moreover, it turns
out that the position of the energy poles:

EN (q) ∼ γ
(0)
n

iνh − (n− 1)/2
(22)

determines the twist n:

iνh = (n− 1)/2 with n ≥ N + nh . (23)

4. Results

4.1. Analytical continuation

After performing the analytical continuation of EN (q(νh)) in complex
νh-space the Reggeon wave functions Ψq({~zi}; ~z0) is no more normalizable
with respect to the scalar product

〈Ψq(~z0)|Ψq′(~z′0)〉 ≡
∫ N∏

k=1

d2zkΨq({~z}; ~z0)
(
Ψq′({~z}; ~z′0)

)∗
= δ(2)(z0 − z′0)δqq′ .

(24)
Moreover, the quantization conditions for q become relaxed, so that

q̄k 6= q∗k and h̄ 6= 1 − h∗ . (25)

4.2. Two-Reggeon states

For N = 2 Reggeon states the energy [5–7] in known analytically

E2(νh, nh) = ψ

(
1 + |nh|

2
+ iνh

)
+ ψ

(
1 + |nh|

2
− iνh

)
− 2ψ(1) , (26)
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with Ψ(x) = d
dx

Γ (x). It is an analytical function on the complex νh-plane
without the branching points and with poles at iνh = ±(n − 1)/2. The
leading twist n = 2, which agrees with (23), corresponds to the pole at
iνh = 1/2, while the anomalous dimension [2]

γ2(j) =
ᾱs

j − 1
+ 2ζ(3)

(
ᾱs

j − 1

)4

+ 2ζ(5)

(
ᾱs

j − 1

)6

+ O(ᾱ8
s ) . (27)

4.3. N-Reggeon states

For more than N = 2 Reggeons the energy EN is a multi-valued function
with the branching point in the complex νh-plane where the cuts take a form

E±
N ∼ ak ± bk

√
νbr,k − νh . (28)

Poles at iνh = (n − 1)/2 with twist n ≥ N + nh. We do not have a unique
analytical formula so we evaluate EN (q) numerically [14].

4.4. N = 3 Reggeon states with nh = 0
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Fig. 1. The energy spectrum of the N = 3 Reggeon states E3(νh;nh, ℓ) for

nh = 0 and ℓ = (0, ℓ2), with ℓ2 = 2, 4, . . . , 14 from the bottom to the top (on

the left). Analytical continuation of the energy along the imaginary νh-axis (on

the right). The branching points are indicated by open circles. The lines connecting

the branching points represent ReE3(iνh) [1].

Let us consider the case for N = 3 and nh = 0 where ℓ = (0, ℓ2) with
ℓ2 = 2, 4, . . . , 14 what gives a condition q̄3 + q3 = 0. The spectral surfaces
E3(q(νh)) in this case along real and imaginary axes are shown in Fig. 1. On
the left panel the energy E3(νh) is a monotonic function of real νh. However,
on the right panel, i.e. for imaginary values of νh, branching points, denoted
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by open circles, appear. They glue together surfaces with the same quantum
numbers. They appear not only for purely imaginary νh but also for complex
νh. However, one can notice that contribution to the structure function from
the cuts cancel each other so the (OPE) expansion is not broken. The poles
of EN (νh) are localized at iνpole = (n − 1)/2 which gives possible values of
the twists n = 4, 6, 8, . . . .

The leading twist n = 4 in this sector comes from the poles at iνh = 3/2
where

E3

(
3

2
+ ǫ

)
= ǫ−1 +

1

2
− 1

2
ǫ+ 1.7021 ǫ2 + . . . (29)

which gives the anomalous dimension

γ
(N=3)
4 (j) =

ᾱs

j − 1
− 1

2

(
ᾱs

j − 1

)2

− 1

4

(
ᾱs

j − 1

)3

− 1.0771

(
ᾱs

j − 1

)4

+ . . . .

The energy around the other poles reads as follows

E3

(
3

2
+ ǫ

)
=

1

ǫ
+

1

2
− 1

2
ǫ+ 1.7021 ǫ2 + . . . ,

E3

(
5

2
+ ǫ

)
=

2

ǫ
+

15

8
− 1.6172 ǫ+ 0.719 ǫ2 + . . . ,

E
(a)
3

(
7

2
+ ǫ

)
=

1

ǫ
+

11

12
− 0.6806 ǫ− 1.966 ǫ2 + . . . ,

E
(b)
3

(
7

2
+ ǫ

)
=

2

ǫ
+

15

4
− 3.2187 ǫ+ 3.430 ǫ2 + . . . ,

E
(a)
3

(
9

2
+ ǫ

)
=

2

ǫ
+

125

48
− 2.0687 ǫ+ 1.047 ǫ2 + . . . ,

E
(b)
3

(
9

2
+ ǫ

)
=

2

ǫ
+

53

12
− 2.4225 ǫ+ 0.247 ǫ2 + . . . , (30)

and can be generally cast in the form:

E3(iν
pole
h + ǫ) =

R

ǫ
+ 2E(iνh) + O(ǫ) , (31)

where R = 2 (or R = 1 for even h = 1
2 + iνh) and E(h) is energy of the

Heisenberg model with SL(2,R) spin. Making use of (20) and (21) one
can calculate expansion coefficients of anomalous dimensions corresponding
to (30).
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4.5. N = 3 descendent states with nh = 1

Another interesting case for N = 3 Reggeon states is when q3 = q̄3 = 0
and nh = 1. Such states are called descendent of N = 2 states because they
possess the same quantum numbers as N = 2 Reggeon states and the energy

Edesc
3 (q3 = 0, q2;nh = 1) = E2(q2;nh = 1) (32)

as a function of νh does not have branching points and its poles are situated
at iνh = 1, 2, 3, . . . with twists n = 3, 5, 7, . . . . According to (23) this
case is related to N = 2 case which gives one more argument to call them
descendent.

The leading twist, i.e. n = 3, corresponds to the energy pole where

E3,d(1 + ǫ) = ǫ−1 + 1 − ǫ− (2ζ(3) − 1) ǫ2 + . . . , (33)

so that in this case the anomalous dimension

γ
(N=3)
3 (j) =

ᾱs

j − 1
−

(
ᾱs

j − 1

)2

+ (2ζ(3) + 1)

(
ᾱs

j − 1

)4

+ . . . . (34)

4.6. Leading twist for higher N

For higher N the leading twist n = N . However, considering even

and odd N ’s separately one can notice that the leading twist comes from
completely different sectors. For even N it corresponds to the pole at
iνh = (N − 1)/2 localized in the sector where nh = 0. The energy pole
residuum equals (N − 2) that gives anomalous dimensions

γ
(N)
N (j) = (N − 2)

ᾱs

j − 1
+ O(ᾱ2

s ) (35)

with the twist n = N .
For odd N ’s in the sector with nh = 0 the minimal twist nmin = (N + 1)

corresponds to the energy pole at iνh = N/2. For example, for N = 5 we
have

E5(5/2 + ǫ) =
3

ǫ
+

7

6
+ . . . . (36)

However, the real leading twist comes from the sector of descendent states
with nh = 1 and it corresponds to the pole at iνh = (N − 1)/2, e.g.

E5,d(2 + ǫ) =
3 +

√
5

2ǫ
+ 1.36180 + . . . . (37)

As one can see, the pole residuum in this case has a more complicated form.
In each case the energy pole which gives the leading twist is situated on

the same surface as the state with the minimal energy EN (νh) where νh ∈ R.
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5. Summary

In this work following Ref. [1] we have considered the deep inelastic scat-
tering processes of hadrons described by means of the reggeized gluon states.
Expanding the structure function (2) we have used two approaches. Firstly,
we have expanded the structure function (2) making use of the reggeized
gluon states which was possible due to the analytical continuation of the
Reggeon energy EN (νh) into complex νh-plane. Secondly, we have per-
formed (OPE) expansion (15) with evolution equation (16), which defines
the anomalous dimensions of QCD. Comparing exponents of these two series
we have found relation between γa

n(j) and N -Reggeon states. Since we are
able to solve numerically the BKP equation [13, 14] for N -Reggeon states
with N ≥ 2, we have calculated anomalous dimensions and the twist coming
from these states.

Contrary to N = 2 Reggeon case for N ≥ 3 the energy EN (νh) is a
multi-valued function of complex νh parameter defined on complex Riemann
surface with the infinite number of branching points that glue the surfaces
with the same quantum numbers. However, similarly to N = 2 case, the
energy has poles only for purely imaginary νh and their position defines the
possible values of the twist (23). Fitting expansion coefficients of the energy
in the vicinity of these poles we have calculated the anomalous dimensions
of QCD.

It turns out that the leading twist n coming from the N -Reggeon states
is equal to a number of reggeized gluons N . However, we have to consider
the states with even N and the states with odd N separately. For even N
the leading twist comes from the sector where nh = 0, whereas for odd N
the minimal twist comes from the sector of descendent states with nh = 1.

To sum up I would like to notice that contrary to common approaches
[18–20] the present work goes beyond the leading order of the twist expan-
sion of the structure function and describes contributions with non-leading
asymptotics that correspond to the higher twists.

I would like to thank warmly G.P. Korchemsky, A.N.Manashov and
S.É. Derkachov with whom I have done this work. I am also grateful to
M. Praszałowicz and J. Wosiek for fruitful discussions. This work was sup-
ported by the Polish State Committee for Scientific Research (KBN) grants
PB-2-P03B-43-24 and PB-0349-P03-2004-27.
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