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1. Introduction

1.1. History

The existence of quarks was first hypothesized by Gell-Mann in the six-
ties [1]. The history of the idea is instructive. By analogy to the electro-
magnetic interaction it had been realized that the vector current of β decay
was the Noether current of isospin conservation (Conserved Vector Current
Hypothesis [2]). However, the electric charge Q is not a generator of the
isospin symmetry group, since it contains an isoscalar part proportional to
the hypercharge Y = N+S, the sum of the strangeness S and of the baryon
number N

Q = T3 +
Y

2
. (1.1)

To put weak and electromagnetic interactions on the same footing, the sym-
metry group had to be enlarged, to include Y among the generators, to
a group of rank 2 containing the SU(2) group of isospin as a subgroup.
Among the two possible candidates G2 and SU(3) the latter was found to
be the correct choice, with hadrons assigned to the representations 1, 8, 10,
10, the so called eightfold way [3]. All the representations of SU(3) are sum
of products of the fundamental representations 3 and 3, so that an obvious
question was about the existence of particles in these representations, the
quarks and the antiquarks, as fundamental constituents of hadronic matter.
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Their charges as predicted by Eq. (1) are fractional ±1/3, ±2/3, a clear
experimental signature.

An intense search for quarks was immediately started, but after 40 years
no quark has ever been found, and only upper limits have been established
for their production cross sections and abundance.

It was also realized that there was a problem with Pauli principle. If the
∆3/2 is made of three quarks, the state with charge 2 and spin component
3/2 is symmetric under exchange of the quarks since for any reasonable
potential the three u quarks are in S state. A possible way out was to
assign an extra quantum number to the quarks [4], which was named color,
so that each quark could exist in three different color states.

After the quantization of the gauge theories it was suggested that the
color symmetry could be an SU(3) gauge symmetry with quarks in the fun-
damental representation, and eight gauge bosons, the gluons mediating their
interaction. The theory was named Quantum Chromodynamics (QCD) [5].
Experiments provide evidence for the existence of quarks and gluons at short
distances, but quarks never appear at large distances as free particles. This
phenomenon is known as Confinement of Color.

1.2. Experiments

The ratio R ≡ nq/np of the abundances of quarks and antiquarks to
the abundance of nucleons has been investigated typically by Millikan-like
experiments. No particle with fractional charge has ever been found, with
an upper limit [6]

R ≤ 10−27 . (1.2)

The expectation for R in the absence of confinement can be evaluated in the
Standard Cosmological Model [7] as follows.

At ≈ 10−9 seconds after Big-Bang when the temperature was T ∼=
10GeV and the effective quark mass mq of the same order of magnitude,
quarks would burn to produce hadrons by the esothermic reactions

q + q → hadrons ,

q + q → q + hadrons .

Putting σ0 = lim
v→0

vσ, the burning rate is given by nqσ0. The expansion rate

in the model is equal to G
1/2
N T 2 with GN Newton gravitational constant and

T the temperature. The decoupling of relic quarks will occur when due to
the burning processes the quark density will decrease to a value such that the
burning rate is smaller than the expansion rate. Decupling will, therefore,
start when

nqσ0 = G
1/2
N T 2 . (1.3)
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Since the abundance of photons is nγ ≃ T 3, dividing both sides of Eq. (3)
by T 3 gives

nq

nγ
=
G

1/2
N

Tσ0
. (1.4)

By use of the experimental values
nγ

np
≃ 109, GN = 10−19/mp, and assuming

σ0 ≃ m−2
π , T ≃ 10GeV we get

Rexpected ≡ nq

np
=
nq

nγ

nγ

np
≃ 10−12 . (1.5)

Quarks have been also searched as products of particle reactions [6], again
with no result. As an example for the inclusive cross section σq ≡ σ(p+p→
q(q) +X) the experimental upper limit is

σq ≤ 10−40 cm2 . (1.6)

The expected value in the absence of confinement is σqexpected
∼= σTotal

∼=
10−25 cm2. The ratios of the upper limits to the expectations are then

R

Rexpected
≤ 10−15 ,

σq

σqexpected

≤ 10−15 . (1.7)

10−15 is a small number. The only natural possibility is that the ratios are
zero, i.e. that confinement is an absolute property, due to some symmetry
of the system.

This is similar to what happens in superconductivity, where the expla-
nation for the upper limits on the resistivity is that it is exactly zero, due
to the Higgs breaking of the conservation of electric charge, or in electro-
dynamics where the natural explanation for the upper limit to the photon
mass is that it is exactly zero, the symmetry being gauge invariance.

No experimental evidence exists for the confinement of the gluons. We
shall, anyhow, define confinement as absence of colored particles in asymp-
totic states. Only color singlet particles can propagate as free particles. As
a working hypothesis we shall assume that some symmetry of the ground
state is responsible for confinement.

2. The deconfinement transition

A limiting temperature exists in hadron physics, known as Hagedorn
temperature [8] TH, due to the property of strong interactions to convert
excess of energy into creation of particles. It was first conjectured in 1975 [9]
that its existence could be the indication of a deconfining phase transition
from hadrons to a plasma of quarks and gluons.
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This transition has not yet been detected experimentally, but extensive
experimental programs and dedicated machines are being devoted to it at
CERN SPS, at Brookhaven (RHIC), and at CERN LHC. The transition has
been observed in Lattice QCD.

Both in experiments and in lattice simulations the main problem is to
define and to detect the transition, i.e. to give an operational definition of
confined and deconfined. In a way this problem will be the main object of
my lectures.

2.1. Finite temperature QCD

To deal with a system of fields at non zero temperature T one has to
compute the partition function

Z = Tr

[

exp

(

−H
T

)]

, (2.1)

with H the Hamiltonian.
It can easily be proved that Z is equal to the Feynman Euclidean path in-

tegral with the time axis compactified to the interval (0, 1/T ), with periodic
boundary conditions for boson fields, antiperiodic for fermions.

Z =

∫

[dφ] e−
R

d3x
R

1/T
0

L[φ(~x,t)]dt . (2.2)

A system at T = 0 is simulated on a lattice which is in all directions bigger
than the physical correlation length. To have a finite temperature the size
in the time direction Lt must be such that

T =
1

aLt
, (2.3)

where a = a (β,m) is the lattice spacing in physical units, which depends on
β = 2Nc/g

2 and on the quark masses m. The size Ls in the space directions,
instead, must be larger than all physical scales. An asymmetric lattice is,
therefore, needed Lt × L3

s with Ls ≫ Lt. The dependence of the lattice
spacing a(β,m) on β is dictated by renormalization group equations. At
large enough β’s

a ∼= 1

Λ
eβ/2b0 (2.4)

with b0 the coefficient of the lowest order term of the beta function, which is
negative because of asymptotic freedom. For the temperature T of Eq. (2.3)
we obtain

T ∼= Λ

Lt
eβ/|2b0| , (2.5)
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T is an increasing exponential function of β i.e. a decreasing function of
the coupling constant g2. This is a peculiar behavior: when the coupling
constant is big, and the fluctuations are large, i.e. in the disordered phase,
the temperature is small. In the ordered phase, instead, where the coupling
constant and the fluctuations are small the temperature is large. In ordinary
thermal systems T plays the role of the coupling constant, low temperature
corresponds to order, high temperature to disorder. The key word to under-
stand what happens is Duality.

2.2. Duality

Duality is a deep concept in statistical mechanics which has been ex-
ported into field theory and string theory. It was first introduced in [10]
and then developed in [11] in the frame of the 2D Ising model which, being
solvable, is a prototype system for it. The Ising model in 2D is defined on
a simple square lattice by associating to each site a dichotomic field variable
σ = ±1. The partition function is

Z[β, σ] =
∑

exp



−
∑

ij

βσiσj



 . (2.6)

The sum in the action runs on nearest neighbors and β = 1/T is the in-
verse temperature in units of the interaction constant. The model is exactly
solvable.

A second order Curie phase transition takes place at TC = 2/ln(1 +
√

2)
from an ordered ferromagnetic low temperature phase in which 〈σ〉 6= 0 to
a disordered phase in which the magnetization vanishes.

The model can be considered as a discretized field theory in (1+1) dimen-
sions, and the Lagrangian can be written, apart from an irrelevant constant,
as

L = β
∑

µ=1,2

∆µσ∆µσ ,

with ∆µσ ≡ σ(n + µ̂) − σ(n). The equation of motion is ∆2σ = 0 and
a topological conserved current exists jµ = εµν∆νσ.

∆µjµ = 0

because of the antisymmetry of the tensor εµν . The corresponding conserved
charge is

Q =
∑

n1

j0(n0, n1) =
∑

n1

ε01∆1σ(n0, n1) = σ(n0,+∞) − σ(n0,−∞) .
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In a continuum version of the model, when the correlation length goes
large compared to the lattice spacing, the value at spatial infinity being a
discrete variable becomes a topological quantum number. Typical spacial
configurations with non trivial topology are the kinks for which σ is negative
below some point n1 and positive above it. An anti-kink has opposite signs.

It can be shown that the operator which creates a kink µ(n0, n1) is
a dichotomic variable like σ and that the partition function obeys the duality
equation

Z[β, σ] = Z[β∗, µ] , (2.7)

with

sinh(2β∗) =
1

sinh(2β)

and the same functional form of Z on both sides of Eq. (2.7).
The system admits two equivalent descriptions:

1. A “direct” description in terms of the fields σ whose vacuum expecta-
tion values are the order parameters, which is convenient in the ordered
phase, i.e. in the weak coupling regime. In this description kinks are
non local objects with non trivial topology.

2. A “dual” description in which the topological excitations become local
and the original fields non local excitations. The duality mapping
Eq. (2.7) maps the weak coupling regime of the direct description into
the strong coupling regime of the dual excitations and vice versa. The
dual description is convenient in the strong coupling regime of the
direct description.

The 2D Ising model is self-dual, being the form of the dual partition func-
tion the same as that of the direct description, but this is not a general fact.
Other examples of duality are: the duality angles-vortices in the 3DX–Y
model [12], the duality magnetization-Weiss domains in the 3D Heisenberg
model [13], the duality Aµ-monopoles in compact U(1) gauge theory [14–16],
the duality fields–monopoles in N = 1 SUSY SU(2) gauge theory, and many
examples in string theory [18]. The idea is then to look for dual, topolog-
ically non trivial excitations in QCD, which we shall generically denote by
µ, which are ordered in the confining phase 〈µ〉 6= 0, thus defining the dual
symmetry.

2.3. The deconfinement transition on the Lattice

The same problem as in experiments exists for Lattice simulations: how
to define and detect the confined and the deconfined phase.
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In pure gauge theory (no quarks, quenched) the Polyakov criterion is
used, which consists in measuring the qq̄ potential at large distances. If it
grows linearly with distance

V (R)R→∞ ∼ σR (2.8)

there is confinement. If it goes to a constant

V (R)R→∞ ∼ C +
C ′

R
(2.9)

the phase is deconfined. The potential is measured through the correlator
of Polyakov lines. A Polyakov line is defined as the parallel transport along
the time axis across the Lattice

L(~x) ≡ P exp






1/T∫

0

igA0(~x, t)dt




 . (2.10)

In terms of the correlator of two Polyakov lines

G(~x− ~y) =
〈

L̄(~x)L(~y)
〉

the static potential V (~x − ~y) acting between a quark and an antiquark is
given by

V (~x− ~y) = −T ln(G(~x− ~y)) . (2.11)

At large distances, by cluster property,

〈

L̄(~x)L(~y)
〉

|~x−~y|→∞
≈ |〈L〉|2 +K exp

(

−σ|~x− ~y|
T

)

. (2.12)

If |〈L〉| 6= 0 then V (R) → constant as R → ∞ and there is no confinement.
If, instead, |〈L〉| = 0 then, at large R, V (R) ≈ σR and there is confinement.
|〈L〉| is an order parameter for confinement, ZN, the center of the gauge
group, being the relevant symmetry. Indeed it can be shown that

|〈L〉| = exp

(

−Fq

T

)

, (2.13)

with Fq the chemical potential of a quark. In the confined phase Fq di-
verges and |〈L〉| → 0. There is a problem in the continuum limit since Fq

diverges also in the deconfined phase due to the self-energy of the quark,
and a renormalization is needed [19].
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A transition is observed on the Lattice at a temperature Tc from a low
temperature phase where |〈L〉| = 0 (confinement) to a high temperature
phase where |〈L〉| 6= 0 (deconfinement).

For gauge group SU(2) Tc/
√
σ = 0.50 and the transition is second order

in the universality class of the 3D Ising model.
For gauge group SU(3) Tc/

√
σ = 0.630(5) and the transition is weak first

order. With the usual convention 2πσ = 1GeV this gives Tc ≈ 270MeV. The
order of the transition is determined by use of finite size scaling techniques,
which are nothing but renormalization group equations (see e.g. [20]).

The density of free energy F by dimensional arguments depends on the
spacial size Ls of the system in the form

f = F (Ls)L
4
s = Φ

(
a

ξ
,
ξ

Ls

)

, (2.14)

where a is the lattice spacing and ξ is the correlation length. In the vicinity
of Tc ξ goes large with respect to a, so that a/ξ ≈ 0. Since ξ diverges as
τ ≡ (1 − T/Tc) → 0 as

ξ ∝ τ−ν , (2.15)

the variable ξ/Ls can be traded with the variable τL
1/ν
s , and

f = φ
(

τL1/ν
s

)

.

For the specific heat CV = −(1/V )/(∂2/∂T 2) and for the susceptibility

χ〈L〉 ≡
∫
d3x〈L̄(~x)L(~0)〉 the resulting scaling laws are

CV − C0 = Lα/ν
s φC

(

τL1/ν
s

)

, (2.16)

χ〈L〉 = Lγ/ν
s φ〈L〉

(

τL1/ν
s

)

. (2.17)

From the measured behavior with Ls of these quantities the critical indexes
α, γ, ν can be determined, which identify the universality class of the tran-
sition. For 3D Ising α = 0.11, γ = 1.43, ν = 0.63.

For a weak first order α = 1, γ = 1, ν = 1/3. In the presence of quarks
Z3 is not a symmetry any more and 〈L〉 is not an order parameter. The
string breaks also in the confined phase and its energy is converted into
pions. How to define confined and deconfined?

The phase diagram for the case Nf = 2 with two quarks of equal mass
m is shown in Fig. 1. A line exists across which 〈L〉, 〈ψ̄ψ〉, 〈E〉 all experience
a rapid change, so that their susceptibilities have a peak. All these peaks
happen to coincide within errors. Conventionally the phase below the line is
called confined, the one above it deconfined. An order parameter is needed,
which must exist if, as we have argued, the transition is order–disorder. The
dual excitations have to be identified.
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Fig. 1. The phase diagram of Nf = 2 QCD.

3. The dual excitations of QCD

The general idea is that the low temperature phase of QCD (strong
coupling) can be described, in a dual language, in terms of topologically non
trivial excitations which are non local in terms of gluons and quarks, but
are local fields in a dual language, and weakly coupled [17, 21, 22].

There exist two main proposals for these excitations, both due to ’t Hooft.

1. Vortices [21],

2. Monopoles [22–24].

In the vicinity of the deconfining transition (T ≤ Tc) the free energy
density should depend on the dual fields in a form dictated by symmetry
and scale invariance. The deconfining transition is a change of symmetry:
the disorder parameter 〈Φdual〉 6= 0 for T < Tc, 〈Φdual〉 = 0 for T ≥ Tc.

Two main approaches have been developed in the literature:

(a) Expose in the lattice configurations the dual excitations and show that
by removing them confinement gets lost. (Vortex dominance, Abelian
dominance, monopole dominance.)

(b) Study the symmetry and the change of symmetry across Tc.

3.1. Vortices

Vortices are one dimensional defects associated with closed lines C,
V (C). If W (C ′) is the Wilson loop, i.e. the parallel transport along the
line C ′ then

V (C)W (C ′) = W (C ′)V (C) ei (nCC′π)/Nc , (3.1)

where nCC′ is the linking number of the two curves C,C ′, which is well
defined in 3D.
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In (2+1)D, 〈V (C)〉 6= 0 means spontaneous breaking of a symmetry, the
conservation of the number of vortices minus the number of anti-vortices,
〈V (C)〉 = 0 means super-selection of that number, and V (C) can be an
order parameter for confinement. In (3+1)D this statements have no special
meaning.

In any case, as a consequence of Eq. (3.1) whenever V (C) obeys the area
law, W (C ′) obeys the perimeter law, and vice versa whenever W (C ′) obeys
the area law, V (C) obeys the perimeter law.

The ’t Hooft loop, defined as the expectation value of a vortex going
straight across the lattice, or the dual of the Polyakov line, is non zero in
the confined phase, zero in the deconfined phase [25]. The corresponding
symmetry is Z3, which, however, does not survive the introduction of dy-
namical quarks.

3.2. Monopoles

Monopoles exist as solitons in Higgs gauge theories with the Higgs in the
adjoint representation [26, 27]. They are stable for topological reasons.

If the gauge group is SU(2) they are hedgehog-like configurations for
the Higgs field φ, with φi(~r) ∝ ri, and are characterized by a zero of φ
corresponding to the position of the monopole. These configurations are
called monopoles because of the non trivial topology of the mapping of the

sphere at spacial infinity S2 on the sphere of the possible values of 〈~φ〉.
Physically this can be understood in terms of the ’t Hooft tensor Fµν

Fµν ≡ φ̂ ~Gµν − 1

g
φ̂(Dµφ̂ ∧Dν φ̂) , (3.2)

where g is the gauge coupling constant, Dµφ̂ the covariant derivative of φ,

Dµφ̂ = [∂µ − g ~Aµ∧]φ̂ ,

and φ̂ ≡ ~φ/|~φ|. Fµν is gauge invariant by construction. Moreover, the
bilinear terms in AµAν cancel between the two terms of Eq. (3.2) and

Fµν = ∂µ(φ̂ ~Aν) − ∂ν(φ̂ ~Aµ) − 1

g
φ̂(∂µφ̂ ∧ ∂ν φ̂) .

In the unitary gauge ~φ = (0, 0, 1), the last term vanishes and

Fµν = ∂µA
3
ν − ∂νA

3
µ

is an Abelian field. Fµν obeys Bianchi identities

∂µF
∗
µν = 0 , (3.3)
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with F ∗
µν ≡ 1

2εµνρσFρσ the dual tensor. The identity can be violated at the
location of singularities, where a non zero magnetic current exists

∂µF
∗
µν ≡ jν .

In any case due to the antisymmetry of F ∗
µν

∂νjν = 0 . (3.4)

For the monopole solution [26]

Fµ0 = 0 , ( ~E = 0)

1

2
εijkFjk =

1

2g

ri
r3

+ Dirac-string .

3.3. A Dirac monopole

The string is produced by the singularity of the transformation to the
unitary gauge at the zero of φ. The transformation to the unitary gauge is
called Abelian Projection.

For SU(N) gauge group one can inquire about the existence of monopole

solitons and what the analog of φ̂ is [28]. If we denote by Φ = ΣaΦ
aT a the

Higgs field, by Aµ = ΣaA
a
µT

a the gauge field and by Gµν = ∂µAν − ∂νAµ +
ig[Aµ, Aν ] the field strength tensor, with T a the generators of the gauge
group in the fundamental representation, normalized as Tr (T aT b) = δab,
we can define the generalized ’t Hooft tensor as

Fµν = Tr

(

ΦGµν − i

g
Φ[DµΦ,DνΦ]

)

. (3.5)

The necessary and sufficient condition to have Abelian projection, i.e. can-
cellation of bilinear terms in AµAν is that

Φ = Φa , Φa = U(x)†Φa
diagU(x) ,

with U(x) an arbitrary gauge transformation and

Φa
diag = diag







a

N
,
a

N
, . . .

a

N
︸ ︷︷ ︸

(N−a)

, −(N − a)

N
,−(N − a)

N
, . . . − (N − a)

N
︸ ︷︷ ︸

a






,

a = 1, 2, . . . (N − 1) . (3.6)

The residual symmetry is SU(a)⊗SU(N − a)⊗U(1).
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For each Φa one has

F a
µν = Tr

(

ΦaGµν − i

g
Φa[DµΦ

a,DνΦ
a]

)

= ∂µTr (ΦaAν) − ∂νTr (ΦaAµ) − i

g
Tr (Φa[∂µΦ

a, ∂νΦ
a]) . (3.7)

Transforming to the unitary gauge where Φa = Φa
diag gives

F a
µν = ∂µTr (Φa

diagAν) − ∂νTr (Φa
diagAµ) . (3.8)

Expanding the diagonal part of Aµ as a sum of simple roots of the algebra
of the group, αa, which obey the orthogonality relations Tr (αaΦb

diag) = δab,

Aµ
diag = ΣaA

a
µα

a, one gets

F a
µν = ∂µA

a
ν − ∂νA

a
µ , (3.9)

which is an Abelian field. The simple roots have the form

αa = diag (0, 0, . . . 0, 1,−1, 0, . . . 0) ,

with the 1 at the a-th entry. A monopole soliton solution exists for each
value of a in the SU(2) subspace spanned by the elements +1 and −1. For
the Higgs field one has

Φ(x) = U(x)†Φ(x)diagU(x) ,

where Φ(x)diag is defined with eigenvalues in decreasing order. Expanding
Φ(x)diag in the complete basis Φa

diag,

Φ(x)diag = Σac
a(x)Φa

diag

one gets
Φ(x) = Σac

a(x)Φa(x) . (3.10)

The transformation U(x) is singular at the sites where some ca(x) vanishes,
i.e. wherever two subsequent eigenvalues of Φ coincide: these points are the
locations of the monopoles. The field strength F a

µν can be defined also in
the absence of a Higgs field in the Lagrangian simply as

F a
µν = Tr

(

ΦaGµν − i

g
Φa[DµΦ

a,DνΦ
a]

)

, (3.11)

Φa(x) = U †(x)Φa
diagU(x) . (3.12)
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U(x) is an arbitrary gauge transformation which can have non trivial topol-
ogy or singular points. F a

µν depends on the choice of U(x). It obeys the
Bianchi identities Eq. (3.3), apart from singularities where the magnetic
current can be non zero. In any case the magnetic current will obey the
conservation law Eq. (3.4).

The theory has (N−1) topological symmetries built in, corresponding to
the conservation of magnetic charges. If these symmetries are realized à la
Wigner the Hilbert space will be super-selected. If they are Higgs broken
the system will be a dual superconductor. Our working hypothesis will be
that the dual symmetry of QCD is the conservation of (N − 1) magnetic
charges. The change of symmetry at Tc is a transition from Higgs-broken to
super-selected. Dual excitations carry magnetic charge.

Our program will then be to construct magnetically charged operators
µa and study their vacuum expectation values 〈µa〉. 〈µa〉 6= 0 means dual
superconductivity. 〈µa〉 = 0 means normal vacuum. This should hold both
in quenched theory and with dynamical quarks, in agreement with the ideas
of Nc → ∞ limit of QCD.

3.4. Construction of 〈µa〉
The basic idea is simply that

eipa |x〉 = |x+ a〉 (3.13)

if x is a position variable and p its conjugate momentum. Specifically

µa(~x, t) = exp

(

i

∫

d3yTr [Φa(~y, t) ~E(~y, t)]~b⊥(~x− ~y)

)

, (3.14)

where ~E is the electric field operator, and ~b⊥(~x− ~y) is the vector potential
produced by a static monopole sitting at ~x in ~y

~∇~b⊥ = 0 ,

~∇∧~b⊥ =
2π

g

~r

r3
+ Dirac-string ,

Φa(x) = U †(x)Φa
diag U(x) ,

with U(x) a generic gauge transformation. µa is gauge invariant. In the
gauge

Φa = Φa
diag ,

µa(~x, t) = exp

(

i

∫

Tr [Φa
diag

~E(~y, t)]~b⊥(~x− ~y)d3y

)

,

= exp

(

i

∫

~Ea
⊥(~y, t)~b⊥(~x− ~y)d3y

)

. (3.15)
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~Ea
⊥(~y, t) is the conjugate momentum to ~Aa

⊥(~y, t) so that

µa(~x, t)
∣
∣
∣ ~Aa

⊥(~y, t)
〉

=
∣
∣
∣ ~Aa

⊥(~y, t) +~b⊥(~x− ~y)
〉

. (3.16)

A Dirac monopole has been added to the Abelian projected configuration.
There are (N − 1) species of monopoles, corresponding to a = 1, . . . N − 1.
µa creates a singularity (monopole) in a selected gauge and in all the gauges
obtained from it by a transformation which is continuous in a neighborhood
of the singularity. The number of monopoles per fm3 is finite as illustrated
in Fig. 2 where a histogram is displayed of the distribution of the difference
between two eigenvalues of a plaquette operator for different values of the
lattice spacing [29]. Therefore, creating a monopole in an Abelian projec-
tion implies that a monopole is also created in any other Abelian projection,
apart from a set of zero measure. The statements 〈µa〉 = 0 and 〈µa〉 6= 0
are independent of the Abelian projection, so that the statement that QCD
vacuum is or is not a dual superconductor are absolute, projection indepen-
dent statements.

0 0.5 1 1.5 2
0.0

0.5

1.0

1.5

Lattice 32
4 β = 6.6

Lattice 24
4 β = 6.4

Lattice 16
4 β = 6.0

Fig. 2. Distribution of the differences of the phases of the eigenvalues of the

Polyakov line for three lattices with the same physical volume and different lattice

spacing. A monopole on any site would correspond to a non zero value at zero

angle.

3.5. Measuring 〈µa〉
By construction

〈µa〉 =
Za

Z
, (3.17)

where Z is the partition function of the theory, and Za the one modified by
the insertion of the monopoles. Eq. (3.17) implies that at β = 0 〈µa〉 = 1.
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Taking advantage of that it is convenient, instead of measuring 〈µa〉 directly,
to measure its susceptibility ρa = ∂/∂β ln〈µa〉 which is much less noisy and
will prove more suitable for our purposes. From Eq. (3.17) one immediately
gets

ρa = 〈S〉S − 〈Sa〉Sa . (3.18)

The notation being that 〈O〉S is the expectation value of the operator O
computed with the action S. One also has

〈µa〉 = exp

(∫

dβ′ρa(β′)

)

. (3.19)

It follows from Eq. (3.19) that, in the infinite volume limit

(i) 〈µa〉 6= 0 for T, Tc iff ρa tends to a finite limit.

(ii) 〈µa〉 = 0 for T > Tc iff ρa → −∞.

The property (ii) is much easier to check on ρ than by a direct measurement
of 〈µ〉 which can only give limits, due to statistical errors. In the critical
region T ≈ Tc a strong negative peak is expected due to a rapid decrease of
〈µa〉, and scaling laws corresponding to the fact that the correlation length
goes large with respect to the lattice spacing. The renormalization group
equations read [30]

〈µa〉 = Lκ
sΦ

a
(

τL1/ν
s ,mLyh

s

)

. (3.20)

Sending Ls → ∞ keeping τL
1/ν
s fixed gives [30]

〈µa〉 ≈ m−κ/yhφa
(

τL1/ν
s

)

,

or
ρa

L
1/ν
s

= f
(

τL1/ν
s

)

a scaling law from which the critical index ν can be determined. The pro-
totype theory is compact U(1) in 4D, where everything is understood ana-
lytically at the level of theorems [14, 15, 31]. There is a phase transition at
βc ≈ 1.01 which is first order, from a confined phase to a deconfined phase,
and 〈µ〉 is non zero below βc and zero above βc. Moreover, µ is proved to be
a gauge invariant charged operator of the Dirac type. A numerical determi-
nation provides a check of the approach. The result is shown in Figs. 3, 4, 5.

A strong negative peak signals the transition. At low β’s ρ is size in-
dependent, at large β’s it is proportional to Ls with a negative coefficient,
implying that 〈µ〉 is strictly zero in the thermodynamic limit.
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Fig. 3. ρ versus β. The peak signals the transition.

Fig. 4. Size dependence of ρ below βc.

Fig. 5. Finite size scaling.
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Finite size scaling agrees with a first order transition. For quenched
SU(2) theory the deconfining transition is detected in a similar way at the
right value of β and the critical index ν is that of the 3D Ising model [32].

Quenched SU(3) also shows a first order transition at the right temper-
ature [33]. The numerical check of the independence on the choice of the
Abelian projection is contained in [34].

The case of Nf = 2 QCD can be approached in the same way. The results
are displayed in the Figs. 6, 7, 8, 9. The finite size scaling is that of a first
order transition and definitely excludes a second order transition in

Fig. 6. Nf = 2. Size dependence of ρ below βc.

Fig. 7. ρ peaks at different spatial sizes.
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Fig. 8. ρ tends to −∞ in the thermodynamical limit, or 〈µ〉 → 0.
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Fig. 9. Scaling of ρ consistent with a first order transition.

the universality class of O(4), O(2) model [29]. The implications of this
fact, together with a finite size scaling analysis of other quantities, like the
specific heat, the chiral condensate and its susceptibility will be the object
of the next section.
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4. Nf = 2 QCD

QCD with two flavors of light quarks is a good approximation to nature,
and also a specially instructive system from the theoretical point of view.
For the sake of simplicity we shall consider two quarks of equal mass m.

The phase diagram is shown in Fig. 1. For m ≥ 2GeV the system is
quenched to all effects, the phase transition is first order and 〈L〉 is a good
order parameter, Z3 the relevant symmetry. At m ≈ 0 a phase transition
takes place from the spontaneously broken phase to a symmetric phase, and
〈ψ̄ψ〉 is the order parameter. In the intermediate region of m’s chiral sym-
metry is broken by the mass, Z3 is broken by the coupling to quarks and
apparently there is no order parameter. Also the UA(1) symmetry which is
broken by the anomaly is expected to be restored at about the same tem-
perature as the chiral symmetry. Three transitions, deconfinement, chiral,
UA(1): are they independent? Of course, a definition of deconfinement is
needed to answer this question.

4.1. The chiral transition

If one assumes, following reference [35], that low mass scalars and pseu-
doscalars are the relevant degrees of freedom, the order parameters are

Φ : Φij =
〈

Ψ̄i(1 + γ5)Ψj

〉

, i, j = 1 . . . Nf . (4.1)

Under the symmetry group SU(Nf)⊗ SU(Nf)⊗ UA(1)

Φ→ eiα ULΦUR .

The most general effective Lagrangian (density of free energy) invariant un-
der the symmetry group is

Leff =
1

2
Tr (∂µΦ

†∂µΦ) − m2

2
Tr (Φ†Φ) − π2

3
g1

[

Tr (Φ†Φ)
]2

− π2

3
g2

[

Tr (Φ†Φ)2
]

+ c
[

detΦ+ detΦ†
]

. (4.2)

Terms with higher dimension have been neglected since they become irrele-
vant at the critical point.

Infrared stable fixed points indicate second order phase transitions.
An (4− ε) extrapolation to 3D is intended. The last term in Eq. (4.2) is the
Wess–Zumino term describing the anomaly: it is invariant under SU(Nf )⊗
SU(Nf ) but not under UA(1), and has dimension Nf . For Nf ≥ 3 it is irrel-
evant and no IR stable fixed point exists, so that the transition is weak first
order. For Nf = 2 instead the Wess–Zumino term has dimension 2 so that
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its square and its product with the mass term are also relevant. If c = 0 at
the fixed point the symmetry is O(4)⊗O(2) and no IR fixed point exists, so
that the transition is 1st order. Physically this happens if the mass of the
η′, mη′, vanishes at Tc.

If c 6= 0, or if mη′ is non zero at Tc, the symmetry is O(4) and the
transition can be second order. If this is the case the transition is a crossover
around the critical point (see Fig. 1), a tricritical point is expected at non
zero chemical potential [36] which could be observed in heavy ion collisions.
No evidence of it has emerged from experiments to date. If, instead, the
transition is first order it will also be such in the vicinity of the chiral point
and possibly all along the transition line, and no tricritical point exists.
This issue is fundamental to understand confinement: a first order phase
transition is a real transition and can correspond to a change of symmetry
and to the existence of an order parameter. A crossover means that one
can go continuously from the confined region to the deconfined one and that
confinement is not an absolute property of the QCD vacuum.

4.2. Thermodynamics

The order of the transition can be determined by a finite size scaling
analysis [37, 38] of lattice simulations. Let τ = (1 − T/Tc) be the reduced
temperature. As τ → 0 the correlation length of the order parameter, ξ,
diverges as

ξ ≈ τ−ν ,

so that the ratio of the lattice spacing a to ξ is negligible and there is scaling.
If Ls is the spacial extension of the lattice, the scaling laws read

CV − C0 ≈ Lα/ν
s Φc

(

τL1/ν
s ,mLyh

s

)

(4.3)

and
χ ≈ Lγ/ν

s Φχ

(

τL1/ν
s ,mLyh

s

)

. (4.4)

Here CV = ∂E/∂T V , and

χ ≡
∫

d3x
〈

Φ(~x)Φ(~0)
〉

conn

is the susceptibility of the order parameter Φ. The critical indexes α, β, γ, ν
are the anomalous dimensions of the operators and identify the order and
the universality class of the transition. Eqs. (4.3) and (4.4) are nothing
but the renormalization group equations. The subtraction needed for CV

corresponds to an additive renormalization [38]. Notice that the scaling
law of the specific heat is unambiguous whilst that for χ only holds if Φ is
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the order parameter: the equality of the index ν for the two scalings can
a legitimation of the order parameter.

The scaling laws Eqs. (4.3) and (4.4) involve two scales, a fact which
makes the analysis complicated with respect to the simpler case of quenched
QCD. To simplify the problem one can study the dependence on one scale
by keeping the other one fixed [30]. One possibility is to vary m and Ls

keeping the quantity mL
1/ν
s which appears in the scaling laws fixed. The

scaling Eq. (4.3) becomes then

CV − C0 ≈ Lα/ν
s Φc

(

τL1/ν
s ,mLyh

s = M
)

, (4.5)

so that the peak scales as

(CV −C0)peak ∝ Lα/ν
s . (4.6)

This allows a determination of α/ν. The critical index yh is the same within
errors for O(4) and O(2) universality classes, so that the same simulations
can be used to check both universality classes; moreover, the index α is nega-
tive for both, implying that the peak should decrease with increasing volume
(see Table I). Fig. 10 shows a test of Eq. (4.5), Fig. 12 a test of Eq. (4.6).
O(4) and O(2) universality classes are excluded with a high confidence level
(χ2/ d.o.f. ≃ 20): the peaks increase rapidly with the volume instead of
decreasing.

TABLE I

Critical exponents.

yh ν α γ δ

O(4) 2.487(3) 0.748(14) −0.24(6) 1.479(94) 4.852(24)

O(2) 2.485(3) 0.668(9) −0.005(7) 1.317(38) 4.826(12)

MF 9/4 2/3 0 1 3

1st order 3 1/3 1 1 ∞

For the details of the determination of the subtraction C0 see [30].
A similar result is obtained for the susceptibility of 〈ψ̄ψ〉 which is believed

to be a good order parameter near Tc (Figs. 11 and 12)

χ ≈ Φχ

(

τL1/ν
s ,mLyh

s = M
)

(4.7)

and
χpeak ∝ Lγ/ν

s . (4.8)

For this test χ2/ d.o.f. ≈ 10.
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Fig. 10. Test of scaling Eq. (4.5), with M = 74.7 (left) and M = 149.4 (right): the

curves should coincide.

As a result we can state that the transition is neither in the universality
class of O(4) nor in that of O(2). Another possibility is to look at the large

volume limit keeping the first variable fixed: τL
1/ν
s is related to the ratio

ξ/Ls of the correlation length to the spacial size of the lattice, while the
other variable mLyh

s is related to the ratio of the pion Compton wave length
1/mπ to Ls. As Ls goes much larger than 1/mπ a finite limit is reached
and [30]

CV − C0 ≈ m−α/(νyh)fc

(

τL1/ν
s

)

(4.9)

and
χ ≈ mγ/(νyh)Φχ

(

τL1/ν
s

)

. (4.10)

The result of this analysis is shown in Figs. 13 and 14. No scaling is observed
assuming second order transition with O(4) or O(2), but a good scaling for
first order. A similar result is obtained for the scaling Eq. (4.10) (Fig. 15).

Fig. 11. Scaling Eq. (4.7) of the chiral susceptibility, with M = 74.7 (left) and

M = 149.4 (right); the curves should coincide.
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Fig. 12. Test of the scaling Eqs. (4.6) and (4.8).

Fig. 13. Scaling Eq. (4.9) for O(4).

Finally one can investigate the so called magnetic equation of state:

〈ψ̄ψ〉 = m1/δf
(

τm−1/(νyh)
)

. (4.11)
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Fig. 14. Scaling Eq. (4.9) for first order.

Fig. 15. Testing Eq. (4.10) for O(4) and first order.

Fig. 16. Scaling of the magnetic equation of state (4.11) assuming O(4).
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Fig. 17. Scaling of the magnetic equation of state (4.11) assuming first order.

For O(4) δ = 4.85, for first order δ = ∞. Again no scaling is observed
assuming O(4) or O(2) second order transition Fig. 16, and good scaling
for first order, Fig. 17. The issue is fundamental and deserves further atten-
tion.

5. Concluding remarks

We have discussed the experimental evidence for confinement and how it
naturally implies that there exists a dual symmetry in QCD whose breaking
is responsible for confinement. We have presented the two most accredited
candidates for dual topological excitations, vortices and monopoles. We have
then shown how the working hypothesis that monopoles confine via dual
superconductivity of the vacuum can be tested by numerical simulations
on the lattice, through an order parameter which is the vev of operators
carrying magnetic charge. The numerical tests strongly support the validity
of this idea, which can be put in a consistent form and made independent on
the choice of the Abelian projection. This holds both for quenched QCD and
in the presence of dynamical quarks. A prerequisite is that deconfinement
is a true order–disorder phase transition, and not a crossover, which would
allow a continuous path from confined to deconfined phase. We have thus
discussed a test withNf = 2 QCD where an unsolved dilemma exists between
the existence of a crossover and a first order phase transition. We definitely
exclude a second order chiral transition which would imply a crossover at
non zero quark mass, whilst we find evidence for a first order transition. The
issue is fundamental and deserves further studies.
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From what we have seen we can conclude that the dual excitations of
QCD are magnetically charged, or that dual superconductivity of the vac-
uum can be the mechanism of confinement. However, we are not yet able to
identify them.
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