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1. Introduction

Unlike some theories whose relevance to nature is sill a big question mark,
quantum chromodynamics and other similar strongly coupled gauge theories
will stay with us forever. QCD is a very rich (and quite old) theory supposed
to describe the widest range of strong interaction phenomena: from nuclear
physics to Regge behavior at large E, from color confinement to quark–
gluon matter at high temperatures/densities (neutron stars), the vastest
horizons of hadronic physics: chiral dynamics, glueballs, exotics, light and
heavy quarkonia and mixtures of thereof, exclusive and inclusive phenomena,
interplay between strong forces and weak interactions, . . . . That’s why I do
not expect theoretical developments to culminate in full analytic solution
of QCD. And yet, in spite of its age, advances in QCD continue. The
most recent advances are due to proliferation of supersymmetry and string-
inspired methods. I will summarize some recent results which, to my mind,
are most promising, and pose some stimulating questions.

∗ Based on invited talks delivered at the Planck-05/Mohapatra-Fest, ICTP, Trieste,
May 23–28, 2005, and PASCOS-05, Gyeongju, Korea, May 30–June 4, 2005 and the
Cracow School of Theoretical Physics, Zakopane, Poland, June 3–12, 2005.
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2. Planar equivalence

The main stumbling block in theoretical understanding of strongly cou-
pled gauge theories is the absence of obvious expansion parameters. A hid-
den parameter which might serve the purpose, N (the number of colors)
was suggested by ’t Hooft long ago [1]. It governs expansion in topologies.
The leading order at N → ∞ corresponds to planar topology. Recently it
was realized [2, 3] that the very same parameter can be used to parame-
terize deviations of certain non-supersymmetric theories, close relatives of
QCD, from supersymmetric Yang–Mills (SYM) theory. These relatives —
they go under the name orbifold and orientifold gauge field theories — are
obtained from supersymmetric gluodynamics by means of orbifolding and
orientifolding, procedures well known in string theory. For our purposes we
do not need to delve in string-theoretic aspects since all results we need can
be readily formulated in field-theoretic language. They are shown in Fig. 1.

Fig. 1. Orbifold and orientifold (orienti-A) daughters are obtained from SYM the-

ory by orientifolding and orbifolding, respectively.

SYM theory is assumed to be SU(2N) or SU(N) gauge theory. The first
case is pertinent to Z2 orbifolding, the second to orientifolding. Then the
Z2 orbifold daughter1 has the gauge group SU(N)× SU(N), and the fermion
sector consisting of one bifundamental Dirac spinor. The gauge coupling of

1 Zn orbifold daughters with n > 2 will not be discussed since these theories are chiral
and, hence, cannot be considered as close relatives of QCD. Two other lines of research
that are marginally related to my main topic are left aside, namely (i) orbifold pairs
with both theories, parent and daughter, supersymmetric; and (ii) orbifolding with
one or more compact spatial dimensions. In both cases there are special circumstances
whose consideration will lead me far astray.
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the orbifold daughter is adjusted as follows

g2
D = 2 g2

P , (1)

where the subscripts D and P mark the daughter and parent theories.
For historic reasons the first SU(N) is often referred to as “electric” (and
marked by e), while the second as “magnetic” (and marked by m).

The orientifold gauge theory is even closer to QCD. Its gauge group is
SU(N), the same as in the parent SU(N) SYM theory. The gauge couplings
of the parent SYM and its orientifold daughter are identical too. The fermion
sector consists of one Dirac fermion either in two-index symmetric (orienti-S)
or two-index antisymmetric (orienti-A) representation of SU(N)color. In fact,
at N = 3 orienti-A is identical to one-flavor QCD.

Both daughter theories, in the limit N → ∞, were shown [3] to be
perturbatively equivalent to their parent, supersymmetric gluodynamics.
In other words, all planar Feynman graphs of the daughter theories that
can be mapped onto the parent theory are in one-to-one correspondence
with the parent planar graphs.

This remarkable observation motivated [2] a non-perturbative orbifold
(NPO) conjecture, according to which the above planar equivalence holds
beyond perturbation theory, non-perturbatively, in a common sector, i.e.
the sector of both theories, orbifold and SYM, which admits mapping in
both directions.

Fig. 2. Feynman rules in QCD, SYM theory and orbifold and orientifold (orienti-A)

daughters in the ’t Hooft notation.
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As we will see shortly, radical distinctions in the vacuum structure of orb-
ifold and SYM theories make NPO planar equivalence unlikely. At the same
time, planar equivalence between orientifold daughter and its supersymmet-
ric parent was solidly demonstrated, see [4,5] and the review paper [6], with
quite a few far-reaching consequences that ensued almost immediately. Cor-
responding results were reported a year ago at various conferences, and I will
not discuss them now (except for a few marginal remarks), referring the in-
terested reader to [6]. Instead, I will dwell on the Z2 orbifold daughter,
a theory whose dynamics is rich and interesting irrespective of its (highly
probable) non-perturbative non-equivalence to SYM theory.

Concluding this section I would like to display the ’t Hooft large-N dia-
grammar for supersymmetric gluodynamics and its daughters (Fig. 2) which
makes the perturbative proof of planar equivalence almost self-evident.

3. Non-perturbative planar equivalence:

what does it mean?

As we will see shortly, SYM theory and its orbifold daughter have distinct
vacuum structures even at N = ∞. The number of underlying (short-
distance) degrees of freedom is also different. Under the circumstances one
should carefully define what is expected to be equivalent. To calibrate the
answer to this question it is instructive to consider an example where the
answer is known, namely, let us compare SYM theory with itself in two cases:

Nc = 2N , g2
P ≡ g2 , (2)

Nc = N , g2
D ≡ 2g2 . (3)

The ’t Hooft coupling in both cases is one and the same, λ = 2Ng2, which
entails, in turn, the equality of the dynamical scales, ΛP = ΛD. We will
refer to the theories (2), (3) as parent/daughter. Having one and the same
’t Hooft coupling, these theories are planar equivalent. This is as good as it
gets, indeed.

Note that for the purpose of infrared regularization we will introduce
a small gluino mass term −(m/g2)Trλ2+ h.c. The mass parameter m is
assumed to be real and positive (a phase can be introduced through the θ
term). The value of m must be the same in both theories since this parameter
is physically observable.

Now, both theories are confining and have coincident spectra of com-
posite bosons, up to O(1/N2) corrections. More exactly, we compare here
excitation spectra over vacua which can be mapped one onto another, for in-
stance, those characterized by real (and negative) gluino condensate 〈Tr λ2〉.
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One must be careful since the parent theory has 2N vacua while the daugh-
ter one N vacua. In fact, the boson spectra in adjacent vacua differ only
by terms O(m/N2) (one should remember that at m 6= 0 the true vacuum
is the one in which Trλ2 is real and negative; others are quasistable, with
an exponentially suppressed decay rate [7], Γ ∼ exp (−N4)). Only for dis-
tant vacua, e.g. those with negative and positive Re 〈Tr λ2〉, the spectra
are shifted by O(N0). This fact is related to another similar statement.
Switching on θ 6= 0 changes bosonic spectra since at m 6= 0 particle masses
are θ-dependent. However, changing θ from zero to δθ ∼ 2π produces an
impact on the spectrum suppressed by 1/N2. This can be readily seen e.g.
from the SVZ sum rule [8] analysis at θ 6= 0, for instance, for highly excited
two-gluino bosons one can estimate

δm2
n ∼

m Λ−2

g2
N−2

c Re 〈Tr λ2〉 , (4)

where n is the number of the radial excitation, n ≫ 1. CP odd quantities
which might be generated at θ 6= 0 are O(1/N).

The impact of θ 6= 0 becomes of order O(N0) only if δθ ∼ 2πN .
At the same time, even though the bosonic spectra are planar equivalent,

the vacuum energy densities are not equal. The vacuum energy density2

E = mg−2 〈Tr λ2〉 ∼ N2 (5)

is sensitive to the overall number of the fundamental degrees of freedom.
It is obvious that we cannot demand the equality of the vacuum energies in
the parent/daughter theories. Equation (5) is fully compatible with the fact
that the m dependence of the composite boson masses is identical in the
parent and daughter theories. This can be seen from OPE for the two-point
function

〈

g−2 Tr λ̄α̇λα, g−2 Tr λ̄
β̇
λβ

〉

, (6)

which scales as N2. The mass correction to the above two-point function
is given by (5). The relative weight of the leading (unit) operator and the
mass correction term is N -independent.

Returning to the θ-dependence, the coincidence of the parent/daughter
boson spectra can be maintained provided

θD =
1

2
θP . (7)

As was mentioned, for θ = O(1) the vacuum angle effects in the spectra
are irrelevant as they are suppressed by 1/N2. However, one can consider

2 Tr is normalized in such a way that Tr (T aT b) = δab where T a are color generators
in the fundamental representation.
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θ ∼ CN2π where C is small numerically but not parametrically3. Then
Eq. (7) follows from holomorphic dependence of appropriate quantities on
complexified coupling constant which is dictated, in turn, by supersymmetry
of the parent/daughter theories. I will further comment on this issue in
Sec. 7.

The θ term has no impact whatsoever on perturbation theory. It is not
seen at all in perturbation theory. Therefore, perturbative proofs of planar
equivalence have nothing to say regarding this aspect. On the other hand,
non-perturbative quantities, such as the gluino condensate, do carry a θ de-
pendence which imposes the above identification of the parent/daughter
vacuum angles. The Dashen points [9] in the parent/daughter theories do
not match each other, as a consequence of a mismatch in the vacuum mul-
tiplicities. It is worth emphasizing that (i) in discussing the θ evolution we
have to stick, at θ ≥ π, to a “wrong” (quasi-stable) vacuum which will ensure
a smooth evolution; (ii) the Dashen phenomenon is then irrelevant in the
leading in N approximation.

Besides particle excitations both theories have domain-wall excitations.
The tensions of the elementary walls and their multiplicities scale as N and
are, therefore, different in the parent/daughter theories. A common factor
here is that all domain walls interpolating between vacua with distinct values
of the gluino condensate are stable.

4. A refinement of the proof of planar equivalence

for orientifold daughter

A certain aspect in the previous analysis of non-perturbative planar
equivalence between the SYM parent and orietifold daughter was treated
at an intuitive level. This gap is closed in a refined proof [5] making use of
the fermion loop expansion. The equivalence extends to θ effects, e.g. the
topological susceptibility — a feature which is certainly lost in the case of
the orbifold daughter. This is in one-to-one correspondence with the fact
that the vacuum structure of the orientifold daughter at N → ∞ is identical
to that of the parent theory. In particular, there is an exact matching of the
Dashen transitions.

5. The role of Z2 invariance in the orbifold theory

The Lagrangian of the orbifold theory,

L = −
1

4g2

[

(

Ga
µνGµν ,a

)

e
+

(

Ga
µνGµν ,a

)

m

]

+
1

g2

[

λie
jm

(i 6Dλ)iejm
+ λim

je
(i 6Dλ)im

je

]

, (8)

3 If C ∼ 1 one looses the vacuum quasi-stability.
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has an obvious discrete Z2 symmetry with respect to the interchange e ↔ m.
(Note that in Fig. 1 two Weyl spinors,

λie
jm

and λjm

ie
,

are combined in one Dirac spinor. For awhile I will omit the subscript D in the
gauge coupling. One should remember, however, that g2

D = 2g2
P , see Eq. (1).)

A crucial physical question is whether or not this Z2 symmetry is sponta-
neously broken. If it is dynamically broken, the number of vacua is doubled.
As a manifestation of the discrete symmetry breaking, domain walls must
emerge, which interpolate between the vacua related by the broken Z2. The
corresponding order parameters are Z2 odd. For historical reasons, the Z2

odd sector of the theory is referred to as a “twisted sector”.
If the above Z2 is not broken, the spectrum of the theory in each vacuum

can be classified with regards to Z2. For instance, Z2 even particles do not
mix with Z2 odd, all domain walls of the unbroken theory are Z2 symmetric,
and so on.

The fate of nonperturbative planar equivalence between the orbifold the-
ory and its supersymmetric parent is inseparable from the fate of Z2. As
was shown in [10–12], if Z2 is unbroken, perturbative planar equivalence ex-
tends to the nonperturbative level. In the opposite case of the dynamical Z2

breaking, planar equivalence is not expected to survive at the nonperturba-
tive level. A shift of the vacuum energy from zero ensues: the vacuum energy
density is expected to become negative, see Secs. 6, 8 and 10. Other im-
mediately observable consequences refer to the particle spectrum. Multiple
(parity/spin) degeneracies which would be inherited from supersymmetric
Yang–Mills under planar equivalence, will be lifted.

To see that this is indeed the case suffice it to note that if the twisted
scalar field4

T ≡
(

Tr G2
e − Tr G2

m

)

(9)

develops a Z2-breaking vacuum expectation value, while its pseudoscalar
counterpart

T̃ ≡
(

Tr GeG̃e − Tr GmG̃m

)

(10)

4 Here and below the normalization of traces is such that

Tr G2 =

4N2

X

a=1

Ga
µν Gµν a , Tr (G2)e =

N2

X

a=1

`

Ga
µν Gµν a

´

e
,

and so on.
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does not, this will be transmitted to the untwisted sector e.g. through a term

δL =
1

N
τ2 σ , (11)

where τ is a meson for which the interpolating field is T , while σ is the
dilaton (the corresponding interpolating operator is S = Tr G2

e + Tr G2
m).

A vacuum expectation value 〈τ〉 ∼ N will entail a shift in 〈σ〉 ∼ N , which
will lead, in turn, to a shift in the σ mass of order O(N0), not accompanied
by a corresponding shift in the mass of the untwisted pseudoscalar meson.

Thus, understanding dynamics governing the Z2 symmetry of the orb-
ifold model is a key to solving the issue of nonperturbative planar equivalence
in the case at hand. What does today’s theory tell us on that?

6. The mode of Z2 implementation

String theory prompts us [13, 14] that in the non-supersymmetric (or
N = 0) orbifold daughter of N = 4 SYM theory, the Z2 symmetry is spon-
taneously broken above a critical value of the ’t Hooft coupling. The orbifold
field theory under consideration can be described by a brane configuration
of type-0 string theory [15]. Type-0 strings contain a closed-string tachyon
mode in the twisted sector. The tachyon couples [14] to the twisted field (9)
of the SUe(N)×SUm(N) gauge theory. The prediction of string theory [14]
is that the perturbative vacuum at 〈T 〉 = 0 is unstable. In the bona fide
vacua a condensate of the form

〈

Tr G2
e − Tr G2

m

〉

= ±Λ4 (12)

must develop.
Of course, a long way lies between the above string construction and

the orbifold field theory specified in Fig. 1 or Eq. (8) per se. Therefore, it
is natural to address the issue of the spontaneous Z2 breaking directly in
field theory. In Ref. [16] (see also [11], v.1) low-energy theorems were sug-
gested as a tool for proving nonequivalence of the orbifold daughter theories
to the parent SYM theory. These theorems become instrumental under the
assumption of exact coincidence between the corresponding vacuum conden-
sates. However, as explained in Sec. 3, the vacuum condensate coincidence
is not necessary, generally speaking. The above-mentioned low-energy theo-
rems reflect not only the vacuum structure — they are potentially sensitive
to the number of fundamental degrees of freedom. This aspect was pointed
out in [12]. In passing from the orbifold theory to its parent the number of
fundamental degrees of freedom doubles.

Relaxing the requirement of exact coincidence makes the low-energy the-
orems uninformative: allowing for unequal condensates one concludes that
these theorems cannot prove or disprove the Z2 symmetry breaking.
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Another argument suggested in [11] is based on the domain wall dynam-
ics. If Z2 was unbroken and NPO conjecture valid, the domain walls in the
orbifold theory that are inherited from SYM theory would be stable. Appar-
ently, this is not the case. To discuss the issue in more detail I will have to
briefly review what is known of the vacuum structure in the orbifold theory
(Sec. 7).

Concluding this section, it is instructive to outline a possible scenario of
the development of the tachyonic mode coupled to the twisted operator (9).
Let us give a mass term m to the fermion field in (8),

Lm = −m g−2 Ψ̄ Ψ . (13)

This mass term is obviously Z2 invariant. We will consider m as a free
parameter, keeping the dynamical scale Λ fixed. Then, at m/Λ → ∞ the
fermion field can be integrated out leading to two disconnected SU(N) gauge
theories, electric and magnetic. At finite but large values of m, there is
a weak connection between the electric and magnetic theories which can be
described by a (local) operator m−4 Tr G2

e Tr G2
m. The mass-squared matrix

of the electric/magnetic scalar glueballs takes the form

M2 =

(

µ2
e α2

α2 µ2
m

)

, (14)

where µ2
e = µ2

m = constΛ2 and α is a small parameter proportional to m−2.
The Z2 invariance of the theory manifests itself in the fact that µ2

e = µ2
m

≡ µ2. The eigenvalues of M2 are µ2 ± α2. The corresponding eigenstates
are built of mixtures of the electric and magnetic gluons, with Z2 parity +1
and −1, respectively.

Now, let us diminish m moving towards Λ. This enhances interaction be-
tween the electric and magnetic sectors, which no longer can be described by
a local operator. If at m = 0 the transition matrix element α2 is larger than
the diagonal ones µ2, a negative eigenvalue in the twisted sector emerges.
At a certain critical value of m,

m∗ ∼ Λ ,

the Z2-odd glueball becomes massless, while further decrease of m from m∗

to zero makes the corresponding channel tachyonic causing condensation of
the operator (9) and a radical vacuum restructuring signifying spontaneous
breaking of the Z2 invariance.

One can illustrate the very same statement in a slightly different language
of effective Lagrangians. Indeed, if one approaches the critical value m∗
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from the large m side one can describe the vacuum structure by the effective
Lagrangian of the type [17]

L = Se ln
Se

e
+ Sm ln

Sm

e
+ η Se Sm , (15)

where Se,m = Tr G2
e,m, and I put Λ = 1. The above Lagrangian is explicitly

Z2 invariant. Of course, it is valid only at η ≪ 1, where the vacuum solution
is Z2 invariant too, Se = Sm ≈ 1. Assume that, at a qualitative level,
Eq. (15) can be extrapolated to η ∼ 1. Then, at η = e the vacuum solution
is still Z2 symmetric, Se = Sm = e−1, but the mass eigenvalue corresponding
to Se − Sm vanishes. Further increase of η leads to Z2-asymmetric vacuum
solutions while the Z2-symmetric extremum is no more minimum of the
potential.

7. Vacuum structure of the orbifold daughter at a glance

The gauge group of the orbifold theory is a direct product of two SU(N)’s.
Correspondingly, it has two vacuum angles conjugated to two distinct non-
contractible cycles in the space of fields. We will introduce these two vacuum
angles as follows:

Lθ =
θD

32π2

[(

Ga
µνG̃µν ,a

)

e
+

(

Ga
µνG̃µν ,a

)

m

]

+
ϑ

32π2

[(

Ga
µνG̃µν ,a

)

e
−

(

Ga
µνG̃µν ,a

)

m

]

. (16)

They refer to non-twisted and twisted sectors of the theory, respectively.
Since the parent theory has no twisted sector, the NPO conjecture requires
ϑ = 0. Let us set ϑ = 0 for the time being, and focus on θD.

The order parameter of the parent theory marking its 2N vacua, the
gluino condensate, is mapped onto the fermion condensate Ψ̄ 1

2
(1 − γ5)Ψ in

the daughter theory. Note that this operator is Z2 invariant; hence, its
nonvanishing vacuum expectation value is insensitive to the spontaneous
breaking of Z2.

Following the standard line of reasoning, one can conclude that the
fermion condensate does develop, and has N distinct values,
〈

Ψ̄
1

2
(1−γ5)Ψ

〉

= const. N Λ3 exp

(

i
2π k+θD

N

)

, k = 1, 2, . . . ,N . (17)

The N -valuedness of the fermion condensate is in one-to-one correspondence
with the dependence on θD/N which, in turn, follows from the considera-
tion of the chiral anomaly. Thus, the fermion condensate marks N distinct
chirally asymmetric sectors.
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In the absence of the fermion mass term, m = 0, the vacuum angle θD

is physically unobservable. Indeed, at m = 0 the axial current is classically
conserved. The chiral anomaly then allows one to completely rotate away
the vacuum angle θD. No physically measurable quantity can depend on it.
In particular, the vacuum energy is θD independent. Only if m 6= 0, the
vacuum angle θD becomes observable.

Note that the dependence of the fermion condensate on θD indicated in
Eq. (17) and the relation between the parent and daughter vacuum angles (7)
are compatible with the θ dependence of the gluino condensate in SU(2N)
SYM theory,

〈λa
αλa ,α〉 = −6(2N)Λ3 exp

(

i
2πk + θP

2N

)

, k = 1, . . . , 2N . (18)

The g2
P /g2

D ratio, see Eq. (1), also matches. Thus, the fermion condensate
of the orbifold theory could have been projected from the parent theory
provided that the NPO conjecture was valid.

As an example, I depicted the chiral condensates of the parent/daughter
theories at

θD = π , θP = 2π , (19)

in Fig. 3. P0,±1 are the vacua of the SYM theory, while D±1 are the vacua
of the orbifold theory. Since the vacua reflect the discrete chiral symmetry
breaking, 2N vacua of SYM theory are degenerate, and so are N vacua of
the orbifold theory. Whether or not they are degenerate between themselves,
depends on the validity of planar equivalence.

D

Χ

Χ

Χ

Χ

−1

P

P

P

D
1 1

0

−1
Vacua of the daughter theory

Vacua of the parent theory

Χ

Fig. 3. The vacuum structure in the SU(2N) SYM theory and its SU(N)×SU(N)

orbifold daughter. Shown is the complex plane of the order parameters, the gluino

condensate −〈λa

α
λa ,α〉 and the fermion condensate −

〈

Ψ̄ 1

2
(1 − γ5)Ψ

〉

, respectively.
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Introducing m 6= 0 one lifts the vacuum degeneracy. For instance, for
real and positive m the vacua P±1 are excited (quasistable) because

EP±1
> EP0

.

At the same time, the daughter theory has two-fold degeneracy,

ED+1
= ED−1

,

a phenomenon well-known at θ = π, the so-called Dashen phenomenon [9].
As was explained in Sec. 3, θ-dependent effects are suppressed by 1/N .

The fermion condensate (17) is a good order parameter for the chiral
symmetry breaking. It cannot serve, however, as an order parameter for the
Z2 breaking. In the orbifold theory with the spontaneously broken Z2 the
fermion condensate does not differentiate those vacua which are connected
to each other by Z2 because it is Z2-even. We must supplement (17) by
a Z2-odd expectation value of (9). This vacuum expectation value (VEV)
is dichotomic. The fermion condensate (17) in conjunction with 〈T 〉 = ±Λ4

fully identifies each degenerate vacuum of the orbifold theory. If spontaneous
breaking of the discrete chiral symmetry produces N vacua, this number is
doubled in the process of Z2 breaking. Somewhat symbolically, the corre-
sponding vacuum structure is presented in Fig. 4. The angular coordinate
represents the phase of (17), while the radial coordinate can take two distinct
values representing the dichotomic parameter 〈T 〉.

<T>=+ <T>=

Fig. 4. The vacuum structure of the SU(8)×SU(8) orbifold theory reflecting spon-

taneous breaking of the Z2 symmetry.

The orbifold theory has a remarkable feature: because of its proven
perturbative planar equivalence to SYM theory, the vacuum energy density —
certainly a Z2 symmetric parameter — can and does play the role of the order
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parameter for Z2 breaking. The vacuum energy density is proportional to the
vacuum expectation value of the Z2-even gluon operator 〈Tr G2

e + Tr G2
m〉.

Indeed, this operator is related, in turn, to the total energy-momentum
tensor of the theory,

θµ
µ = −

3N

32π2

∑

ℓ=e,m

(

Ga
µν Ga

µν

)

ℓ
. (20)

Ever since the gluon condensate was introduced in non-Abelian gauge theo-
ries [8] people tried to identify it as an order parameter. Nobody succeeded.
The orbifold theory is the one where it is an order parameter, albeit in
a special sense.

If Z2 is unbroken, the orbifold theory is perfectly equivalent at N → ∞
to SYM theory, and then 〈Tr G2

e +Tr G2
m〉 reduces to 〈Tr G2

SYM
〉. The latter

condensate vanishes due to supersymmetry of the parent theory. Hence, the
Z2 symmetric vacua in the daughter theory would have vanishing vacuum
energy density in the leading order in N .

When the Z2-symmetric point becomes unstable, the Z2-asymmetric
vacua must have a negative energy density. Equation (20) implies then
that in the genuine vacua

〈Tr G2
e + Tr G2

m〉 > 0 (21)

at order O(N2). In this way the gluon condensate acquired the role of a Z2

breaking order parameter, much in the same way as 〈Tr G2
SYM

〉 is the order
parameter for supersymmetry breaking in SYM theory.

8. Domain-wall-based argument for Z2 breaking

In this section we analyze the domain wall dynamics in the Z2 orbifold
theory. Since domain walls are “QCD D-branes” [18] a similarity between
the wall dynamics and D-brane dynamics is clear.

Why domain walls? As well-known, domain walls are physical manifesta-
tions of spontaneously broken discrete symmetries. Since our consideration
aims at exploring the Z2 breaking in the orbifold daughter theory, addressing
domain walls is an adequate maneuver.

To begin with, let me recapitulate the domain wall topic in the parent
theory. SU(2N) SYM theory has BPS domain walls [19] that carry both
tension σ and charge Q (per unit area), with σ = Q. The expressions for
the tension and charge can be written as follows [20]:

σ =
3(2N)

32π2

∫

wall

dz Tr G2 , (22)
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Q =
3(2N)

32π2

∫

wall

dz Tr GG̃ , (23)

where z is the direction perpendicular to the wall plane. Equation (22) is
a consequence of the scale anomaly. The walls interpolating between the
adjacent vacua (e.g. P0 and P1 in Fig. 3) are called elementary, or 1-walls.
One can consider bound states of the elementary walls too. These walls
interpolate between the vacua i and i + k with k > 1 and are referred to as
k-walls. For instance, the wall interpolating between P−1 and P1 in Fig. 3
is a 2-wall. At N = ∞ it is marginally stable, since the tension of the 2-wall
is twice the tension of the 1-wall. Although elementary walls do interact
via the exchange of glueballs, there is an exact cancellation between the
contribution of even- and odd-parity glueballs [20] at N = ∞. From the
world-sheet theory standpoint, the no-force result is due to the Bose–Fermi
degeneracy on the wall. I will return to the world-sheet theory shortly, after
a brief remark regarding generalizations of Eqs. (22) and (23) in the orbifold
daughter theory.

For the tension and charge of the orbifold theory domain walls one can
write 5

σD =
3N

32π2

∫

wall

dz Tr G2
e +

3N

32π2

∫

wall

dz Tr G2
m , (24)

QD =
3N

32π2

∫

wall

dz Tr
(

GG̃
)

e
+

3N

32π2

∫

wall

dz Tr
(

GG̃
)

m
. (25)

It is suggestive to think of the domain walls in the orbifold theory as of
marginally bound states of fractional “electric” and “magnetic” domain walls,
with the following tensions and charges:

σe =
3N

32π2

∫

dz TrG2
e , σm =

3N

32π2

∫

dz TrG2
m ,

Qe =
3N

32π2

∫

dz Tr (GG̃)e , Qm =
3N

32π2

∫

dz Tr (GG̃)m . (26)

Assuming unbroken Z2’s i.e. σe = σm , we would get

σe,m =
1

2
(σe + σm) , (27)

5 In SYM theory such integrals are well-defined since 〈G2〉 vanishes in any supersym-
metric vacuum. In the orbifold theory this is not necessarily the case. The integrals
in Eq. (24) must be properly regularized.
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i.e., a fractional amount of tension, in full analogy with fractional D-branes.
Then we would have to conclude that, say, at k = 2 two parallel electric
domain walls do not interact at N = ∞. The same would be valid for the
magnetic walls. Unfortunately, the world-sheet theory in the case at hand
does not support this conclusion.

I will again start from SU(2N) SYM theory. The world-sheet theory for
k-walls in N = 1 gluodynamics was derived by Acharya and Vafa [21]. It was
shown to be a (2+1)-dimensional U(k) theory with level-2N Chern–Simons
term and it was shown to have (2+1)-dimensional N = 1 supersymmetry.
The action of the theory is

S =

∫

d3x

{

Tr

(

−
1

4e2
F 2 +

2N

16π
εijkAiF jk +

1

2
(DiΦ)2

)

+ fermions

}

. (28)

All fields in the action, including the fermion fields, transform in the adjoint
representation of U(k). For definiteness, we will consider a minimal case
k = 2.

In the orbifold daughter, the world-sheet theory becomes, by virtue of
the orbifold procedure, a Ue(1)×Um(1) gauge theory with a neutral scalar
field and “bifundamental” fermions. The same conclusion on the world-sheet
theory can be obtained directly through a consideration of type-0 string
theory similar to that of Acharya and Vafa. In this case the world-sheet
action is

S =

∫

d3x







∑

ℓ=e,m

(

−
1

4e2
F 2

ℓ +
N

16π
εijkAi

ℓ F jk
ℓ +

1

2
(∂iΦℓ)

2

)

+ Ψ̄ (Φe − Φm) Ψ + . . .

}

. (29)

The occurrence of the Yukawa coupling Ψ̄ (Φe − Φm) Ψ in the daughter the-
ory, with no counterpart in the parent one, is the fact of a special importance.

One can interpret the above expression as follows. The daughter wall is
a sum of the electric and magnetic walls that interact with each other via
the bifundamental fermions. The electric branes can be separated from the
magnetic branes as is seen from the fact that the Yukawa term Ψ̄ (Φe − Φm) Ψ
in the action (29) can make the bifundamental fermion massive. The vacuum
expectation values

〈Φe〉 = ve , 〈Φm〉 = vm , (30)

which can be chosen to be real are in one-to-one correspondence with the wall
separation. If ve 6= vm a mass µ for the world-sheet fermions is generated,

µ = ve − vm . (31)
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At µ → ∞ the fermions decouple — we have two decoupled U(1) theories.
The world-sheet theory on the separated electric (or magnetic) domain walls
is just a bosonic U(1) gauge theory with a level-N Chern–Simons term.
It is not supersymmetric. There is no reason for the wall tension non-
renormalization and the no-force statement.

The above conclusion can be backed up by a calculation of the wall
repulsion [11,22]. Needless to say, this repulsion is in contradiction with the
NPO conjecture.

9. Back to the bulk theory

If the orbifold theory has Z2-odd vacua, the tachyon field potential must
have minima away from the origin, as shown in Fig. 5, cf. the last paragraph
in Sec. 7. String theory gives us a hint that the point T = 0 is unstable. Field
theory allows us to say that the potential V (T ) is bounded from below since
the regime of large expectation values is fully controlled by semiclassical
dynamics.

V(T)

T

Fig. 5. The tachyon field potential.

From the field-theoretic standpoint it is clear that the only possibility
open is that in the bona fide vacuum 〈T 〉 ∼ Λ4. Non-stabilization of tachyons
would mean 〈T 〉 ≫ Λ4, which is ruled out.

In the parent SYM theory with the gauge group SU(2N), there are 2N
vacua, with the gaugino condensate as an order parameter, see Fig. 3. The
domain walls interpolate between these 2N various vacua. In the daughter
theory the situation is more complicated. Z2 breaking implies that each
vacuum of the N “false” perturbative vacua splits into two, see Fig. 4.

A scenario of the wall inheritance from the parent to daughter theory
we have in mind is as follows. We first pretend that the daughter theory
is planar equivalent to SYM, and that the Z2 symmetry is unbroken. Start
from a 2-wall in the parent theory. It will be inherited, as a minimal wall
in the daughter theory. This is seen from Fig. 3. We may consider e.g.
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the wall connecting D−1 and D1 in the daughter (this is a minimal wall in
the daughter), versus the wall connecting P−1 and P1 in the parent (this is
a 2-wall in SYM theory).

In the parent theory two 1-walls comprising the 2-wall do not interact
with each other (at N = ∞). If we consider them on top of each other, the
world-volume theory has U(2) gauge symmetry. However, nobody precludes
us from introducing a separation. Then we will have U(1) on each 1-wall,
U(1)×U(1) altogether. The tension of each 1-wall is 1/2 of the tension of the
2-wall, it is well-defined and receives no quantum corrections. The fact that
the world-volume theory on each 1-wall is supersymmetric is in one-to-one
correspondence with the absence of quantum corrections. In the daughter
theory the minimal wall splits into one electric and one magnetic repelling
each other. (The electric one connects D−1 with the would-be vacuum which
is a counter-partner of P0, the magnetic one connects the would-be vacuum
which is a counter-partner of P0 with D1).

How can one visualize this situation?
In the parent theory we have degenerate minima at all points Pi. In the

Z2 broken orbifold theory these minima become saddle point (still critical
points, but unstable). Near every second saddle point two minima develop.
Of course, the walls that would be inherited from SYM are all unstable,
with tachyonic modes. 1-walls are transformed into electric/magnetic walls
of the orbifold theory, which are still unstable and, in fact, decay. Each
of them separately could decay only into a “twisted wall” connecting white
and adjacent black true vacua. The “untwisted” electric+magnetic wall can
decay into a minimal stable wall of the daughter theory which connects two
neighboring black vacua or two neighboring white vacua.

10. Why non-perturbative non-equivalence is natural?

I this section I will try to illustrate why a shift of the vacuum energy
from zero is expected in the orbifold theory. Needless to say this can only
happen if perturbative planar equivalence gives place to non-equivalence at
the non-perturbative level. The issue to be discussed here is the vacuum
angle dependence, see Eq. (16). In this section I will treat N as a fixed
parameter assuming that transition to N → ∞ is smooth, as is the case in
pure Yang–Mills theory.

As was mentioned, physical quantities do not depend on θD, as this angle
can be rotated away. A weak dependence appears if m 6= 0, but we will be
interested in the limit m → 0. For our present purposes θD is irrelevant and
can be set at zero.

Unlike θD, the second vacuum angle, ϑ, cannot be rotated away: the only
axial current of the theory is Z2 even while the ϑ term in Eq. (16) is Z2 odd.
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Thus, physics must be ϑ dependent even at m → 0. Of course, at the end of
the day we want to focus on the ϑ = 0 sector. Nothing precludes us, however,
from dealing with ϑ 6= 0 sectors at intermediate stages of our consideration.
Knowledge of pure Yang–Mills theory and Yang–Mills theory with massless
quarks can be used as a reference frame and a guiding principle.

In pure Yang–Mills theory the vacuum angle reflects a non-trivial topol-
ogy in the space of fields and the possibility of tunneling [23], a nonper-
turbative effect which makes the vacuum energy θ dependent and decreases
the vacuum energy at θ = 0. Instantons exemplify the tunneling trajecto-
ries [24]. Massless quarks suppress instantons (and any other field configu-
rations with nonvanishing topological charges), freeze tunneling and make
physics (including the vacuum energy) θ independent. Likewise, in SYM the-
ory instanton does not contribute to the vacuum energy because of the gluino
zero modes (an instanton-antiinstanton configuration could contribute but
it has a vanishing topological charge and is topologically unstable.)

In the orbifold theory we have two topological charges. Massless bi-
fundamental fermions do suppress tunneling in the direction conjugate to
θD. That’s why physics cannot depend on this parameter. However, the
orbifold theory exhibits a new phenomenon: topologically stable instanton-
antiinstanton pairs, connected through fermion zero modes, see Fig. 6. The
stability is due to the fact that they belong to distinct gauge factors. There-
fore, although the overall topological charge (electric + magnetic) vanishes
(all fermion zero modes are contracted), still instantone cannot annihilate
antiinstantonm . The “twisted” topological charge, conjugate to ϑ, is the
difference between the electric topological charge and the magnetic one.
Non-trivial topology and tunneling with regards to the twisted topological
charge is not suppressed by massless fermions.

mI Ae

Fig. 6. Topologically stable instanton-antiinstanton pairs in the orbifold theory.

Instanton belongs to the electric SU(N) while antiinstanton to the magnetic SU(N).

That’s why physics does depend on ϑ. With regards to ϑ effects, the
orbifold theory is expected to be similar to pure Yang–Mills, with no massless
quarks. The instantone-antiinstantonm pair plays the role of the instanton in
pure Yang–Mills. In particular, the vacuum energy E becomes a function of
ϑ (more exactly, ϑ/N), and, if so, there is absolutely no reason for E(ϑ) = 0
at ϑ = 0.
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In fact, one is expected to find “vacuum families”, of the type described
by Witten [25] (see also [7]): a group of ∼ N quasistable “vacua” entangled
in the process of ϑ evolution and interchanging their position each time ϑ
reaches kπ where k is integer6. The issue of the dynamical Z2 breaking in
this language is formulated as follows: at ϑ = 0 each vacuum family contains
two degenerate stable vacua connected by a Z2 transformation. At generic
ϑ 6= 0 the Z2 symmetry of the action is explicitly broken by the ϑ term in
Eq. (16).

11. Conclusions

Examples of cross-fertilization between string theories and gauge field
theories are abundant. The topic of planar equivalence between supersym-
metric and non-supersymmetric gauge theories emerged in this way. In
the recent years it produced quite a few spectacular results and stimulated
various activities in diverse directions. Two classes of non-supersymmetric
models were identified as daughter theories: orbifold and orientifold. Planar
equivalence is valid for both at the perturbative level.

In this talk I tried to summarize recent nonperturbative analyses of the
orbifold theories. It was found, beyond reasonable doubt, that the Z2 sym-
metry of the Z2 orbifolds is the key to nonperturbative planar equivalence.
If it is not dynamically broken, planar equivalence must extend to the non-
perturbative level. The opposite is also true: spontaneous breaking of Z2

entails a nonvanishing vacuum energy and a failure of planar equivalence.
I discussed arguments in favor of nonperturbative nonequivalence such as
domain wall dynamics and ϑ dependence. Unfortunately, there is no iron-
clad proof of the statement. At a certain point, low-energy theorems seemed
to provide such a proof. It turned out, however, that they may or may not
be relevant since they are sensitive not only to the vacuum structure of the
parent/daughter theories, but also to the number of the fundamental degrees
of freedom which is different in the parent/daughter theories.

In this sense, situation with the orientifold daughter theories is much
more favorable. Nonperturbative planar equivalence certainly does hold for
the orientifold theories. Why they are better than their orbifold cousins?

String theorists are familiar with this phenomenon. Type-II strings on
orbifold singularities of the form C3/Zn , or type-0 strings always contain
a tachyon in the twisted sector (and fractional branes).

For orientifold theories the situation is conceptually different. This non-
supersymmetric gauge theory has no twisted sector and, in particular, it
does not contain fractional domain walls; hence, it is guaranteed that the
theory inherits its vacua from the SUSY parent.

6 This is in addition to N chiral sectors labeled by 〈Ψ̄ 1

2
(1 − γ5)Ψ〉. Note that the first

crossover Dashen point is at ϑ = π/2.
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Similarly, the candidate for a string dual of the orientifold theory —
Sagnotti’s type-0′ model [26] — contains no tachyon since it was projected
out by orientifolding.

The orientifold theory is closer to QCD. On the other hand, the orbifold
theory has rich internal dynamics presenting, in a sense, a hybrid between
QCD with massless quarks and pure Yang–Mills. Even though its planar
equivalence to SYM theory is highly unlikely, it is an alluring target for
future studies.

I am grateful to Adi Armoni and Sasha Gorsky for valuable comments on
the manuscript. This work was supported in part by DOE grant DE-FG02
-94ER408.
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