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I review the status of the issue of the k-string tension in Yang–Mills
theory. After a summary of known facts I discuss a weakly coupled four-
dimensional Yang–Mills theory that supports non-Abelian strings and can,
in certain aspects, serve as a toy model for QCD strings. In the second
part of the talk I present original results obtained in a two-dimensional toy
model which provides some evidence for the sine formula.
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Part I: Review

1. Introduction

The issue I want to address is the k-string tension. Significant effort
has been invested recently in QCD and YM theories at large in the studies
of flux tubes induced by color sources in higher representations of SU(N),
mostly in connection — but not exclusively — with high-precision lattice
calculations (for a review see [1] and references therein; see also Sect. 8). If a
source has k fundamental color indices (N -ality k), the flux tube it generates
is referred to as the k-string. The question of k and N dependence of the
k-string tension is one of the central questions of color-confining dynamics.

For many years the prevailing hypothesis was that of the so-called Casimir
scaling, the genesis of which can be seemingly traced back to various models
based on one-gluon exchange, popular in the 1970’s and 80’s, as well as to
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the strong-coupling lattice expansions. Surprisingly, only recently it was re-
alized [2,3] that the Casimir scaling is in direct contradiction with the 1/N
expansion in YM theory.

Meanwhile, an alternative construction emerged which does have an ap-
propriate 1/N expansion. It goes under the name of the sine formula for
the k-string tension. Originally it was suggested by Douglas and Shenker [4]
in connection with N = 2 super-Yang–Mills model. Arguments in favor of
this formula were obtained in MQCD and supersymmetric theories (for a
detailed discussion and a representative list of references see [2, 3]).

In spite of the abundance of arguments, and the correct 1/N behavior
inherent to the sine formula, it has never been proven, and the issue of its
relevance to QCD remains open. This talk consists of two parts. Part I is
designed as a brief review of general ideas regarding QCD k-strings, with
the emphasis on developments after 2003. For a review of the pre-2003
situation the reader is referred to [3]. Part II is original. It presents a toy
model in which the exact sine formula for an analog of the k-string tension
emerges in a natural way. This toy model is two-dimensional but it is closely
(in fact, “genetically”) related to a four-dimensional weakly coupled gauge
model which has been recently developed, see [5, 6], and references therein,
and Sect. 9. Its remarkable feature is that it supports non-Abelian strings,
pretty close relatives of QCD strings, the main subject of our analysis.

2. Strings/flux tubes in known phenomena

A physical phenomenon where flux tubes with well-studied properties
are proven to play a crucial role is known from 1930s and to theorists from
1950s. In 1957 Abrikosov published the paper [7] entitled On the Magnetic
Properties of Superconductors of the Second Type which deals with penetra-
tion of magnetic fields in bulk superconductors. Magnetic flux is conserved.
If one places a large bulk superconductor between two poles of a magnet,
the magnetic field must go through, but it cannot go through without de-
stroying superconductivity. Treating the Cooper pair condensation in the
framework of the Ginzburg–Landau theory, Abrikosov found vortex-type so-
lutions describing magnetic fields squeezed into thin tubes carrying the total
magnetic flux which is quantized. The corresponding physical phenomenon
is called the Meissner effect1. Superconductivity is destroyed in the core of
the tubes. The energy of such configurations is σL where σ is the string
tension and L is the size of the bulk superconductor pierced by the flux
tube. The energy scales linearly with the size. The flux tubes end on the

1 Walter Meissner and Robert Ochsenfeld discovered in 1933 that superconducting
materials repelled magnetic fields. This effect is quite spectacular: magnets can
levitate above superconducting materials.



k-Strings from Various Perspectives: QCD, Lattices, String Theory. . . 3807

poles of the magnet or, if magnetic monopole existed, they could end on the
magnetic monopoles.

The Abrikosov flux tubes are currently known as Abelian or U(1) flux
tubes. They emerge in the Abelian Higgs model (see [8]) due to the fact that
π1(U(1)) is non-trivial. The gauge U(1) symmetry is spontaneously broken
in the vacuum by a condensate of a charged scalar field φ, the Higgs field,
which can be thought of as representing the Cooper pair density. The string
configuration, with a winding phase of the scalar field φ, is topologically sta-
ble. At large distances from string’s core |φ| coincides with its vacuum value,
while inside the core φ→ 0. Thus, superconductivity is destroyed in string’s
core. The magnetic flux transmitted through the Abrikosov–Nielsen–Olesen
(ANO) flux tube can be arbitrary integer number (in appropriate units).

3. Color confinement: dual Meissner effect hypothesis

Magnetic charges attached to the endpoints of the Abrikosov string are
confined: taking them apart would require infinite energy. In QCD we want
chromoelectric charges, rather than chromomagnetic ones, to be attached
to the endpoints of the chromoelectric flux tubes and thus confined. Chro-
momagnetic charges must condense. In the 1970s ’t Hooft [9] and Mandel-
stam [10] put forward the hypothesis of a dual Meissner effect to explain
color confinement in non-Abelian gauge theories. Dual means that we take
the Abrikosov theory and replace everything electric by magnetic and vice
versa.

The ’t Hooft–Mandelstam hypothesis was formulated at a qualitative
level. Since then people kept trying to find a quantitative framework in
which one could demonstrate the occurrence of the dual Meissner effect in
a controllable approximation: formation of chromoelectric flux tubes with
properties compatible with general ideas and existing data on color confine-
ment. This task proved to be extremely difficult.

A breakthrough achievement was the Seiberg–Witten solution [11] of
N = 2 supersymmetric Yang–Mills theory. They found massless monopoles
at a certain point in the moduli space and, adding a small (N = 2)-breaking
deformation, demonstrated that they condense creating strings carrying a
chromoelectric flux. This was the first quantitative implementation of the
’t Hooft–Mandelstam hypothesis, 16 years after its inception! Needless to
say, the Seiberg–Witten result was met with great enthusiasm in the com-
munity.

A more careful examination showed, however, that details of the Seiberg–
Witten confinement were quite different from those we expect in QCD-like
theories. Indeed, a crucial aspect of Ref. [11] is that the SU(N) gauge
symmetry is first broken, at a high scale, down to U(1)N−1, which is then
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completely broken, at a much lower scale where monopoles condense. Cor-
respondingly, the Seiberg–Witten model strings are, in fact, the Abelian
strings [7,8] of the Abrikosov–Nielsen–Olesen type. This leads to an “Abelian”
confinement whose structure does not resemble at all that of QCD. In par-
ticular, the “hadronic” spectrum is much richer than that in QCD [4, 12].
For a review see [13].

Thus, the task of constructing and studying non-Abelian strings in QCD
and QCD-like theories still stands. I will summarize recent (modest) progress
[5,6,14–19] at the end of Part I. However, to begin with, it is instructive to
discuss what we know of QCD strings from 1/N , lattices, and other ideas.

4. QCD strings

The simplest QCD string is the flux tube that connects heavy (probe)
color sources in the fundamental representation. It is referred to as the
fundamental string. The fundamental string tension is of the order of Λ2

where Λ is the dynamical scale parameter. Its transverse size is of the order
of Λ−1. Both parameters are independent of the number of colors, and,
besides Λ, can contain only numerical factors. In what follows I assume
the gauge group to be SU(N), with N , the number of colors, being a free
parameter and g2N fixed.

The flux tubes attached to color sources in higher representations of
SU(N) are known as k-strings, where k denotes the N -ality of the color
representation under consideration. The N -ality of the representation with
ℓ upper and m lower indices (i.e. ℓ fundamental and m anti-fundamental) is
defined as

k = |ℓ−m| . (4.1)

Figure 1 displays the fundamental string and 2-string. Since N fundamental
quarks can form a color-singlet object (baryon), N -ality is defined mod N .

N fundamental strings collected together, as in Fig. 1(b), will pass into
a no-string state. This feature of non-Abelian strings critically distinguishes
them from the ANO strings. For the same reason, if, say, N is odd, k-strings
with k = 1

2 (N ± 1) must be identical. The same is true for k = 1
2(N ± 2) if

N is even.
The k-string tension cannot depend on particular representation of the

probe color source, but only on its N -ality. Indeed, the particular Young
tableau of the representation plays no role, since all representations with
the given N -ality can be converted into each other through emission of an
appropriate number of soft gluons. For instance, the adjoint representation
has vanishing N -ality; the color source in the adjoint can be completely
screened by gluons, and the flux tube between the adjoint color sources
should not exist. The symmetric two-index representation Q{ij} can be
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Fig. 1. A flux tube for k-strings: (a) the fundamental tube; (b) the 2-string tube.

transformed into antisymmetric Q[ij] plus a gluon, Q{ij} → Q[ik] +Gj
k, and

so on.
The above statement seemingly contradicts the abundant lattice liter-

ature on the adjoint strings, measurements of distinct string tensions for
symmetric and anti-symmetric representations of one and the same N -ality,
and so on. Does it?

It turns out that at large N some “wrong” strings are quasi-stable. Being
created, they must relax to bona fide k-strings (i.e. those corresponding
to sources with k indices in fully antisymmetric representation), but the
relaxation time is exponentially large. Surprisingly, the question how fast
they relax has never been solved previously. I will present a sample estimate
for the two-index symmetric representation in Sect. 6. In this case to measure
the bona fide 2-string tension one should deal with Wilson contours whose
area is much larger than exp(γN2), where γ is a numerical constant.

5. Casimir vs. sine formula

If σf is the tension of the fundamental string, the Casimir formula reads

σk = CR σf/Cfund , (5.2)

where CR is the quadratic Casimir coefficient for representation R defined
as

T aT a = CR IR

(here I is the unit matrix in the representation R, while T a’s stand for the
SU(N) generators in the same representation). For antisymmetric k-index
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representation

σk = k

(

1 − k − 1

N − 1

)

σf . (5.3)

The large-N expansion of the Casimir formula is

σk = k

(

1 − k

N
+O(N−2)

)

σf . (5.4)

The expansion runs in even and odd powers of 1/N .

Now, let us compare it with the sine law for the k-string tension which
reads

σk =
(

sin
π

N

)−1
σf sin

(

π k

N

)

. (5.5)

At large N the sine formula can be expanded as follows:

σk = k

(

1 − π2

6N2
(k2 − 1) +O(N−4)

)

σf . (5.6)

The difference which immediately becomes obvious is that in the sine formula
the large-N expansion runs in even powers of 1/N while in the Casimir
formula all powers of 1/N are involved.

Let us ask ourselves what should one expect in Yang–Mills theory. As-
sume that we start from two distant fundamental strings, each attached to
a (infinitely heavy) probe quark at the top and a probe antiquark at the
bottom, as in Fig. 1. The distance between the probe quark and antiquark
is L → ∞. The distance between two Q’s is ℓ, and so is the distance be-
tween two Q̄’s. No dynamical quarks are present in our theory. Then we let
two Q’s adiabatically approach each other, keeping the strings parallel, and
eventually make the distance ℓ between them less than Λ−1.

At N = ∞ the energy of this configuration is 2σfL + L-independent
part which is irrelevant for our purposes. In this limit the two strings do
not interact. At finite N interaction switches on. The spatial extent of
interaction is ∼ Λ−1. If we consider parts of strings in the central domain,
far away from the endpoints, the interaction has no knowledge of quarks
whatsoever (Fig. 2(a)). In fact, in supersymmetric gluodynamics one could
eliminate probe quarks at all, putting the endpoints of the strings under
consideration on two distant parallel domain walls. The large-N structure of
the interaction is the same as in pure Yang–Mills. Hence, the 1/N expansion
runs in even powers [3].

One can arrive at the same conclusion from the string theory side too [3],
see Fig. 2(b). Time axis is in the horizontal direction, we have two parallel
fundamental string world-sheets, and their interaction is due to the closed
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string exchange (annulus diagram). It is quite obvious that this contribution
is proportional to g2

st where gst is the string coupling constant. Since gst ∼
1/N we see again that the string interaction starts from 1/N2 and contains
only even powers of 1/N .

One can argue on general grounds that at distances ∼> Λ−1 the fun-
damental strings attract each other [3], while at short distances there is a
repulsion, so that composite k-strings do develop. The Casimir scaling as
an exact formula for the k-string tension is excluded. The sine formula does
have an appropriate 1/N expansion, but this is certainly no proof.

x

t

(a)(a)
b(b)

Fig. 2. The interaction of two “fundamental” strings: (a) Field-theory picture —

(two)gluon exchange; (b) String-theory picture — exchange of a closed string be-

tween two world-sheets.

Needless to say, getting a clear-cut understanding of the status of the
sine formula in large-N QCD is highly desirable. Unfortunately, there was
no dramatic progress in this issue since 2003. Still, two remarks are in order.

The first remark concerns the derivation of the k-string tension via su-
pergravity. For the Maldacena–Nuñez background [20] the sine formula was
found to be exact [21]. At the same time, for the Klebanov–Strassler back-
ground [22] the sine formula proved to be an excellent approximation, valid
to a few percent accuracy, but not exact. (Of course, the even power 1/N
expansion applies in both cases.) Recently Butti et al. realized [23] that the
Klebanov–Strassler solution is a limiting case of an entire branch of solutions
which goes under the name of a “baryonic branch”. By varying the string
coupling and some other parameters one can smoothly interpolate between
the Klebanov–Strassler background and the Maldacena–Nuñez one. Corre-
spondingly, the k-string tension will change by a few percent, tending to the
sine formula in the limiting case of the Maldacena–Nuñez background.

Another pertinent result I want to mention here is the one obtained in
a toy model, to be discussed in detail in Sect. 10.
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6. Relaxation of quasi-stable strings

In this section I will sketch an estimate of the quasi-stable string decay
rates. As was mentioned, for given N -ality k the stable string is the one
corresponding to the k-index representation with all indices totally antisym-
metrized. Assume that we “prepared” a string corresponding to a different
representation with the same N -ality. How long does it take for the excited
string to relax?

To answer this question we consider strings of length L in the Minkowski
space-time. Eventually we will take L → ∞. The task is to calculate the
N and representation dependence of the decay rates per unit time per unit
length of the string. In some instances the answer was known long ago [1],
for instance, for the notorious “adjoint string” which should decay into a
no-string state. If the probe heavy sources are in the adjoint representation
they can be screened off via creation of a pair of gluons. At the hadronic
level, the string breaking is equivalent to the statement that the operator
Q̄i

j Q
j
i produces a pair of (color-singlet) mesons of the type QG. Here Qj

i is
the field of the probe heavy quark while G stands for the gluon. It is easy to
see that the probability of the string breaking (per unit length per unit time)
is Λ2/N2. This power-like suppression could be strong enough numerically
for such strings to show up on lattices as quasi-stable. Parametrically, it is
of the same order as the “binding energy” (which is also suppressed as N−2).
For this reason the tension of the “adjoint string” is an ill-defined notion.

More challenging and less studied are strings attached to color sources of
the type Qi1,i2,...,ik or Qi1,i2,...,ik in representations other than fully antisym-
metric. I will discuss just one example, k = 2. Other cases are considered
in [3]. In this case irreducible representations are of two types: Q{ij} and
Q[ij] (symmetric and antisymmetric). The 2-string with the lowest tension
corresponds to the antisymmetric representation. Since the string interac-
tion is O(1/N2) the tension splitting between the symmetric quasi-stable
string (with a larger tension) and the antisymmetric one scales as Λ2N−2.
Let us assume we start from the excited string, i.e. consider the Wilson loop
for Q{ij}. I will show that the symmetric string does not decay into the an-
tisymmetric one to any finite order in 1/N2. The decay rate is exponential.

Indeed, in order to convert the symmetric color representation into the
antisymmetric representation one has to produce a pair of gluons. This takes
energy of the order of Λ. However, the string is not entirely broken, rather
it is restructured, with the tension splitting ∼ Λ2N−2. To collect enough
energy, the gluon creation should take place not locally, but, rather at the
interval of the length ∼ Λ−1N2. This is a typical tunneling process.

The decay rate can be found quasiclassically. The world-sheet of the
symmetric string is shown in Fig. 3(a). Its decay proceeds via a bubble
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(a) (b)

Fig. 3. The world-sheet of a 2-string. (a) A purely symmetric string (denoted by

horizontal lines). (b) The decay into an antisymmetric string (vertical lines) via

an expanding bubble.

creation, see Fig. 3(b). The world-sheet of the symmetric string is two-
dimensional “false vacuum,” while inside the bubble we have a “true vacuum,”
i.e. the surface spanned by the anti-symmetric string. The tension difference
— in the false vacuum decay problem, the vacuum energy difference — is
E ∼ Λ2N−2, while the energy T of the bubble boundary (per unit length) is
T ∼ Λ. This means that the thin wall approximation is applicable, and the
decay rate Γ (per unit length of the string per unit time) is [24, 25]

Γsym→antisym ∼ Λ2 exp

(

−π T
2

E

)

∼ Λ2 exp
(

−γ N2
)

, (6.1)

where γ is a positive constant of the order of unity. Once the true vacuum
domain is created through tunneling, it will expand in real time pushing the
boundaries (i.e. the positions of the gluelumps responsible for the conversion)
toward the string ends.

The above estimate relies on the assumption that the gluelump energy
∼ Λ. This assumption seems natural, it is hard to imagine any other regime,
say, the gluelump mass scaling as Λ/N . It would be highly desirable to get
a better understanding of this issue. Presumably, one should be able to
write an effective low-energy theory on the 2-string world-sheet which has
two vacua: one stable and one quasi-stable, whose energy density becomes
degenerate with that of the stable vacuum in the limit N → ∞. A kink in
this theory would describe a gluelump. (See Sect. 9 for a related discussion.)
Although the domain wall worldvolume theory of this type is known for
quite some time [26], I am aware of no attempts at deriving a QCD k-string
worldvolume theory along these lines.
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7. If L < Lcrit excited strings may be stable

So far the vast majority of lattice simulations yields string tensions which
depend on the particular representation of the probe source rather than on
its N -ality, with the tension proportional to the Casimir coefficient of the
representation at hand2. The reason behind this situation may be due to
the fact that on lattices so far one deals with a mixture of “wrong” excited
strings with just a small admixture of the genuine ground-state k-string.
The studies of the genuine k-strings are hampered by the longevity of the
excited strings. As was argued in Sect. 6, excited strings live exponentially
long. For, instance, the decay rate of the two-index symmetric string into
two-index antisymmetric was estimated as Λ2 exp

(

−γ N2
)

.

The above estimate refers to the string of an infinite length. Needless
to say, when strings are treated on lattices, they have finite length. If the
distance between the probe sources is less than some critical distance Lcrit

the excited string may turn out to be stable, protected against decay into
the ground state by energy balance.

Indeed, the energy of the probe configuration depicted in Fig. 1(b) con-
sists of two parts: the string proper (this energy scales as L) and the end-
point domains — “bulges” — where the string couples to the color sources
(this energy scales as L0). The energy of the bulges depends, generally
speaking, on the particular representation of the color sources, as well as
on the structure of the string proper, i.e. symmetric versus antisymmetric.
The bulge connecting the symmetric source with the antisymmetric string
is expected to be heavier than that connecting the symmetric source with
the symmetric (quasi-stable) string since it absorbs a gluelump. The crucial
question is the bulge energy difference in these two cases. If it is ∼ Λ, we
need the string to be longer than Λ−1N2 for the energy gain due to the
string decay to overcome the energy loss in the end-point domains. Since
the bulge is “locally” coupled to the color source it is conceivable that the
bulge energy difference scales as ∼ Λ/N . Then the critical string length is
Lcrit ∼> Λ−1N .

Thus, “finite-length excited strings” may not be able to relax if the lattice
size is smaller than Lcrit. In this case of “short” strings it will be impossible,
even in principle, to measure the genuine k-string tension no matter how
long is the time extension. This circumstance was noted by Gliozzi [27]. I
merely adapt his argument within the framework of the large-N analysis.

It is important that Lcrit ≫ Λ−1. Otherwise framing the discussion in
terms of strings would not be appropriate at all.

2 More on the current situation on lattices will be said in Sect. 8.
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8. Lattices: what’s happening?

Numerical study of k-strings is being pursued, for quite some time, by
a number of lattice practitioners, of which I will mention here two groups:
one in Italy and one in UK (see e.g. [28, 29]). By and large, the first group
finds agreement with the sine law, while the second one obtains results lying
between the sine law and the Casimir formula, with somewhat larger errors,
which cover both possibilities. A report on the recent progress of the second
group can be found in [30]. Lucini et al. obtain string tensions which are
somewhat smaller than those measured by the first group, for the same values
of lattice parameters, which indicates, generally speaking, that separation
of the ground-state string is better in this case. As usual, a potentially
dangerous source of systematic errors is the finite-volume correction: both
groups rely on the leading bosonic string correction σeff(L) = σ − π L−2/3
for extrapolation of their data obtained on a size L lattice to L→ ∞. It is
not quite clear whether subleading corrections could appreciably distort the
ratio σk/σf .

In any case, the real question is about the N → ∞ limit, not about
N = 4, 6, 8. A clean way to address this question is to consider, say,
σ2/σf as a function of N , and check whether this ratio receives 1/N or 1/N2

leading corrections. The first analysis of this type was performed in [30], see
Eq. (42) and Fig. 15 in this paper. The errors are way too large to provide
us with a conclusive answer. To get a conclusive answer large values of N
and high accuracy are needed. Experts say they do not expect this issue to
be resolved any time soon through this procedure.

At the same time, it is gratifying to note that a number of lattice prac-
titioners stimulated by the pioneering work [31] (where a new method for
studying the adjoint string breaking was suggested) became interested in de-
veloping new approaches to quasi-stable strings and string decays. Shortly
after the original publication [31] this issue was revisited in [32] for the
symmetric two-index representation of SU(3), which allowed the authors to
explain earlier results that had been reported in [28,33]. A fresh theoretical
analysis along these lines is presented in [27].

Concluding this section let me mention, as a side remark, a landmark
achievement marginally related to my current topic: a detailed description
of the fundamental string breaking through quark–antiquark pair creation
in full QCD was recently obtained in [34].

9. Non-Abelian strings at weak coupling

In this section I describe seemingly the simplest weakly coupled model
in which the Meissner effect does take place and leads to formation of non-
Abelian chromomagnetic flux tubes. The model supports non-Abelian con-
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fined magnetic monopoles. In the dual description the magnetic flux tubes
are prototypes of QCD strings. Dualizing the confined magnetic monopoles
we get gluelumps (string-attached gluons) which convert a “QCD string” in
the excited state to that in the ground state. The decay rate of the excited
string to its ground state is suppressed exponentially in N , much in the same
way as in QCD, see Sect. 6.

The model we will discuss is in a sense minimal. Due to its weak coupling
it is fully controllable. One can think of it as of a reference model. It is
non-supersymmetric (but can be readily supersymmetrized if necessary).
In Part II I will deal with a (slightly broken) supersymmetric version of the
same model.

9.1. The bulk structure of the toy four-dimensional Yang–Mills
model [5, 6, 14–19]

The gauge group of the model is SU(N)×U(1). Besides SU(N) and U(1)
gauge bosons the model contains N scalar fields charged with respect to U(1)
which form N fundamental representations of SU(N). It is convenient to
write these fields in the form of N × N matrix Φ = {ϕkA} where k is the
SU(N) gauge index while A is the flavor index,

Φ =













ϕ11 ϕ12 ... ϕ1N

ϕ21 ϕ22 ... ϕ2N

... ... ... ...

ϕN1 ϕN2 ... ϕNN













. (9.1)

The action of the model has the form

S =

∫

d4x

{

1

4g2
2

(

F a
µν

)2
+

1

4g2
1

(Fµν)2

+ Tr (∇µΦ)† (∇µΦ) +
g2
2

2

[

Tr
(

Φ†T aΦ
)]2

+
g2
1

8

[

Tr
(

Φ†Φ
)

−Nξ
]2
}

, (9.2)

where T a stands for the generator of the gauge SU(N),

∇µ Φ ≡
(

∂µ − i√
2N

Aµ − iAa
µ T

a

)

Φ . (9.3)

The global flavor SU(N) transformations then act on Φ from the right. The
action (9.2) in fact represents a truncated bosonic sector of the N = 2
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supersymmetric model. The last term in the second line forces Φ to develop
a vacuum expectation value (VEV) while the last but one term forces the
VEV to be diagonal

Φvac =
√

ξ diag {1, 1, ..., 1} . (9.4)

To ensure weak coupling one must assume ξ ≫ Λ2.

The vacuum field (9.4) results in the spontaneous breaking of both gauge
and flavor SU(N)’s. A diagonal global SU(N) survives, however, namely

U(N)gauge × SU(N)flavor → SU(N)diag . (9.5)

Thus, color–flavor locking takes place in the vacuum.

This model has a string solution, which I will briefly review now. Since
it includes a spontaneously broken gauge U(1), the model supports conven-
tional ANO strings in which one can discard the SU(N)gauge part of the
action. These are not the strings we are interested in. At first sight the
triviality of the homotopy group, π1(SU(N)) = 0, implies that there are no
other topologically stable strings. This impression is false. One can com-
bine the ZN center of SU(N) with the elements exp(2πik/N) ∈U(1) to get a
topologically stable string solution possessing both windings, in SU(N) and
U(1), namely,

π1 (SU(N) × U(1)/ZN ) 6= 0 . (9.6)

It is easy to see that this nontrivial topology amounts to winding of just one
element of Φvac, say, ϕ11, or ϕ22, etc. for instance

Φstring =
√

ξ diag(1, 1, ..., 1, eiα(x)) , x→ ∞ , (9.7)

(α is the angle of the coordinate ~x⊥ in the perpendicular plane.) Such
strings are referred to as elementary ZN strings. They are progenitors of the
non-Abelian strings. Their tension is 1/N -th of that of the ANO string, see
Eqs. (9.12) and (9.13). The ANO string can be viewed as a bound state of
N elementary strings at a certain point in the moduli space.
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9.2. Elementary ZN strings

At finite distances from the flux tube center the ZN string solution can
be written as [16]

Φ =









φ(r) 0 ... 0
... ... ... ...0
0 ... φ(r) 0
0 0 ... eiαφN (r)









,

A
SU(N)
i =

1

N









1 ... 0 0
... ... ... ...
0 ... 1 0
0 0 ... −(N − 1)









(∂iα) [−1 + fNA(r)] ,

A
U(1)
i =

1

N
(∂iα) [1 − f(r)] , A

U(1)
0 = A

SU(N)
0 = 0 , (9.8)

where i = 1, 2 labels coordinates in the plane orthogonal to the string axis
and r and α are the polar coordinates in this plane. The profile functions
φ(r) and φN (r) determine the profiles of the scalar fields, while fNA(r)
and f(r) determine the SU(N) and U(1) fields of the string solutions, re-
spectively. These functions satisfy the following rather obvious boundary
conditions:

φN (0) = 0,

fNA(0) = 1, f(0) = 1 , (9.9)

at r = 0, and

φN (∞) =
√

ξ, φ(∞) =
√

ξ ,

fNA(∞) = 0, f(∞) = 0 , (9.10)

at r = ∞. Because our model is, in fact, a bosonic reduction of the N = 2
supersymmetric theory, these profile functions satisfy the first-order differ-
ential equations,

r
d

dr
φN (r) − 1

N
(f(r) + (N − 1)fNA(r))φN (r) = 0 ,

r
d

dr
φ(r) − 1

N
(f(r) − fNA(r))φ(r) = 0 ,

−1

r

d

dr
f(r) +

g2
1N

4

[

(N − 1)φ(r)2 + φN (r)2 −Nξ
]

= 0 ,

−1

r

d

dr
fNA(r) +

g2
2

2

[

φN (r)2 − φ2(r)
2
]

= 0 . (9.11)
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These equations can be solved numerically. Clearly, the solutions to the first-
order equations automatically satisfy the second-order equations of motion3.

The tension of the elementary ZN string is

T1 = 2π ξ , (9.12)

to be compared with the tension of the ANO string,

TANO = 2π N ξ . (9.13)

9.3. Why non-Abelian?

In which sense the elementary ZN strings are progenitors of the bona
fide non-Abelian strings? At the classical level they are all degenerate and
can be continuously deformed to one another. Indeed, besides trivial trans-
lational moduli, they have SU(N) “orientational” moduli corresponding to
spontaneous breaking of a non-Abelian symmetry. Indeed, while the “flat”
vacuum is SU(N)diag symmetric, the solution (9.8) breaks this symmetry
down to U(1)×SU(N−1) (at N > 2). This means that the world-sheet (two-
dimensional) theory of the elementary string moduli is the SU(N)/(U(1)×
SU(N − 1)) sigma model. This is also known as CP(N − 1) model.

To obtain the non-Abelian string solution from the ZN string (9.8) we
apply the diagonal color–flavor rotation preserving the vacuum (9.4). To
this end it is convenient to pass to the singular gauge where the scalar fields
have no winding at infinity, while the string flux comes from the vicinity of
the origin. In this gauge we have

Φ = U













φ(r) 0 ... 0

... ... ... ...

0 ... φ(r) 0

0 0 ... φN (r)













U−1 ,

A
SU(N)
i =

1

N
U













1 ... 0 0

... ... ... ...

0 ... 1 0

0 0 ... −(N − 1)













U−1 (∂iα) fNA(r) ,

A
U(1)
i = − 1

N
(∂iα) f(r) , A

U(1)
0 = A

SU(N)
0 = 0 , (9.14)

3 Quantum corrections destroy fine-tuning of the coupling constants in (9.2). If one is
interested in calculation of the quantum-corrected profile functions one has to solve
the second-order equations of motion instead of (9.11).
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where U is a matrix ∈ SU(N). This matrix parametrizes orientational zero
modes of the string associated with flux rotation in SU(N). The presence
of these modes makes the string genuinely non-Abelian. Since the diago-
nal color–flavor symmetry is not broken by the vacuum expectation values
(VEV’s) of the scalar fields in the bulk (color–flavor locking) it is physical
and has nothing to do with the gauge rotations eaten by the Higgs mech-
anism. The orientational moduli encoded in the matrix U are not gauge
artifacts. The orientational zero modes were first observed in [15, 16].

Thus, at the classical level there is a continuous manifold of non-Abelian
strings. The degeneracy is lifted at the quantum level.

9.4. Structure of the string world-sheet theory

As is clear from the string solution (9.14), not each element of the matrix
U will give rise to a modulus. The SU(N − 1)×U(1) subgroup remains un-
broken by the string solution under consideration; therefore, as was already
mentioned, the moduli space is

SU(N)

SU(N − 1) × U(1)
∼ CP(N − 1) . (9.15)

Keeping this in mind we parametrize the matrices entering Eq. (9.14) as
follows:

1

N























U













1 ... 0 0

... ... ... ...

0 ... 1 0

0 0 ... −(N − 1)













U−1























l

p

= −nln∗p +
1

N
δl
p , (9.16)

where nl is a complex vector in the fundamental representation of SU(N),
and

n∗l n
l = 1 , (9.17)

(l, p = 1, ..., N are color indices). One U(1) phase is gauged in the effective
sigma model. This gives the correct number of degrees of freedom, namely,
2(N − 1).

Using this parametrization it is not difficult to obtain [6] an effective
(1+1)-dimensional action for the moduli fields ni,

S(1+1) = 2β

∫

dt dz
{

(∂α n
∗
l ∂α n

l) + (n∗l ∂α n
l)2
}

, (9.18)
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where the coupling constant β is given by

β =
2π

g2
2

. (9.19)

Equations (9.18) and (9.17) present one of many various parametriza-
tions of CP(N − 1) model which are in use in the literature. It is well
known that the continuous degeneracy of the classical vacuum manifold of
CP(N −1) model is lifted at the quantum level (for a pedagogical discussion
see e.g. [35]). The quantum vacuum is unique. This means that, unlike ZN

strings, our non-Abelian four-dimensional 1-string is unique. This is good.
Other aspects are not so good, however.

In two-dimensional CP(N − 1) model there is a large number (of the
order of N) of quasistable “vacuum states” of the type depicted in Fig. 5.
The quasistable vacua of CP(N − 1) model decay into the genuine one with
probability ∼ Λ2 exp (−γ N), see Sect. 10.6. In terms of four-dimensional
strings this means the existence of a large number of “excited strings” which
have nothing to do with the excited k-strings since the quasistable vacua of
CP(N − 1) model appear for four-dimensional 1-strings, and, moreover, the
energy-density spacing is Λ2/N . Thus, the parallel with QCD is far from
being perfect. It is fair to say that we made just the first little step in a long
journey which may or may not lead to adequate modeling of QCD strings
at weak coupling.

Note that at large N the world-sheet CP(N−1) model is solvable. Super-
symmetrization of the model which will be needed in Part II can be carried
out following the program of [5].

Part II: Original

10. k-kink confinement in two-dimensional
CP(N − 1) models: hints for k-string tension?

It is known from the early 1970’s that four-dimensional Yang–Mills the-
ory and two-dimensional O(3) sigma model exhibit remarkable parallels.
Just like Yang–Mills theory, O(3) sigma model has asymptotic freedom [36]
and instantons [37]. Moreover, CP(N − 1) sigma models introduced in
Ref. [38,39] present a parallel to large-N Yang–Mills (YM) theories. The pa-
rameter N of CP(N−1) plays the same role as the number of colors in QCD,
for instance, CP(1) (equivalent to O(3)) is analogous to SU(2) Yang–Mills,
CP(2) to SU(3) and so on. The large-N expansion in the sigma models was
analyzed in [35, 40], with the conclusion that its structure is very similar to
that in YM theories. Finally, 2D supersymmetric CP(N − 1) sigma model
constructed in [39] is an excellent toy model for 4D supergluodynamics (see
e.g. the review paper [41]).
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The similarity of the strong-coupling dynamics of four-dimensional Yang–
Mills theories and two-dimensional CP(N−1) sigma models is not accidental.
As was discussed in Sect. 9 some Yang–Mills models support non-Abelian
strings with moduli whose world-sheet interaction is described by CP(N−1).
In other words, these YM models are microscopic theories of phenomena
whose macroscopic description is given by two-dimensional CP(N −1) mod-
els. The Meissner mechanism of confinement translates into quite certain
statements concerning kinks in two-dimensional CP(N − 1). This explains
observations of a number of parallel phenomena in the two classes of theo-
ries, 2D and 4D. I want to further exploit this parallelism to pose a question
in CP(N − 1) model which seemingly escaped theorists’ attention so far.

The issue I want to address is the tension of the configuration with a
k-kink and k-antikink, k-kink tension for short. In broken supersymmetric
CP(N−1) kinks are confined, much in the same way as quarks in QCD. I will
show that the sine formula for the k-kink tension emerges in a 2D CP(N−1)
model. As usual with toy models, results obtained in toy models, strictly
speaking, prove nothing with regards to the real thing. However, with luck,
they can provide insights which might be helpful in addressing the original
theory. Moreover, although on the one hand toy models are poorer than the
original theory (e.g. in the case at hand it is two-dimensional), on the other
hand, they may contain free parameters which allow us to fine-tune them so
that a variety of dynamical regimes becomes accessible. In the CP(N − 1)
model we will deal with, several distinct regimes can be realized; one of
them is somewhat similar to that of QCD. The interplay between various
regimes, including the QCD-like regime, is quite fascinating. Finally, let me
mention that CP(N−1) models have a value of their own, unrelated to QCD
parallels. To the best of my knowledge, the aspect of the CP(N − 1) models
I will consider here has never been addressed previously.

10.1. CP(N − 1) model: nonlinear formulation

I start from a brief introduction to 2D supersymmetric CP(N−1) models,
with emphasis on features that will be exploited in this work.

For any Kähler target space endowed with the metric Gj̄ i the Lagrangian
of the N = 2 model is

L0 = Gj̄ i ∂
µφ̄ j̄ ∂µφ

i +
i

2
Gj̄ i Ψ

†j̄
↔
6D Ψ i +Rj̄ikl̄ Ψ

†j̄
L Ψ

i
LΨ

k
RΨ

†l̄
R , (10.1)

where Dµ is the covariant derivative,

Dµ Ψ
i = ∂µ Ψ

i + ∂µφ
k Γ i

kl Ψ
l , (10.2)
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Γ ’s stand for the Christoffel symbols, Rj̄ikl̄ is the curvature tensor, while Ψ
denotes a two-component spinor,

Ψ =

(

ΨR

ΨL

)

, (10.3)

so that the kinetic term of the fermions can be identically rewritten as

i

2
Gij̄ Ψ

†j̄
↔
6D Ψ i =

i

2
Gij̄

{

Ψ †j̄
L

↔
6DR Ψ i

L + Ψ †j̄
R

↔
6DL Ψ

i
R

}

. (10.4)

The right and left derivatives ∂R,L are

∂R = ∂0 − ∂1 , ∂L = ∂0 + ∂1 . (10.5)

The metric is obtained from the Kähler potential by differentiation,

Gij̄ =
∂

∂φi

∂

∂φ† j̄
K(φ, φ†) . (10.6)

The Kähler potential giving rise to the CP(N − 1) model with the metric in
the Fubini–Studi form is

KCP(N−1) =
2

g2
ln

(

1 +
N−1
∑

i=1

|φi|2
)

. (10.7)

Here g2 is the dimensionless coupling constant of the model. The CP(N−1)
metric can be written as

Gij̄ =
2

g2
δij̄

1
(

1 +
∑N−1

i=1 |φi|2
) +

(

φ†̄iφj
)

− term . (10.8)

In what follows it will be useful to use the fact [42] that in generic N = 2
compact homogeneous symmetric Kähler sigma models the Ricci tensor Rj̄ i

is proportional to the metric. In the case of the CP(N − 1) model

Rj̄ i = N
g2

2
Gij̄ . (10.9)

(In the general case the coefficient N is replaced by b, the first — and the
only — coefficient in the Gell-Mann–Low function.)

In addition, one can introduce a θ term which has the following form

Lθ =
iθ

2π

g2

2
Gij̄ ε

µν∂µφ
† j̄∂νφ

i . (10.10)
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If supersymmetry is unbroken, one can always rotate the θ term away using
the anomaly in the axial current; the θ angle is unobservable. For a detailed
review see [43].

As we will discuss shortly, this model has N discrete degenerate vacua.
The excitation spectrum of the model consists of kinks interpolating between
these vacua.

We will also need to introduce a small supersymmetry (SUSY) breaking.
To this end a SUSY-breaking mass term for fermions will be added to the
Lagrangian (10.1) and used in due time. The SUSY-breaking mass term can
be parametrized as follows:

Lm = −imGj̄ i Ψ
†j̄
L Ψ

i
R + h.c. = −im 2

Ng2

(

Rj̄ i Ψ
†j̄
L Ψ

i
R

)

+ h.c. , (10.11)

where m is a complex parameter,

m = µeiα , µ > 0 , (10.12)

and Ng2 is the ’t Hooft coupling. The combination µ/g2 is scale indepen-
dent, and so is RΨ̄Ψ . If µ 6= 0 the θ term becomes observable. In fact, it
is sufficient to keep only one of two parameters, θ 6= 0 or α 6= 0, since by a
chiral rotation of the Ψ fields one can always make m real at a price of an
appropriate shift of θ. For technical reasons it is slightly more convenient to
keep α at zero, while considering θ, the vacuum angle, as a free parameter.
From now on we will assume m to be real and positive.

10.2. Linear gauged formulation

Some physical aspects of the CP(N−1) model become more transparent
if one uses N constrained fields ni (this is the formulation discussed by
Witten [35]). In this language the Lagrangian is built from an N -component
complex field ni subject to constraint

n∗i n
i = 1 , (10.13)

(see e.g. [41]), plus an N -component Dirac-Fermi field ψi subject to the
constraint

n∗i ψ
i = 0 . (10.14)

The Lagrangian has the form

L =
2

g2

[

(∂µ − iAµ)n∗i (∂µ + iAµ)ni + ψ̄i(i 6∂− 6A)ψi − 1

2

(

σ2 + π2
)

− 1√
2
ψ̄ (σ + iπγ5)ψ − λ

(

n∗in
i − 1

)

+ χ̄n∗iψ
i + ψ̄in

iχ

]

, (10.15)
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where χ and χ̄ are Lagrange multiplier fields that enforce the constraint
(10.14), λ is the Lagrange multiplier enforcing (10.13) while Aµ, σ and π are
auxiliary fields which could be eliminated through equations of motion. At
the quantum level the above constraints will be gone.

The fields ni and ψi are N -plets. In the formulation (10.1) they are
represented by “basic” kinks interpolating between the adjacent vacua of the
model, the so-called 1-kinks see below. For this reason, from now on I will
refer to the ni quanta as to kinks. Loosely speaking, kinks ↔ QCD quarks.
The ni kink N -plet corresponds to the N -plet of fundamental quarks.

In this representation the θ term can be written as

Lθ =
θ

2π
εµν∂

µAν =
θ

2π
εµν∂

µ
(

n∗i ∂
νni
)

. (10.16)

Witten showed, by exploiting the 1/N expansion to the leading order,
that the kink mass is dynamically generated,

M2
kink = Λ2 ≡M2

0 exp

(

− 8π

Ng2

)

. (10.17)

Here M0 is the ultraviolet cut off and g2 is the bare coupling constant. The
combination Ng2 is nothing but the ’t Hooft constant that does not scale
with N . As a result, Mkink scales as N0 at large N . This result will be
confirmed below in a different way.

In the non-supersymmetric version of the CP(N−1) model Witten found
that kinks are subject to confinement, the confining potential grows linearly
with distance, with the tension suppressed by 1/N ,

σ ∼ M2
kink

N
. (10.18)

In other words, confinement considered by Witten becomes exceedingly weak
at large N . The kink–antikink system can be described by a non-relativistic
Schrödinger-like equation. This regime does not resemble QCD where the
string tension does not vanish at N → ∞. Since we are after emulating
QCD we will have to look for another regime. In QCD-like regime the string
tension should scale as N0.

According to Witten’s 1/N analysis which has been repeatedly men-
tioned above [35], in the supersymmetric version of the CP(N − 1) model,
the tension vanishes; there is no kink confinement. Thus, it is clear that
supersymmetry must be broken.
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10.3. What did people learn after Witten?

The development which is most relevant for what follows is the determi-
nation of the fermion condensate

〈

i
∑

j,k

Rj̄ k Ψ
†j̄
L Ψ

k
R

〉

6= 0 , j, k = 1, 2, ...,N − 1 , (10.19)

which is the order parameter exhibiting the spontaneous breaking of Z2N

symmetry of the CP(N−1) model down to Z2. The Z2N is a discrete remnant
of the anomalous axial U(1). The condensate (10.19) scales as N1. It can
be exactly calculated, see e.g. [41], and takes N distinct values, much in the
same way as the gluino condensate 〈Trλλ〉 in SU(N) SYM four-dimensional
theory [44]. Namely,

〈

i
∑

j,k

Rj̄ i Ψ
†j̄
L Ψ

k
R

〉

= −NΛ exp

(

2π i k

N
+ i

θ

N

)

, k = 0, 1, ...N − 1 ,

(10.20)
where Λ is the scale parameter, see (10.17). Equation (10.20) refers to
arbitrary θ. The dependence on θ/N , in conjunction with the physical 2π
periodicity in θ, prompts us that in the model at hand there are N vacua.
In fact, the fermion condensate (10.20) is the order parameter; it labels
N discrete supersymmetric vacua of the CP(N − 1) model, see Fig. 4.
Needless to say, in all vacua the energy density vanishes as a consequence of
supersymmetry.

1−kink

2−kink

3−kink

k−kink

Re <     >ψψ

ψψIm <     >

Fig. 4. The fermion condensate
〈

i Rj̄ i Ψ̄
j̄
L
Ψ i

R

〉

is the order parameter labeling dis-

tinct vacua in CP(N − 1) model (the example shown corresponds to N = 16).
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The second relevant development is the fact [45] (see also [35,46]) that the
above operator appears as an anomalous central charge in the superalgebra,

{Q†
R , QL} =

i

2π

∫

dx ∂x

(

Rij̄ Ψ
†j̄
R Ψ

i
L

)

,

{Q†
L , QR} = − i

2π

∫

dx ∂x

(

Rij̄ Ψ
†j̄
L Ψ

i
R

)

. (10.21)

This is an anomaly, since the central charge is not seen at the classical level.
Again, this anomaly is in one-to-one correspondence with a similar anomaly
of 4D SYM theory [47].

The presence of the central charge on the right-hand side of Eq. (10.21)
implies that there are BPS-saturated kinks interpolating between the dis-
tinct vacua, with the masses

Mfi kink =
1

2π

∣

∣

∣

〈

iRj̄ i Ψ
†j̄
L Ψ

i
R

〉

f
−
〈

iRj̄ i Ψ
†j̄
L Ψ

i
R

〉

i

∣

∣

∣
, (10.22)

where the subscripts i and f mark the initial and final vacua between which
the given kink interpolates. These kinks comprise the physical spectrum of
the model. In fact, as is clearly seen from Eqs. (10.22) and (10.20), the kink
mass does not depend on specific i and f, but, rather, on the difference f–i.

10.4. k-kinks

Taking into account Eq. (10.20) we conclude that the mass of the k-kink,
i.e. the kink interpolating between |vac〉i and |vac〉i+k, is

Mk = (2π)−1 2NΛ sin

(

πk

N

)

. (10.23)

Although the notion of the k-kink is self-evident, a somewhat more specific
definition will not hurt. We will assume that the initial and final vacua are
fixed. For, instance, let us choose as our initial vacuum that with k = 0
(the right-most point in Fig. 4 assuming θ = 0). If the final vacuum has
k = 1 (the nearest-neighbor vacuum) then we will refer to the corresponding
interpolation as to the 1-kink. If the final vacuum has k = −1, this is
1-antikink. If k = ±2 in the final vacuum (the next-to-nearest neighbor)
we deal with 2-kinks, and so on. The interpolation in the anti-clock-wise
direction will be referred to as kink; the anti-kink interpolates in the clock-
wise direction.

The 1-kink is basic, its mass is

M1 = (2π)−1 2NΛ sin
( π

N

)

→ Λ , (10.24)
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at N → ∞. The 1-kinks are in one-to-one correspondence with the fields ni

used in Witten’s work. The mass of the k-kink is smaller than k times the
mass of the 1-kink, by terms of the order of 1/N2,

Mk − kM1 = −Λ π2

6N2
k(k2 − 1) +O(N−4) . (10.25)

Thus, the k-kinks can be viewed as bound states of the 1-kinks. Note
that these are not the bound states discussed by Witten, as the latter are of
different nature (short-range vs long-range attractive force). We will return
to explaining this point later. In Witten’s approximation only 1-kinks (n, n∗

fields) could be seen.
It is instructive to discuss multiplicity of k-kinks, which will be helpful in

deciding to which representations the k-kinks belong. As we already know,
1-kinks have multiplicity N , they form an N -plet4. The multiplicities of
k-kinks for arbitrary k were analyzed in [26] (see also [48]). If the initial and
final vacua i, f are fixed the multiplicity of the k-kinks is [26]

νk =
N !

k!(N − k)!
. (10.26)

This is consistent with the statement that k-kinks are bound states of k
fields ni of fully antisymmetric type,

n[i1ni2 ... nik] .

Thus, if 1-kinks are analogs of fundamental quarks in QCD, the k-kinks
emulate k-index (N -ality k) antisymmetric representation.

In the supersymmetric CP(N − 1) model, if one considers a k-kink at
the point x and antikink at the point y the interaction between them is
short-range, and this pair does not produce a confined system. As was men-
tioned, if we want to have an analog of the confined quark–antiquark system,
we should depart from supersymmetric limit. For instance, Witten’s work
demonstrated that 1-kink–1-antikink confinement does take place in non-
supersymmetric CP(N−1) model in the large-N limit. Simple physics lying
behind this phenomenon will become transparent shortly. Anticipating the
result, I note that the phenomenon occurs because the vacuum degeneracy is
lifted [19]. To have a controllable theoretical framework we must guarantee
the split between the “former” vacua to be small in the scale of Λ. This is

4 This does not include the supersymmetry degeneracy. Each kink is a member, bosonic
or fermionic, of a short N = 2 supermultiplet, e.g. ni and ψi. Remember, that the
final and initial vacua are fixed. The above multiplicities count only1-kinks which
interpolate, say, between |vac〉0 and |vac〉1 or 2-kinks interpolating between |vac〉0
and |vac〉2, etc.
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easy to achieve provided the SUSY-breaking mass term (10.11) is chosen in
such a way that m/g2 ≪ Λ. In what follows we will limit ourselves to effects
of the leading non-trivial order in m. In the leading order, i.e. O(m0), the
result (10.23) for the kink masses stays intact. The kink–antikink tension,
which vanishes in the supersymmetric limit, is generated in the order O(m1).

10.5. Lifting of the vacuum degeneracy and the choice of vacua

At m 6= 0 the vacuum degeneracy is lifted. To order m1 the vacuum
energy density of the n-th vacuum becomes

En = 2Re

{

2m

Ng2

〈

iRj̄ i Ψ
†j̄
L Ψ

i
R

〉

n

}

= −4mΛ

g2
cos

(

θ

N
+

2πn

N

)

. (10.27)

To emulate YM theory in a relatively realistic manner we must make sure
that our toy model is (i) CP conserving, (ii) the string tension is a CP-even
quantity and, finally, (iii) the string tension scales asN0 in the large-N limit.
As has been already mentioned our toy model exhibits a variety of dynamical
regimes going beyond the above list. Of this spectrum of dynamical regimes
I want to choose the one which meets the requirements (i), (ii) and (iii).

The first requirement implies that θ = 0 (in general, π× integer). The
second requirement implies that for small θ 6= 0 corrections to the θ = 0
string tension are O(θ2), rather than O(θ). This requirement, in conjunction
with the third one, limits possible choices of the initial/final vacua.

Indeed, let us consider the kink interpolating between |vac〉ℓ and |vac〉ℓ′
with ℓ, ℓ′ = O(1). In this case, as it follows from Eq. (10.27), the energy
split

|Eℓ − Eℓ′ | ∼ 1/N.

We will see that the interkink tension is proportional to |Eℓ − Eℓ′ |. Thus,
this regime is unsuitable for modeling QCD. This regime was analyzed in
Ref. [35]. A feeble confinement leads in this case to a nonrelativistic formula
for 1-kink–1-antikink pair,

Mbound = 2M1 + cN−2/3 (mΛ)1/2 ,

where a constant c depends on the excitation number. I present this formula
here only for the sake of completeness.

The correct scaling of the tension, N0, is achieved for kinks interpolating
between the vacua with

n =
N

4
± ℓ , ℓ = O(1) . (10.28)
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We will refer to such kinks as symmetric, keeping in mind the symmetricity
of the configuration around n = N/4. In principle, one could consider
asymmetric kinks interpolating between n = (N/4)+ℓ+ℓ′ and n = (N/4)−
ℓ+ℓ′ too. In this case the tension, having the correct scaling law N0, violates
the requirement (ii).

For the symmetric choice (10.28)

E(N/4)+ℓ − E(N/4)−ℓ =
8mΛ

g2
sin

(

2πℓ

N

)

cos

(

θ

N

)

=
8mΛ

g2
sin

(

π k

N

)

cos

(

θ

N

)

, (10.29)

where k = 2ℓ = the number of constituents. For the asymmetric choice
cos θ/N on the right-hand side would be replaced by cos (2πℓ′ + θ)/N ; its
expansion in θ would contain a term linear in θ which would be inappropriate
for emulating QCD (condition (ii) is not met).

10.6. Genuine and metastable vacua

If n ∼ 1 and N → ∞, the spacing between metastable vacua adjacent
to the true one (n = 0) is of the order of 1/N as is clearly seen from the
expansion of cosine in Eq. (10.27) (with θ = 0) and the fact that g2 ∼ N−1

(the height of the barriers scales as N1). This is schematically summarized
in Fig. 5. The probability of the metastable vacua decay is proportional
to exp(−NΛ/m), a straightforward consequence of the false vacuum de-
cay theory [24, 25]. The decay probability vanishes exponentially at N →
∞, somewhat resembling conventional (non-SUSY) 4D Yang–Mills theory
[49, 50]. Thus, in this limit each metastable vacuum becomes stable, not
only the one corresponding to n = 0. The fact that the increment of the
vacuum energies scales as 1/N in this regime is responsible for the factor N
in the exponent.

Vacuum energy

k0−1−2 1 2

Fig. 5. The vacuum structure in SUSY-broken CP(N − 1) model at θ = 0.
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k0

Vacuum energy

Fig. 6. The vacuum structure in SUSY-broken CP(N − 1) model at n = N
4

+ ℓ

where ℓ = k
2
.

Of more interest to us is the regime (10.28). The pattern of E(N/4)+ℓ in
this regime is given by

E(N/4)+ℓ =
4mΛ

g2
sin

(

2πℓ

N

)

(10.30)

(at θ = 0) and schematically depicted in Fig. 6. In this case the point ℓ = 0
does not correspond to the absolutely stable minimum; rather, the ℓ = 0
state is metastable, as well as all neighboring minima lying in the vicinity
of ℓ = 0, say, ℓ = ±1, ±2, etc. The increment of the vacuum energy density
in the subsequent metastable minima is O(N0mΛ). The suppression factor
in the probability of the metastable vacuum decays becomes

N−1 exp(−Λ/m) .

The large-N suppression shows up only in the pre-exponent. Not to break
the applicability of the approximation used, we need to keep the SUSY-
breaking parameter m small, i.e. Λ/m≫ 1. This ensures that the suppress-
ing exponent is operative, and the metastable vacua under consideration
are in fact stable. Since m is in our hands, this is always doable. It is of
paramount importance that the increment of the vacuum energy in the sub-
sequent minima is O(N0) in this regime. This translates in the statement
σ = O(N0).

10.7. k-kink tension

Now we are fully prepared to consider k-kink–k-antikink confinement in a
QCD-like regime. Let us consider a k-kink interpolating between |vac〉(N/4)−ℓ

and |vac〉(N/4)+ℓ, with k = 2ℓ on the right, with the corresponding antikink
on the left. Schematically this configuration is depicted in Fig. 7.



3832 M. Shifman

4+ −−

L

kinkantikink

N
4

N
4

N

Fig. 7. A k-kink separated from k-antikink by distance L.

The vacuum energy density in the interval between the kinks is higher
than that outside,

∆E =
8mΛ

g2
sin

(

π k

N

)

. (10.31)

At large L the overall energy of the configuration depicted in Fig. 7 behaves
as

∆E L+ 2Mk . (10.32)

From this we conclude that the tension of the string confining the k-kinks is

σk =
8mΛ

g2
sin

(

π k

N

)

. (10.33)

At large N this tension is N independent (remember, g−2 ∼ N), just like
it is N independent in QCD. One should remember that the combination
m/g2 is renormalization-group invariant.

Using Eq. (10.23) one can rewrite the same expression as

σk = (8πm/Ng2)Mk . (10.34)

Since m is arbitrarily small, confinement is weak (but not suppressed by
1/N), and the k-kinks at the string ends can be viewed as static sources,
analogs of the probe QCD quarks in the k-index antisymmetric representa-
tion of color. It is remarkable that the k-kink tension follows the exact sine
formula!

I hasten to add a few words about a limitation of this parallel, the
presence of two dimensionful parameters, m and Λ, as opposed to the only
parameter Λ of YM theory. To keep valid approximations vital for our
consideration, one must insist that m ≪ Λ. As supersymmetry breaking
increases, and m approaches Λ, theoretical control erodes, and is finally lost
at m ∼ Λ.

One can ask what happens if one interchanges the position of the k-kinks
in Fig. 7. This would amount to the substitution ℓ → −ℓ, resulting — for-
mally — in the sign change of the interkink tension (10.33)! In other words,
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confinement seems to give place to anticonfinement (linear repulsion). This
is the consequence of the fact that the vacua we work with are metastable
rather than stable. The latter circumstance was imposed on us: in order
to emulate N -independent string tension of QCD we had no other choice in
the toy model at hand. Two kinks repelling each other in fact describe the
process of relaxation of an excited string into a less excited state through
production of a pair of lumps. I should remind that these are the “wrong”
excited strings, with no analogs in QCD, see the end of Sect. 9.

10.8. Lessons for QCD?

In two-dimensional theory k-kinks are confined much in the same way as
k-quarks in QCD. If we choose a QCD-like regime, with the tension O(N0),
the “k-string” spectrum follows the sign formula. This statement is valid
if and only if m ≪ Λ, i.e. supersymmetry breaking is small. (One cannot
put m = 0, however, since in the supersymmetric limit kinks in CP(N − 1)
model are not confined at all.)

This may be the most important lesson. Other analyses which produced
the sign formula in four dimensions either rely on supersymmetry directly or
also assume that its breaking is somehow suppressed. One may conjecture
that the sine law for the k-string tension takes place in large-N QCD approx-
imately. A hidden small numerical parameter justifying the approximation
may emerge due to a “residual supersymmetry” of QCD. This is not a slip
of the tongue. One can argue [51] that pure gluodynamics has something
like rudimentary supersymmetry! Elaboration of the nature and accuracy
of this approximation remains an open task.

I am grateful to Adi Armoni, A. Gorsky, Igor Klebanov and Alyosha
Yung for valuable comments on the manuscript. Special thanks go to Philippe
de Forcrand for providing me with data on which Sect. 8 is based. This work
was supported in part by DOE grant DE-FG02-94ER408.
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