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We study the recently introduced numerical approach applied to su-
persymmetric Yang–Mills quantum mechanics (SYMQM). We present a
general strategy to solve two dimensional models for arbitrary gauge group
and give the details for SU(3) group.
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1. Introduction

Supersymmetric Yang–Mills quantum mechanics are very interesting
models since they emerge in different areas of physics. The general, not
necessarily gauge, supersymmetric quantum mechanics have been studied
first as a laboratory of supersymmetry [1] where in particular the exact
solution for D = 2, SU(2) case was given. By definition SYMQM are
N = 1 super Yang–Mills field quantum theories reduced from D = d+ 1 to
D = 0+1 dimensions. Supersymmetry requires the space-time dimension to
be D = 2, 4, 6, 10 with N = 2, 4, 8, 16 supercharges in the resulting quantum
mechanics, respectively. The rotational symmetry and gauge invariance of
the original theory become now the internal Spin(d) and global SU(N) sym-
metry. The physical states become now the SU(N) singlets. We denote the
spatial components of gauge field Ai

a(t) by xi
a and their conjugate momenta

by pi
a, [xi

a, p
j
b] = δijδab. The Hamiltonian is then [1]

H =
1

2
pi

ap
i
a +

1

4
g2(fabcx

i
bx

j
c)

2 +HF , (1)
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where HF = − i
2gfabcϑ

α
ax

i
bΓ

i
αβϑ

β
c for D = 2, 10 and ϑ are real spinors obeying

{ϑα
a , ϑ

β
b } = δαβδab, α, β = 1, . . . ,N or HF = igfabcϑ̄

α
ax

i
bΓ

i
αβϑ

β
c for D = 4, 6

and ϑ are complex spinors obeying {ϑ̄α
a , ϑ

β
b } = δαβδab for α, β = 1, . . . , N2 .

The Γ i
αβ are matrix representation of an SO(d) Clifford algebra {Γ i, Γ j} =

2δij .
The growing interest in these models is due to the BFSS (Banks, Fis-

chler, Shenker, Susskind) conjecture [4] where the N → ∞ limit of Eq. (1)
is argued to describe M -theory in the infinite momentum frame. This stim-
ulated further work on asymptotic form of the ground state of D = 9 + 1,
SU(2), SYMQM [8] and the analysis of Witten index of (1). The index does
not vanish only in D = 10 where it is equal to 1 [9–12]. Despite the rele-
vance to M -theory SYMQM have been studied earlier in different context.
The bosonic part of (1) was discovered in pure Yang–Mills theory in the
zero volume limit [2]. Later on it appeared as a regularization describing
the quantum supermembrane [3]. The detailed study of the Hamiltonian (1)
shows that in bosonic sector the potential is confining and there is no contin-
uous spectrum [6]. If, however, the supersymmetry is turned on then there
are bound states in fermion rich sectors as well as in scattering ones [7].

The only exact solutions of (1) existing in the literature are for D = 1+1,
SU(2) [1] and its generalization for arbitrary SU(N) [5]. Therefore, any
numerical approach is of interest.

The plan of this paper is the following. In Section 2 we briefly outline the
method used to study the models just described and quote existing results
in D = 1 + 1, 3 + 1, 9 + 1 for SU(2) group. In Section 3 and 4 we study
general properties in D = 1 + 1 for arbitrary SU(N) and present the results
in D = 1 + 1, SU(3).

2. Cutoff method

The cutoff method [13] consists of numerical analysis of the Hamiltonian
in the occupation number representation. First, we introduce the bosonic

and fermionic creation and annihilation operators a†
i
a, a

i
a, f

†α
a , fα

a i.e.

ai
a =

1√
2
(xi

a + ipi
a), [ai

a, a
†j

b] = δijδab, {fα
a , f

†β
b } = δαβδab

1.

Next, we truncate the Hilbert space to the maximal number of quanta

nB =
∑

i,b

a†
i

ba
i
b , nB ≤ nBmax ,

1 There are several choices of fermionic fα

a , f†α

a
operators. Since we do not make any

explicit calculations here we refer the reader to [13] for details.
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compute matrix elements of H and diagonalize the resulting finite matrix.
In this way one can analyze the spectrum dependence on a cutoff nBmax.
There is a dramatic difference between the behavior of the continuous and
discrete spectrum with cutoff. Namely

EnBmax

m = Em +O(e−nBmax) — discrete spectrum ,

EnBmax

m = O

(

1

nBmax

)

— continuous spectrum ,

where m is an index of the energy level m = 1, . . . , nBmax + 1. The limit
nBmax −→ ∞ is called the continuum limit. In the case of the discrete
spectrum the energy levels converge rapidly to the exact eigenvalues of the
Hamiltonian. This may not be surprising, however it is interesting to see
how fast is the convergence. For details the reader is referred to [14]. In the
continuous spectrum case things are different. The convergence is very slow
and all the eigenvalues vanish in the infinite cutoff limit. In the continuum
limit the spectrum is continuous and the only way to restore it from cut
Fock space is to put the following scaling [15]

m(nBmax) = const.
√
nBmax ⇐⇒ EnBmax

m(nBmax) → E . (2)

It was claimed in [15] that this scaling law should work independently of
the theory, whenever one can define scattering states asymptotically. The
argument for the above claim is based on the following fact. The eigenvalues
of the momentum operator in ordinary d = 1 quantum mechanics in cut Fock
space are zeros of Hermite polynomialsHnBmax

(x) the asymptotic behavior of
which is 1√

nBmax

[14,15]. Therefore, once the momentum operator is defined,

its spectrum cutoff dependence should be 1√
nBmax

for large nBmax.

The EnBmax

m values for fixed nBmax give the opportunity to calculate
regularized (nBmax dependent) Witten index. If the spectrum of the super-
symmetric Hamiltonian H is discrete then the index counts the difference
between bosonic n0

b and fermionic n0
f ground states i.e.

IW = Tr
[

(−1)F e−βH
]

=
∑

m

(−1)F (m)e−βEm = n0
b − n0

f ,

where F is a fermion number. This quantity is β independent. The cutoff
makes it β and nBmax dependent i.e.

Ireg
W (β, nBmax) =

nBmax+1
∑

m=1

(−1)F (m)e−βE
nBmax
m . (3)
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If the spectrum of the Hamiltonian H is continuous then the IW depends
on β and the difference n0

b − n0
f may be obtained by taking the β → ∞

limit. On the other hand, the β → 0 limit is easier to compute, therefore
one introduces the boundary term δIW using the following trick [9]

δIW = IW(∞) − IW(0) =

∞
∫

0

dβ
d

dβ
IW(β) .

2.1. D=1+1,3+1,9+1 SU(2) SYMQM

In D = 1 + 1 case the Hamiltonian H = 1
2papa + gxaGa, where Ga is

the SU(N) generator, is free in a gauge invariant sector. There are as many
fermion sectors as the Grassmann algebra allows i.e. 1 boson sector and
N2 − 1 fermionic sectors. Since the gauge group is SU(2) we will denote
them as | F = 0〉, | F = 1〉, | F = 2〉, | F = 3〉. We also have the particle–
hole symmetry which relates sectors | 0〉 ↔| 3〉 and | 1〉 ↔| 2〉 hence the
analysis of the first two sectors is sufficient. There is also supersymmetry
which relates sectors | 0〉 ↔| 1〉 and | 2〉 ↔| 3〉, therefore the whole infor-
mation about the spectrum is in fact in the first sector. Supersymmetry
does not communicate between sectors | 1〉 and | 2〉 which is exceptional
for SU(2). Since the particle–hole symmetry relates sectors with different
fermion number, it is evident that the regularized Witten index of this model
vanishes. It is, however, interesting to compute the restricted Witten index
which is defined in first two sectors only and the exact answer is 1

2 [16] which
was also confirmed numerically.

InD = 3+1 dimensions the Hamiltonian (1) is not free due to the quartic
potential term. There are 6 fermionic sectors. Supersymmetry generators
link sectors with fermion number differing by one, however, the supermul-
tiplets contain eigenstates with fermion number differing by one and two.
The particle–hole symmetry relates sectors with the same fermion number
hence the eigenstates from these sectors do not cancel under the sum (3).
The analysis of the index [10] shows that in this case

IW(∞) = IW(0) + δI =
1

4
− 1

4
= 0 , Witten index for D = 3 + 1, SU(2) .

On the contrary, the cutoff analysis gives the non zero value [17]. The index
converges towards 1

4 which is exactly the value of the IW(0) not IW(∞).
It seems that the cutoff method somehow does not contain the boundary
term δI.
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This model is the first non-trivial one where the scaling (2) was confirmed
i.e. the spectrum of a free particle p2/2 can be recovered provided Eq. (2)
is applied. Moreover, in fermion rich sectors both discrete and continuous
spectrum is present which precisely corresponds to conclusions of [7].

The analysis of the supermultiplets is even more interesting. Each eigen-
state is labeled by three quantum numbers: energy E, angular momentum l
and fermion number F . Therefore, each state can be represented by a dot in
R3 space. It can be proved [17] that supersymmetry links these dots in such
a way that the emerging geometrical object representing each supermultiplet
is a diamond. This picture very nicely catalogues all the supermultiplets and
it is independent of a gauge group.

InD = 9+1 dimensions case we only note the astonishing difficulties that
emerge [18]. Since we have the SO(9) symmetry the second order Casimir
operator is

J2 =
∑

i<k

Jik , Jik = x[i
ap

k]
a +

1

2
ψ†

aΣ
ikψa , Σik = − i

4
[Γ i, Γ k] .

Normally, we would have expect the SO(9) singlet to be the Fock vacuum
| 0〉. This is not the case here since one can prove that J2 | 0〉 = 78 | 0〉 [18].
The empty state is not invariant under rotations! This is a surprising fact
and it means that the SO(9) singlet is somewhere else. Where is it? The
model has 24 fermionic sectors and it was found that the singlet happens to
be just in the central F = 12 sector.

3. The general properties of the D = 1 + 1, SU(N) SYMQM

Since the eigenstates in SYMQM are the gauge singlets, therefore, it is
reasonable to ask about the convenient SU(N) invariant basis. It is evident
that states belonging to such basis have to be of the form

Tbc...de...a
†
ba

†
c . . . f

†
b f

†
c . . . | 0〉 , (4)

where Tbc...de... is some SU(N) invariant tensor made out of structure ten-
sors fabc, dabc, δab. We now proceed to choose linearly independent states
from (4).

3.1. Birdtracs

In order to deal with the variety of all possible tensor contractions we
introduce the diagrammatic approach (figure 1).

Each leg corresponds to one index and summing over any two indices is
simply gluing appropriate legs. Structure tensors fijk, dijk are represented
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=dfddfdf...
fijk

dijk =

=

Fig. 1. Diagrammatic notation of invariant tensors.

by vertices and δij is a line. Any tensor may now be represented by a graph.
Such diagrammatic approach has already been introduced long time ago by
Cvitanovič [19]. In, general one can construct loop tensor which by definition
is a tensor that diagrammatically looks like a loop, however, it can be proved
[20] that any such loop can be expressed in terms of forests i.e. products of
tree tensors ( figure 2). Therefore, we are left with tree tensors only. These,
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Fig. 2. An example of loop reduction for a square made out of dijk tensors.

however, can be easily expressed in terms of trace tensors Tr(TaTb . . .) where
Ta are SU(N) generators in fundamental representation. With the use of

the following matrices A† = a†bTb, F
† = f †bTb any gauge invariant state can

be obtained by acting with an appropriate linear combination of products
of trace operators

Tr(A†i1
F †A†i2F † . . . A†ikF †) ,

on Fock vacuum | 0〉. Due to the Grassmann algebra the number of F
matrices under the trace cannot be grater then N2 − 1 i.e. k ≤ N2 − 1.
Moreover, the Cayley–Hamilton theorem for A matrices gives ik ≤ N . The
remaining set of states is still linearly dependent and the further analysis
requires separate study of each SU(N). The basis states in F = 0 sector are
of the form

| i2, i3, . . . , iN 〉 = Tri2(A†2)Tri3(A†3) . . .TriN (A†N
) | 0〉 .

We see that there are as many states with given number of quanta nB as
there are natural solutions of the equation 2i2 + 3i3 + . . .+NiN = nB . For
U(N) this would be related to p(nB) — the partition number of nB. For
SU(N) this is a little less then p(nB), however, it still grows exponentially
with nB.
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In order to solve the model in bosonic sector one has to compute the
following scalar product

Ni2...iN
j2...jN

= 〈i2 . . . iN | j2 . . . jN 〉 ,
which in principle is a tedious, but not impossible, task.

Let us discuss, the “bilinear” basis which by definition is the following
restricted SU(N) basis

| 2n〉 = (A†A†)n | 0〉 , (A†A†) = a†ia
†
i (5)

which was introduced in [2] in D = 3 + 1 case. In this basis the non zero
Hamiltonian matrix elements are easy to derive. First we write the commu-
tation relations

[(AA), (A†A†)n] = 4n(A†A†)n−1(A†A)

+4n

(

n− 1 +
N2 − 1

2

)

(A†A†)n−1 , (6)

[(AA†), (A†A†)n] = 2n(A†A†)n . (7)

Using (6) we obtain norms for | 2n〉 i.e.

c22n : = 〈2n | 2n〉 = 4n

(

n− 1 +
N2 − 1

2

)

c2n−1 ,

c2n =

√

√

√

√

n
∏

k=1

4k

(

k − 1 +
N2 − 1

2

)

,

c0 = 1.

In the orthonormalized basis ˜| 2n〉 = 1
c2n

| 2n〉 the non vanishing matrix
elements of the Hamiltonian

H =
1

2
papa = −1

4

(

(A†A†) + (AA) − 2(A†A) − (N2 − 1)
)

,

are

˜〈2n |H ˜| 2n〉 = n+
N2 − 1

4
and

˜〈2n+ 2 |H ˜| 2n〉 = ˜〈2n |H ˜| 2n + 2〉 = −1

2

√

(n+ 1)(n +N2 − 1) .

Therefore, it is straightforward to proceed with the cutoff analysis (fig-
ure 3). We see that there is no quantitative difference between SU(2) and
e.g. SU(100) case. This is not what we have expected and it means that the
restricted basis (5) simplifies too much.
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Fig. 3. The cutoff dependence of spectrum for SU(2) and SU(100) in “bilinear”

basis.

4. D=1+1, SU(3) SYMQM

Here we present the calculations of Hamiltonian matrix elements in a
complete basis in bosonic sector. The basis vectors and the scalar products,
we are interested in, are

| i, j〉 = (A†A†)i(A†A†A†)j | 0〉, Ni j
i′ j′ = 〈i, j | i′, j′〉 ,

(A†A†A†) = dijka
†
ia

†
ja

†
k . (8)

The only non vanishing elements of Si j
i′ j′ are the ones obeying the constraint

2i + 3j = 2i′ + 3j′. Therefore, it is convenient to work with the following
symbol

W k
i j = 〈i, j | (AAA)2k(A†A†)3k | i, j〉 ,

which has the advantage of reproducing all non vanishing Ni j
i′ j′’s. It is

tedious but possible to obtain formulas and recurrence equations for W k
ij.

We shall omit the lengthy derivation and only give the results.
First we solve the recurrences for W k

00 and W k
i0. We have

W k
00 = 96k(2k − 1)(9k2 − 1)(9k2 − 4)W k−1

00 ,

W k
i0 = 4(3k + i)(3k + i+ 3)W k

i−1 0 ,

W 0
00 = 1 . (9)

Therefore, (9) gives an exact formula for W k
i0. The W k

0j term is computed
from the following recurrence

W k
0j = αjkW

k−1
0j + βjkW

k
0j−2 + γjkW

k+1
0j−4 ,

where

αjk = 48(2k + j)(2k + j − 1)(3k − 1)(3k − 2)(3k + 3j + 2)(3k + 3j + 1) ,

βjk = 72(2k + j)(2k + j − 1)j(j − 1)(9k2 + 9kj − 2) ,

γjk = 27(2k + j)(2k + j − 1)j(j − 1)(j − 2)(j − 3) .
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This recurrence stops on W k
0j given by (9). The general term W k

ij is now
computed from yet another recurrence

W k
ij = 4(i + 3k)(i+ 3k + 3j + 3)W k

i−1j + 3j(j − 1)W k+1
i−1j−2 ,

which stops on W k
0j and W k

i0. The whole norm matrix (8) can now be
computed. It shoud be noted that the N matrix elements were obtained
independently by computing the scalar products 〈i′, j′ | i, j〉 with use of
the program written in Mathematica [13]. In this way all the recurrences
presented here were confirmed up to nB = 12 i.e. for (i, j) such that 2i+3j ≤
12. This matrix is in fact the Gram matrix which indicates that we still
have to orthogonalize the basis. We will not do so, however. In order
to represent the Hamiltonian H in orthogonal basis we follow [21]. It is
sufficient to calculate the Gram matrix G and proceed with the following
similarity transformation

Hort = G− 1

2HG− 1

2 .

The results of the cutoff analysis are presented in figure 4.

20 40 60 80

1

2

3

4

5

6

Fig. 4. The cutoff dependence of spectrum in D = 1 + 1, SU(3), F = 0.

It is clear that the spectrum seems to be far more complicated than in
SU(2) case. The lines in figure 4 are divided into groups where they converge
together. This can be understood in the following way. In SU(3) we have
two Casimir operators TaTa and dabcTaTbTc where Ta’s are SU(3) generators.
In cut Fock space the second one does not commute with the Hamiltonian,
therefore the cutoff nB breaks the SU(3) symmetry. In nB → ∞ limit the
symmetry should be restored which corresponds to grouping of the lines in
figure 4.
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5. Summary

SYMQM models reveal variety of application in several areas of physics
(Yang–Mills theories, supersymmetry, strings) hence their detailed analysis
is of interest. Although they are rich in symmetries (SU(N), SO(d), su-
persymmetry) the exact solutions are missing in the literature forcing one
to apply numerical methods. The cutoff method presented here is working
surprisingly well, however to get any of results of the Sections 2, 3, 4 one had
to employ a lot of theoretical work which in some cases gave exact results
(e.g. the structure of supermultiplets). The analysis of D = 1 + 1 SYMQM
for arbitrary SU(N) is very encouraging and gives hope to proceed with the
N → ∞ limit.

I thank the organizers of the XLV Cracow School of Theoretical Physics
held in Zakopane for invitation and J. Wosiek for discussions. This work
was supported by the Polish State Committee for Scientific Research (KBN)
under grant no. PB 1P03B 02427 (2004–2007).
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