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The spectral structure of linearization around soliton in the φ4 and s-G
models is presented. Negative radiation pressure in φ4 model is discussed
and analytical calculation presented in the second order. The production
of topological defects forced by radiation coupled to the internal degree of
freedom of soliton is studied. The fractal boundary for this creation is also
described.
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1. Introduction

Topological defects (or topological solitons) are usually static localized
solutions of nonlinear partial differential equation which smoothly interpo-
late between two disconnected vacua. They arise usually in a context of
effective field theories [1, 2] (i.e. Ginzburg–Landau theory). They play im-
portant role in many branches of modern physics such as condensed matter
physics (vortices in liquid helium or superconductors), domain walls in cos-
mology [3] or ferromagnets, all kinds of topological defects in liquid crystals.
Some of the topological defects reveal many similarities to particles (kinks
in 1+1 d, 2+1 d vortices or ’t Hooft–Polyakov monopoles). They can in-
teract with each other or external fields [4] and radiation. They can also
be created or annihilated. Skyrme model had some successes in the theory
of hadrons. There is also a nice example of sine-Gordon equation and its
duality to quantum theory of certain particles (Thirring’s model). Some of
the topological defects, such as solitons in sine-Gordon model, are very well
understood thanks to the complete integrability of the equations. There
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exists Bäcklund’s transform which is a sort of nonlinear superposition role
for the solitons. Thanks to this transform we can construct an exact (!)
solution of the nonlinear partial equation with interacting solitons. This is
true only for very few equations. Although we can usually find the static
(or boosted) solutions quite easily or small perturbations around vacuum
(which can be dealt with using ordinary perturbation theory) the evolution
of more complicated systems can still give some surprising results. In non-
integrable equations each interaction between solitons results in radiation
and dissipation of the energy. We cannot separate these two sectors. In
this paper we will show how radiation (small perturbation around solitonic
solution) can effect the evolution of these highly nonlinear objects. Some of
the results presented in this paper can also be found in more details in [5]
and [6].

2. Perturbed soliton in φ4 and sine-Gordon models

Let us consider real scalar field in 1+1 d described by the equation:

φ̈ − φ′′ +
∂U(φ)

∂φ
= 0 . (1)

Depending on the potential U(φ) we have different models. In case when
U has at least two equal minima (also called vacua) the model possesses
solutions called topological defects. The most often studied models are sine-

Gordon: UsG = 1 − cos φ, and φ4: Uφ4(φ) = 1
2

(

φ2 − 1
)2

. Sine-Gordon pos-

sesses infinite number of vacua φv = 2kπ, where k is integer, and φ4 has only
2 minima φv = ±1. In both models one can easily find static solutions which
interpolate between two (neighboring in s-G case) vacua φs,sG = 4arctan ex

φs,φ4 = tanh x. These solutions are called also topological solitons or kinks.
The most significant difference between these two models is integrability of
sine-Gordon. Thanks to Bäcklund transform one can find an exact analytical
solution with any number of interacting solitons. This is impossible in case
of φ4 where the only known exact solutions (apart the trivial ones φ = ±1)
are static or Lorentz boosted kinks. Nevertheless in both cases the interac-
tion between soliton and radiation is not fully understood. Let us add some
small perturbation ξ(x, t) to the static kink solution [5, 7]. After plugging
φ = φs + ξ to the Eq. (1) we obtain:

ξ̈ − ξ′′ + V (x)ξ + N(ξ, x) ≡ ξ̈ + L̂ξ + N(ξ, x) = 0 , (2)

where

V (x) = U ′′(φs(x)) =

{

− 2
cosh2 x

for s-G

4 − 6
cosh2 x

for φ4 , (3)
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and N(ξ, x) is remaining nonlinear part of Taylor’s expansion (if Taylor’s
expansion exists, which is not true for example for compactons [8]). We sub-
stitute ξ(t, x) = eiωktηk(x) and find the eigenvalues and the eigenfunctions

of the operator L̂ = − d2

dx2 + V (x). The spectra can be divided into three
groups

1. translational zero modes ηt = φ′
s: φs(x+δx) ∼ φs(x)+δxφ′

s(x), ωt = 0 ,

2. discrete oscillational modes (there is none for s-G and only one for φ4

but in general there can be any finite number)

ηd,φ4(x) =
sinhx

cosh2 x
, ωd =

√
3 ,

3. scattering modes:

ηq(x) =







eiqx(iq − tanh x)/
√

q2 + 1 for s-G
eiqx(3 tanh2 x−1−q2

−3iq tanh x)√
(q2+1)(q2+2)

for φ4 ,

where q2 = ω2 − m2, ω2 > m2 and msG = 1, mφ4 = 2 .

It is very significant that scattering modes in these models have no reflection
part. This is not a general feature. In fact it is quite rare, but spectra for
V (x) given in a form:

V (x) = −N(N + 1)

cosh2 x

are reflectionless for all integer N [9]. There are exactly N bounded modes.
One of them is a translational mode and the rest of them are oscillational. In
the following section we will include the second order to show how scattering
modes (i.e. radiation) interact with the translational mode forcing the kink
to accelerate. In the next section we will consider excitation of the discrete
mode by the radiation. As a result, for large amplitudes, the creation of new
defects will occur.

3. Radiation pressure

As we have mentioned in the previous section, the scattering modes both
in s-G and φ4, unlike in most models, have no reflection part. The wave
traveling from +∞ has exactly the same amplitude after transition through
the kink with only a phase shift. In other words, the kinks are transparent
but still they refract the radiation. In this (linear) order, that is when we
put N = 0, the kink cannot move when is exposed to the radiation, the
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energy and momentum conservation laws prohibit that. In models which
do not posses the reflectionless spectrum solitons are pushed by radiation
as ordinary particles which reflect the radiation. In order to examine what
happens to the kinks exposed to the radiation one must go beyond that order
and take into account the higher powers of incoming wave amplitude. We
will consider the φ4 case. Analogous calculation can be carried out for sine-
Gordon with very similar result. It would be interesting to use integrability
of the s-G model to describe the effect. When we include the first nonlinear
term our equation takes the form:

ξ̈ + L̂ξ + 6φsξ
2 = 0 . (4)

Let us look for solutions given by the power series:

ξ = Aξ(1) + A2ξ(2) + · · · ,

where Aξ(1)(x, t) = 1
2Aηq(x)eiωt+c.c. is a wave traveling from +∞ with

an amplitude A (ηq is normalized so that limx→±∞ |η2
q | = 1). In the order

O(A2) equation (4) has the form:

ξ̈(2) + L̂ξ(2) = −6φsξ
(1)2 = −3

2
φs

(

e2iωtη2
q + 2ηqη−q + e−2iωtη2

−q

)

. (5)

We can separate the equation by substituting ξ(2) = e2iωtξ
(2)
+2 + ξ

(2)
0 +

e−2iωtξ
(2)
−2 . Let us take a closer look at the equation for ξ

(2)
0 :

ξ̈
(2)
0 + L̂ξ

(2)
0 = −3φsηqη−q . (6)

When we integrate both sides of the above equation with the translational
mode we will obtain second time derivative of the translational mode on the
l.h.s. of the equation which is from definition an acceleration of the kink
(we also use that L̂ηt = 0):

〈

ξ̈
(2)
0

∣

∣

∣
ηt〉

〈ηt|ηt〉
= −a = −3

〈φsηqη−q| ηt〉
〈ηt|ηt〉

. (7)

As we mentioned before the scattering modes have no reflected part, that
results in vanishing the r.h.s. of the above equation. In other words there is
no acceleration of the kink in this order. Fortunately we can find the exact
solution of the time-independent equation:

L̂ξ
(2)
0 = −3φsηqη−q . (8)
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Namely,

ξ
(2)
0 = −9

2

tanh x

(q2 + 1) (q2 + 4) cosh2 x
− 3

4

x(q2 − 2)

(q2 + 4) cosh2 x
− 3

4
tanh x. (9)

We also need to solve the equation for ξ
(2)
±2

(

L̂ − 4ω2
)

ξ
(2)
±2 = −3

2
φsη

2
±q . (10)

We are in comfortable situation because we already know the solutions of
homogeneous part of the equation. We can construct the Green’s function
and integrate it with the r.h.s. of the equation. For large x we can express
the solution in a form convenient for asymptotic approximation:

ξ(2)(x → ∞) = − 3

2W



η−k(x)

∞
∫

−∞

dy ηk(y)η2
q (y)φs(y)

−η−k(x)

∞
∫

x

dy ηk(y)η2
q (y)φs(y)

+ ηk(x)

∞
∫

x

dy η−k(y)η2
q (y)φs(y)



 + c.c. , (11)

where k =
√

4ω2 − 4 is a wave vector for frequency 2ω and W = −2ik is
Wronskian. We can express the solution for x ≪ −1 in a similar fashion. The
above integrals are not difficult to calculate, and we can write the asymptotic
form of the solution:

ξ
(2)
±∞(x) = b(q,±k) cos(2ωt ∓ kx ± δ1) ± c cos(2ωt + 2qx ± δ2) , (12)

where

b(q, k) = −3

2
π

q2 + 4

q2 + 1

√

q2 + 4

k2 + 1

1

k sinh
(

2q+k
2 π

) , (13)

c =
1

8
. (14)

In this order energy and momentum are not conserved so we need to consider
the whole system kink+radiation using the asymptotic forms of the solution
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already obtained. Let us put the kink inside a large box. The energy flowing
from the r.h.s. of the kink into the box averaged over a period is equal to:

dEr

dt
=

1

2
A2qω + A4

(

−kωb2(q,+k) + 2qωc2
)

, (15)

and energy escaping from the box:

dEl

dt
= −1

2
B2qω + A4

(

−kωb2(q,−k) + 2qωc2
)

. (16)

In the same way we calculate the momentum balance:

dPr

dt
=

1

2
A2q2 +

1

2
A4

(

k2b2(q,+k) + 4q2c2
)

, (17)

dPl

dt
= −1

2
B2q2 − 1

2
A4

(

k2b2(q,−k) + 4q2c2
)

. (18)

If the kink is not moving at an initial time then Ėr+Ėl = 0 and Ṗr+Ṗl = −F ,
where F is a force acting on the kink. The above system of equations can
be solved easily and the resulting force is equal to:

F =
1

2
A4k

[

(k − 2q)b2(q,−k) − (k + 2q)b2(q, k)
]

. (19)

Since k − 2q is always positive and b(q,−k) is always larger than b(q, k)
(which for large q is negligible) the force is always positive. That means
the kink will accelerate towards the source of radiation. We have found the
negative radiation pressure! On the l.h.s. of the kink there is a surplus of
momentum which pushes the kink towards the radiation.

We have calculated the stationary case as if the radiation came from
infinity. We have neglected the boundary conditions which can distort this
picture a little, but in numerical simulations of the whole partial equation
the effect is clearly visible. The calculation presented above is consistent
with calculation the projection onto the translational mode in O(A4) order
(similar as in Eq. (7)).

For large amplitudes the higher orders can give different results. From
the amplitude above about A = 0.26 (the boundary is smeared) the kinks
start to behave normally and are pushed by radiation.

It is also worth mentioning that, in numerical simulations, the negative
pressure survives when we perturb the equation by adding the term ε(φ2−1)3

or ε(φ2 − 1)4 to the potential even for large values of ε ≈ 1. In the φ4

model there exists a solution almost periodic in time, called bion, oscillon
or pseudo-breather, which corresponds to bound state of kink and antikink.
Although its stability is not yet understood it is a quite long living state,
loosing its energy due to the radiation in very small amounts. We have
found numerically that such objects also experience the negative pressure.
The same is with breathers in s-G model.



Interaction Between Topological Defects and Radiation 3883

4. Fractals

In the previous section we have shown how soliton accelerates when is
exposed to radiation coming from one direction. We have calculated energy
and momentum balance far away from the kink. We have neglected the
processes which took place in the vicinity of the kink. Let us now consider
much more symmetric problem when kink is exposed to the radiation from
both sides.

As showed in [7], when the internal degree of freedom (oscillational mode)
is excited it radiates due to the nonlinear coupling to the scattering modes
(similar problem using different methods was investigated in [11] and [12]).
But if the excitation is large enough, a creation of two antikinks can occur
and a kink and antikink can be radiated to both sides leaving an antikink in
the middle. We can induce this process by exciting the oscillational mode
by radiation. It turns out that for large amplitudes of incoming waves we
can force the creation [6].

Let us now first take a look at the second order equation for perturba-
tion around the kink, Eq. (4), and substitute in the first order ξ(1)(x, t) =
1
2 (ηq(x) + η−q(x)) cos ωt (a wave coming from both sides).

We want to force the creation of kinks by exciting the internal degree of
the kink. Therefore, we take

ξ(x, t) = Aξ(1) + Ad(t)ηd(x) + η⊥(x, t) , (20)

where η⊥ is orthogonal to ηd. If we assume that both Ad and η⊥ are of order
O(A2) then the first contribution to Ad from η⊥ will be of order O(A3). We
will limit ourselves only to the second order. In order to isolate the time
evolution of the oscillational mode we simply project the whole equation
upon this mode. We obtain:

Äd + ω2
d + A2α(q) (1 + cos 2ωt) + β(q)AAd cos ωt + γA2

d = 0 , (21)

where

α(q) =
9π

64N2
(8q4 + 34q2 + 17) (1 − sech qπ) , (22)

β(q) = 3πq2 q4 + 2q2 − 8

8N sinh qπ
2

, (23)

γ =
9π

16
. (24)

Here N =
√

(q2 + 1)(q2 + 4) is the normalization.
The projected equation has some obvious limitations but it also carries

certain features of the whole system. We have neglected the coupling to the
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radiation η⊥ and backreaction onto the discrete mode, but we can clearly
see the interaction between the radiation A and oscillational mode Ad. We
think it is sufficient in order to give some qualitative predictions on how the
kink’s internal degree would behave.

On the other hand, we can find the numerical solution of the whole partial
differential equation (1) and by projection onto the oscillational mode we
can find its amplitude. Then we can compare the solution of the simplified
equation with the solution of the partial differential equation. For small
amplitudes there is quantitative agreement, but for larger amplitude only
qualitative similarity remains. Nevertheless both of these solutions possess
a very important feature. Suppose that we have excited the oscillational
mode so much that the creation of two defects had occurred. After radiating
kink and antikink to both sides only an antikink remains in the middle. The
projection onto the oscillational mode is equal to

Ad = 〈φ − φs|ηd〉 = 〈−2φs|ηd〉 = −π

2
. (25)

If during the numerical simulation Ad jumps from 0 to −π/2 it is a clear
evidence that the creation had occured. In figure 1 we present the example
for the creation process.

-2

-1.5

-1

-0.5

 0

 0.5

 0  100  200  300  400  500  600

A
d

t

Fig. 1. The excitation of the discrete mode for A = 0.5 and ω = 3.5. We can see
the creation of kink–antikink pairs for t ≈ 500, t ≈ 560 and t ≈ 590.

Figure 2 shows the minima of Ad calculated numerically using the full
partial differential equation for different amplitudes A and frequencies ω of
the incoming radiation. If the amplitude of radiation is small enough the
creation is not possible and Ad oscillates around 0 with some small amplitude
(smaller than π/2). The minima during the time evolution are represented
by different shades. The black points correspond to the creation. One can



Interaction Between Topological Defects and Radiation 3885

see there is no real threshold for the creation. The boundary is presumably
fractal. In figure 3 we present the dependence log of the number of boxes
containing boundary upon the −log of the size of boxes. The slope of the
fitted straight line should give so called box dimension. It is 1.69 ± 0.02
which is more than 1. This supports the hypothesis that the structure has
really fractal properties.

Fig. 2. Minima of Ad vs frequency ω and amplitude A of radiation coming from
L = 200. Dark spots Ad < −π

2
≈ −1.57 represent creation process.
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Fig. 3. Dependence log nb upon log 1/l . The slope of the fitted line is 1.69± 0.02.

There is a question if the same features can be reproduced using our sim-
plified equation (21). Similar calculations give the box dimension 1.56±0.01
which is not very far from the value obtained from the whole partial equa-
tion. Having in mind all the simplifications we had done, the result seems to
be quite good. This also proves that responsible for this fractal properties of
the system is coupling between scattering modes and the oscillational one.
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This is, of course, not an isolated example of the fractal structure in a
context of topological defects. One of the nicest such structures was dis-
covered and examined in [10]. In that paper it is argued that kink–antikink
collision can proceed according to two scenarios. Kinks can be scattered back
for (if the velocity is larger than 0.26), or annihilated (if velocity is smaller
than 0.18) by forming pseudobreather called also bion or oscillon. In the
region between 0.18 and 0.26 one can observe so called n-bounce windows,
where kinks are bouncing on each other n times and wondering whether they
want to annihilate or scatter back. Those windows create whole, very well
defined, hierarchy which possesses some scaling indicating that the structure
is fractal. The authors claim that responsible for that is coupling between
oscillational modes of the colliding kinks.

5. Conclusions

In the first section we have compared two the most known field theory
models in 1+1 d with respect to the spectral structure of the linearized
equation around soliton solutions. In the next section we have shown that
because of the reflectionless potential in the first linearized order the soliton
exposed to the radiation should remain at rest. The second order calcula-
tion gave surprising result that the kinks in these two models would start
accelerate towards the source of radiation. The calculations were confirmed
by numerical simulations.

In the last section we have presented how the internal degree of free-
dom in the φ4 model can be excited by external radiation and can lead
to the creation of new defects. We found another surprising result that
the boundary between solution with and without production of defects on
amplitude-frequency plane is fractal. We have also presented simplified the-
ory which gave similar results proving that the nonlinear coupling between
radiation and oscillational mode is responsible for that structure.

Work performed under auspices of ESF Programme “COSLAB”. I thank
H. Arodź for many interesting suggestions and hours of discussions.
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