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Our goal is to study the effects of the UV radiation from the first
stars, quasars and decays of the hypothetical Super Heavy Dark Matter
(SHDM) particles on the formation of primordial bound objects in the Uni-
verse. We trace the evolution of a spherically symmetric density perturba-
tion in the Lambda Cold Dark Matter (LCDM) and MOND models, solv-
ing the frequency-dependent radiative transfer equation, non-equilibrium
chemistry, and one-dimensional gas hydrodynamics. We concentrate on
the destruction and formation processes of the H2 molecule, which is the
main coolant in the primordial objects.

PACS numbers: 95.30.Lz, 95.30.Sf, 98.35.Mp, 98.80.Bp

1. Introduction

Formation of primordial objects such as young galaxies and globular
clusters in the early Universe is a fundamental problem in the modern cos-
mology. There was a rapid progress of observations in the last years. It gave
theoreticians invaluable possibility to compare their theories with the obser-
vations. One can say that a consistent scenario of the structure formation
is established. However, there are still many unanswered questions, espe-
cially regarding the influence of the background radiation field from the first
objects on the star formation rate. In our work we address this problem.
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The formation of the first objects is a direct consequence of the growth
of the primordial density fluctuations. At the beginning, there are linear
density perturbations which expand with the overall Hubble flow. Subse-
quently, these perturbations can grow and form primordial clouds. Clouds
with enough density contrast decouple from this flow and start to collapse.
The kinetic energy of the infalling gas is dissipated through shocks and the
cloud becomes pressure supported. The further evolution of the cloud is de-
termined by its ability to cool sufficiently fast. Clouds which could not cool
fast enough will stay in a pressure-supported stage and will not form any
stars. The existence of the efficient cooling mechanism is necessary to ensure
the collapse of the cloud, its subsequent fragmentation and star formation.

In our work we are interested in the first generation of stars, called pop-
ulation III stars, which are still forming in the low mass clouds when first
luminous objects already exist. These objects are made from the primor-
dial gas so they are metal-free. It is simply because the first stars did not
have much time to produce any metals. These objects could be irradiated
by the UV and X-rays radiation produced by the first stars, quasars and
hypothetical SHDM particles decays [1, 2].

In the absence of metals, the most important cooling mechanism for low-
mass primordial clouds is so called ‘H2 cooling’, i.e. cooling by radiation of
excited rotational and vibrational states of H2 molecule. We can look at
this mechanism as the collisional excitation of the H2 molecule, subsequent
spontaneous de-excitation and photon emission. Emitted photons can fur-
ther escape from the cloud and take away kinetic energy of the collapsing
cloud. The presence of initial mass fraction of the molecular hydrogen H2

as small as 10−6 is enough to trigger the final collapse of low mass clouds.
Molecular hydrogen is fragile and can easily be photodissociated by pho-

tons with energies of 11.26–13.6 eV (Lyman and Werner bands) [3] through
the following reaction:

H2 + hν → H∗

2 → 2H .

Destruction of the H2 molecules would stop the collapse of the low mass
clouds and would decrease star formation rate.

In primordial gas cloud, H2 molecules can form mainly through the cou-
pled reactions

e− + H → H− + hν ,

H− + H → H2 + e− ,

in which the electrons act only as a catalyst. X-rays radiation can increase
production of H2 by enhancement of free electron fraction.
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From the above we see that the UV and X-ray radiation background
alters the growth rate of cosmic structures. It regulates star formation rate
so it has important implications for the re-ionization history of the Universe
[4]. In addition, photoionization by UV photons can be regarded as the
process which leads to the inhibition of the low mass galaxies formation, so
it could explain the so called ‘low-mass galaxies overproduction problem’ in
the hierarchical bottom-up theory of galaxy formation. It is therefore crucial
to determine quantitatively the consequences of radiation feedback on the
formation of early generation objects.

Feedback of the UV background to the collapse of the spherically sym-
metric primordial gas cloud in CDM model was studied by many authors
[5–9]. However, their calculations were simplified. They have been using
self-shielding function [10] instead of solving the full transfer equation. Our
approach includes solving the frequency-dependent radiative transfer equa-
tion in the ‘exact’ way. We are trying to follow the evolution of the collapsing
cloud in the LCDM and MOND models.

2. Basic equations

In Cold Dark Matter models and in case of spherical symmetry, the
collapse may be described by the following equations:

dM

dr
= 4πr2̺, (1)

dr

dt
= v, (2)

dv

dt
= −4πr2 dp

dM
− GM(r)

r2
, (3)

du

dt
=

p

̺2

d̺

dt
+

Λ

̺
, (4)

where r is the radius of a sphere of mass M , u is the internal energy per unit
mass, p is pressure and ̺ is mass density. Here, Eq. (1) is the continuity
equation, (2) and (3) give acceleration and (4) accounts for energy conser-
vation. The last term in Eq. (4) describes gas cooling/heating, where Λ is
energy absorption (emission) rate per unit volume.

Λ consists of two parts, that is, the chemical cooling rate Λchem, and the
radiative cooling rate Λrad:

Λ (r) = Λchem (r) + Λrad (r) . (5)

The chemical cooling rate, Λchem, can be written as

Λchem = ̺
∂ǫchem

∂t
(6)
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where ǫchem is the chemical binding energy per unit mass. The radiative
cooling rate Λrad (r) is obtained by solving the radiative transfer equation.

We use the equation of state of perfect gas

p = (γ − 1)̺u, (7)

where γ = 5/3, as the primordial baryonic matter after recombination is
assumed to be composed mainly of monoatomic hydrogen and helium, with
the fraction of molecular hydrogen H2 always less than 10−3.

In the case of modified gravity [11], equation (3) changes:

dv

dt
= −4πr2 dp

dM
− gH − a0f

(

GM(r)

a0r2
− gH

a0

)

, (8)

where f(x) is some function, asymptotically equal to x for x ≫ a0 and to√
a0x for x ≪ a0, while gH may be expressed as

gH =
1

2
H0

2
[

(z + 1)3Ωb + 2
(

(z + 1)4Ωr −ΩΛ

)]

r . (9)

Here, H0 is the current value of the Hubble parameter, Ωb, Ωr and ΩΛ are
the current fractions of baryons, radiation and dark energy in terms of the
critical density of the Universe, and z is the redshift. We have made similar
assumption like in [12] and we apply MOND to net acceleration over Hubble
flow only.

3. Radiative transfer equation in spherical symmetry

The time-independent, non-relativistic equation for radiation transport
in spherical geometry can be written in the form:

µ
∂Iν

∂r
+

1 − µ2

r

∂Iν

∂µ
= ̺ {ην (r, µ) − χν (r) Iν} , (10)

where Iν = Iν (r, µ) is the intensity of radiation of frequency ν, at radius r
and in the direction µ = cos θ, where θ is the angle between the outward
normal and photon direction. The functions ην (r, µ) and χν (r) are the total
emissivity and opacity at frequency ν, which can be expressed as:

ην (r, p) = ηt
ν (r) + ηs

ν (r, p) , (11)

χν (r) = κν (r) + σν (r) . (12)

Here ηt
ν , ηs

ν , κν and σν are thermal emissivity, scattering emissivity, true
absorption coefficient and scattering coefficient at frequency ν, respectively.
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Following Hummer and Rybicki [13], we introduce a more convenient
system of coordinates (r, p) rather than (r, µ) defined by the transformation
formula

(r, µ) →
(

r, p = r
√

1 − µ2

)

for − 1 ≤ µ ≤ 1. (13)

For a given radius r the ‘impact’ parameter p can vary between 0 and r.
Because the parameter p cannot distinguish between µ > 0 and µ < 0, the
radiation intensity Iν have to be separated into outward I+

ν and inward I−ν
directed intensity:

I+
ν = Iν (r, p) µ ≥ 0 , (14)

I−ν = Iν (r, p) µ < 0 . (15)

In the new system of coordinates, Eq. (10) can be written as two separate
equations,

µ
∂I+

ν

∂r
= −̺χν

{

I+
ν − Sν (r, p)

}

, (16)

µ
∂I−ν
∂r

= ̺χν

{

I−ν − Sν (r, p)
}

, (17)

where µ =
√

1 − p2

r2 ≥ 0 and Sν (r, p) = ην (r, p) /χν (r) is the source func-

tion.
Let us introduce new functions [14]:

jν (r, p) = 1
2

(

I+
ν (r, p) + I−ν (r, p)

)

, (18)

hν (r, p) = 1
2

(

I+
ν (r, p) − I−ν (r, p)

)

. (19)

Eqs. (16) and (17) obtain then the form

µ
∂jν (r, p)

∂r
= −̺χνhν (r, p) , (20)

µ
∂hν (r, p)

∂r
= −̺χν {jν (r, p) − Sν (r, p)} . (21)

To solve these equations we need also a boundary condition. We consider
a spherical envelope with an inner boundary at radius r = rmin and an outer
boundary r = rmax. The cloud is immersed in an external time dependent,
isotropic radiation field. We obtain the following boundary condition

hν (rmin, p) = αν (p, t) 0 ≤ p ≤ rmin ,

hν (p, p) = 0 rmin ≤ p ≤ rmax ,

jν (rmax, p) − hν (rmax, p) = βν (p, t) 0 < p < rmax , (22)
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where αν and βν describe the changes of the radiation at frequency ν im-
pinging upon the inner and the outer boundary with the time t.

By the standard procedure one obtains from Eq. (10) the zeroth and the
first moment equations [15]

∂ (fν (r)Jν (r))

∂r
+

3fν (r) − 1

r
Jν (r) + ̺χνHν (r) = 0 , (23)

∂Hν (r)

∂r
+

2Hν (r)

r
+ ̺κνJν (r) − ̺ηt

ν = 0 , (24)

where fν (r) = Kν (r) /Jν (r) is the Eddington factor. Jν , Hν , Kν are the
zeroth, first and second moment of the radiation field at frequency ν:

Jν (r) =

1
∫

0

jνdµ , (25)

Hν (r) =

1
∫

0

hνµdµ , (26)

Kν (r) =

1
∫

0

jνµ
2dµ . (27)

We can cast Eq. (23) into a more convenient form, by introducing a
sphericality factor qν, defined in the following way:

qν (r) = exp





r
∫

rc

(

3 − 1

fν (r′)

)

dr′

r′



 , (28)

where rc is the core radius, that is, the inner boundary of the medium. Using
this factor and making some simplification we can rewrite Eqs. (23) and (24)
as

∂ (fν (r) qν (r)Jν (r))

∂r
= −ρχνqν (r)Hν (r) , (29)

∂
(

Hν (r) r2
)

∂r
= r2ρ

(

ηt
ν − κνJν (r)

)

. (30)

The corresponding boundary conditions for the moment equations (29)
and (30) can be written as follows [16]:

Hν (rmin) =

1
∫

0

ανµdµ , (31)
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Jν (rmax) =

1
∫

0

βνdµ +

1
∫

0

hν (rmax, p) dµ . (32)

We see that these boundary conditions can be determined only after
Eqs. (20) and (21) have been solved for jν and hν .

In the following sections we shall refer to Eqs. (20) and (21) with the
boundary conditions (22) as system I equations. The moment equations (29)
and (30) with the boundary condition (31), (32) will henceforth be referred
to as system II equations.

Solution of the radiative energy transfer equations gives us information
about the luminosity function L (r):

L (r) = 16π2r2H (r) , (33)

where

H (r) =

∞
∫

0

Hν (r) dν. (34)

With the given luminosity we can calculate radiative part of cooling
function Λrad:

Λrad (r) = − 1

4πr2

∂L (r)

∂r
. (35)

It can be used further in the hydrodynamical equations.

4. Chemical reactions and thermal effects

In our calculations, we include all the relevant thermal and chemical pro-
cesses in the primordial gas. We take into account nine species: H, H−, H+,
He, He+, He++, H2, H+

2 and e−. Their abundance varies with time due to
chemical reactions, ionization and dissociation photoprocesses. The chemi-
cal reactions include such processes as ionization of hydrogen and helium by
electrons, recombination of ions with electrons, formation of negative hydro-
gen ions, formation of H2 molecules, etc. A full list of the relevant chemical
reactions and appropriate formulas are given in [17].

The time evolution of the number density of component ni is described
by the kinetic equation:

dni

dt
=

9
∑

l=1

9
∑

m=1

almiklmnlnm +

9
∑

j=1

bjiκjnj . (36)

The first component on the right-hand side describes the chemical reactions,
and the other one accounts for photoionization and photodissociation pro-
cesses. Coefficients klm are reaction rates, quantities κn are photoionization
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or photodissociation rates, and almi and bji are numbers equal to 0, ±1 or
±2 depending on the reaction. All reaction rates, as well as photoionization
and photodissociation rates are given in [17].

The cooling (or heating) function Λ includes effects of collisional ion-
ization of H, He and He+, recombination to H, He and He+, collisional
excitation of H and He+, Bremsstrahlung, Compton cooling and cooling by
de-excitation of H2 molecules. The heating/cooling rates are given in [17].

5. Numerical strategy and initial conditions

In the simulations we used the code described in [17], based on those
presented in [18] and [19]. This is a standard, one-dimensional, second-
order accurate, Lagrangian finite-difference scheme, slightly modified to our
purposes. Our code supports flat and non-flat CDM and LCDM models as
well as Milgrom’s Modified Newtonian Dynamics. In the latter case it was
necessary to do significant changes in the initial conditions. We start our
calculations at the end of the radiation-dominated era instead of z = 500.
For Ωb = ΩM = 0.02/h2, zeq = 485 as given by the formula provided by [20],

zeq = 2.50 × 104Ω0h
2Θ

−4
2.7 , where Θ2.7 = Tγ/2.7 K, assuming h = 0.72 and

Tγ = 2.7277 K. We assume that in MOND, like in the standard cosmology,
initial overdensities may grow only in the matter-dominated era. In both
cases we use our own code to calculate the initial chemical composition and
initial gas temperature. Initial overdensities may be calculated from the
matter power spectrum which may be obtained e.g. using the CMBFAST

program [21].
We apply the initial density profiles in the form of a single spherical

Fourier mode, also used in [19]

̺b(r) = Ωb̺c

(

1 + δ
sin kr

kr

)

, (37)

where ̺c is the critical density of the Universe, ̺c = 3H2/8πG, with H
being the value of the Hubble parameter at the initial time.

For this profile, we can distinguish two radius values, R0 and Rz, which
correspond to the first zero and the first minimum of the function sin(kr)/kr,
respectively. Inside the sphere of radius R0 = π/k which contains mass M0,
the local density contrast is positive. The mass M0 and the radius R0 will be
referred to as the cloud mass and the cloud radius, respectively. The local
density contrast is negative for Rz > r > R0, with average density contrast
vanishing for the sphere of radius Rz = 4.49341/k and mass Mz. The shell
of radius Rz will expand together with the Hubble flow, not undergoing any
additional deceleration. This is why this profile is very convenient in numer-
ical simulations. It eliminates the numerical edge effects and the mentioned
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shell simply follows the Hubble expansion of the Universe. Thus, it can be
regarded as the perturbation boundary, with mass Mz referred to as the
bound mass.

It is worth to note that for radii not greater than 3/4R0 this profile is
very similar to the Gaussian profile

̺i(r) = Ωi̺c

[

1 + δi exp

(−r2

2R2
f

)]

(38)

with Rf = 1/2R0.
As the initial velocity, we use the Hubble velocity:

v(r) = Hr . (39)

Our numerical procedure to trace the dynamical evolution of the primor-
dial cloud under the UV background is the following:

• We solve the hydrodynamic equations of motion along with equations
for energy conservation, ionization, and dissociation of molecular and
atomic species. From the solution of these equations we can calculate
the properties and distribution of the absorbing components κν (r),
σν (r) and the thermal emissivity ηt

ν (r). It will give us the initial
value of the source function Sν .

• With the initial value of Sν, we solve the system I equations for the
geometrical factors fν and qν.

• We solve the system II equations for Jν and Hν .

• The source function is independent of the radiation field (Jν) only
when there is no light scattering. So, in general we have to update Sν

and solve the system I once more.

• Iterative procedure between system I and II is continued until conver-
gence.

• We calculate luminosity L (r) from Eq. (33) and then the cooling func-
tion.

• We update abundance of different species and number densities of each
atomic and molecular state.

• We repeat all of the above steps.

Detailed results of our simulations will be presented in a separate paper,
which is under preparation.
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