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Connection between the stability of quantum motion in random fields
and quark confinement in QCD is investigated. The analogy between the
fidelity and the Wilson loop is conjectured, and the fidelity decay rates for
different types of quark motion are expressed in terms of the parameters
which are commonly used in phenomenological and lattice QCD.

PACS numbers: 12.38.Aw, 05.45.Mt

The property of quark confinement in QCD is believed to be determined
by the presence of chaotic solutions in the spectrum of Yang—Mills equa-
tions [1,2]. In this case it is important to investigate connection between
the stability of quark motion in random fields and the property of quark
confinement. The stability of quantum motion is usually described in terms
of the fidelity, and the confining properties are analyzed using the Wilson
loop. The aim of this paper is to demonstrate the similarity between this two
quantities in QCD and therefore to reveal the analogy between the stability
of quark motion and the quark confinement.
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One usually uses Wilson’s area law for the Wilson loop as a litmus test
for quark confinement. Wilson loop is usually defined as the trace of an
averaged multiplicative integral over a closed contour C:

A~

U(C)=Pexp ig/ (1212 —I—AZ) dzt |, W(C)=Tr (f] (C)) , (1)
C

where 1212 is a determined field, fli is a random field and averaging is

performed over the ensemble of random fields fli The hat symbol de-
notes operators in the colour space. If the “area law” holds for the Wil-
son loop W (C), that is W (C) ~ exp (—0S;) , Sc being the minimal area
of the surface spanned over the contour C, quarks are said to be tied by
a string with the constant “tension” o [1,2]|. In the case of stochastic
vacuum in QCD one usually chooses the curvature tensor of gauge field

F w = 8ufll, — 81,/1” —1ig [/Al“, /Al,,] as a random variable, because for such

a field gauge invariance is explicitly preserved. As the stochastic vacuum
should be colour neutral, here the random field of curvature tensor F),, is
assumed to be statistically homogeneous with zero mean value and with
correlators proportional to identity in the colour space [1]:

~

Fun =10, 92Fuu (z1) Faﬁ (z2) = éuuaﬁ 1 —z2)
FO) = 10 Cump =PI, [d€F(O) = By ©)

For the stochastic vacuum the Wilson loop can be explicitly calculated
under conditions (2) for the contour sizes considerably exceeding the correla-
tion length l.o. For topologically trivial fields the integral over the contour
in (1) can be represented as the integral over the surface spanned over the
contour by applying the non-Abelian Stokes theorem [1-3]:

U(C)= Pexp | ig / F,dsm |, (3)
S(C)
where F),, = U (x,y) Fuv (y) U (y, z)is the shifted curvature tensor, U (x, y) =
Pexp (ig f; /Aluda:“).
By applying the van Kampen expansion [4] to the integral (3) one can
express it in terms of the accumulants of the random field F},,:

W (C) = exp (Z it Ak [S]> , (4)
k
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where

k
g
Ak [S] = E/daml/l"'/dJ#kaDl‘lVl"'“k”k’
S S

DH1V1~~~ﬂka =Tr (F,ull/l . "F,uka) —Tr (Full/l . "Fukyk) -

An efficient estimation for accumulants in (4) can be obtained for sufficiently
large contours after taking (2) into account:

k
AM (8]~ TFMEEDS (5)

The contribution of the second-order accumulant dominates in the Wil-
son loop if the condition AF[S] < A%[S], k > 2 holds, or, according to the

estimation (5):
gV P2l < 1. (6)

This condition is called the condition of the Gaussian-dominated vacuum in
QCD |[1,2]. Under the assumption of the Gaussian-dominated vacuum the
final expression for the Wilson loop (1) is:

W (C) ~ exp (—A2 [S]) ~ exp <—£12 F2S> . (7)

2 corr

Thus the Wilson area law for the Wilson loop holds, and the Gaussian-
dominated stochastic vacuum possesses confining properties. The string

tension o is also obtained from (7): o = %lgorrF 2,

Similar to confinement and Wilson loop in QCD, the stability of quan-
tum motion is commonly described in terms of fidelity decay. Fidelity is
usually defined as the scalar product of the state vectors of perturbed and
unperturbed systems [5,6]. For the purposes of semiclassical analysis of
quark motion without taking spin into account it is convenient to define the

fidelity as the scalar product of the state vectors in the colour space:

f=(hlR), 1H11feC |Al=1fl=1, (8)

where averaging is performed over random perturbations of the system. Ac-
cording to the standard treatment of state vectors in quantum theory it
is more natural to average the square of the absolute value of the fidelity
|f|?. However for the estimation of the fidelity decay rate such averaging
is possible. One can naturally expect the absolute value of the fidelity to
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decay, the decay rate being approximately equal for almost all “typical” im-
plementations of the random field. Exponential decay of the absolute value
of the fidelity for the fidelity values close to unity is described by the linear
term in the Taylor expansion: f(t) ~ 1 — at, a being the fidelity decay rate
and t being some parameter on which the fidelity depends. Other possible
mechanism for the decay of the averaged fidelity is due to the randomly
changing phase of the fidelity. However for the estimation of the fidelity
decay rate this mechanism can be neglected, as it is possible to show that
the fidelity decay in this case is described by the factor 1 — (at)?, and at is
small for the fidelity values close to unity. In this case the averaged fidelity
should be close enough to the absolute value of the fidelity for the “typical”
implementations of random variables |7, 8].

The first interesting case is the motion of coloured quark in the different
paths 1 and 72 in chaotic environment. The paths start from the point z
and join in the point y. In the point z the state vector is |fo). In the limit
of very massive quarks [1,2]| the evolution of the state vector in the colour
space is described by the multiplicative integral introduced in (1):

\mzﬁmpm/&WLmﬁUmww,

Y1
Lm=ﬁwpm/%w‘mﬁﬂWMM-
Y2

The operators U (1) and U (v2) are unitary because flu is hermitian. Taking
this into account, one can rewrite the expression for the fidelity:

f={folUn) Ut (v2)1fo) = {fol U (mA2) |fo) , 9)

where 179 is the path obtained by travelling from the point x to the point

A~

y in the path ~; and back to the point x in the path 7y, U (7172) =

Pexp ig f /Al“dx” . The averaging in (9) is performed over the ran-
Y172

dom field of the curvature tensor of the gauge field. It is evident that the

fidelity is directly related to the Wilson operator U (C) introduced in (1).

The van Kampen decomposition can be again applied for the estimation of

the fidelity (9) under the assumption of Gaussian-dominated colour-neutral

vacuum. The final result is:

g2
J ~exp <_7l(2:orrF2S> : (10)
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The error of this estimation is approximately equal to those of the estima-
tion of the Wilson loop, which does not exceed few percent [2]|. Thus for the
gauss-dominated stochastic vacuum the fidelity for the quark moving in dif-
ferent paths decays exponentially with the area of the surface spanned over
the paths, the decay rate being equal to the string “tension” ¢. This hints
at the close connection between the stability of quark motion and quark
confinement.

Another possible situation, which is more close to the standard treatment
of the fidelity, is realized when v and 9 are two random paths which are
very close to each other. The corresponding expression for the fidelity is
similar to (9), but now the averaging is performed with respect to all random
paths which are close enough. The final result for the averaged path-ordered
integral is obtained in the way similar to (3)—(7), but in this case the field
variables are regarded as predetermined. The final expression for the fidelity
in this case is:

o .92 lcorr
2

f= (fo\Pexp /anﬁygnxémo‘éazﬁdm” |fo) (11)

7

where dx® is the deviation of the path 5 from the path ~;, nX is the four-
dimensional velocity. A rough estimation of the fidelity (11) is:

f~exp (—%gzlcorr F? WL) , (12)

where F 2 in this estimation is the trace of the square of the curvature tensor
F,u, leorr is the correlation length of quark path expressed in terms of world
line length, and the length L characterizes the length of the average path
both in time and space. For example, if the average path is parallel to the
time axis in the Minkowski space, the quark moves randomly around some
point in three-dimensional space. The fidelity in this case decays exponen-
tially with time, as would be expected.

Thus the fidelity decay is related to the mechanism of quark confinement,
at least for the simple model of Gaussian-dominated stochastic vacuum. The
stronger the quarks are coupled to each other, the greater is the fidelity decay
rate. The exact proofs and the consistent treatment of this phenomena in
quantum field theory require further investigations.
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