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Several puzzles about the data at high pT in heavy-ion collisions are
listed. The resolution of them all is given in the framework of parton
recombination. More specifically, it is the recombination of the soft and
semi-hard shower partons that enhances the region 3 < pT < 9 GeV/c,
and gives rise to the large p/π ratio in Au Au collisions. The Cronin effect
can be explained in terms of final-state interaction for both π and p. The
structure of jets produced in Au Au is different from that in pp collisions.
The suppression of RCP in forward production can also be understood by
extending the same hadronization scheme at η = 0 to η > 0 without the
introduction of any new physics.

PACS numbers: 25.75.–q

In the past two years several features of the high-pT data obtained by var-
ious experiments at RHIC are puzzling, and may be regarded as anomalies
according to the “standard model.” By standard model I mean that which
has been standard in the treatment of hadron production at high pT, namely:
a hard scattering of partons, followed by a fragmentation process that leads
to the detected hadron. What I plan to show in this talk are evidences that
all those anomalies can be resolved when the process of hard parton frag-
mentation is replaced by the recombination of soft and shower partons. The
basic reason why the fragmentation model has worked so well for high-pT

processes in leptonic and hadronic collisions, but poorly for heavy-ion col-
lisions, is that there is a large body of soft partons in the latter case, but
absent in the former. The hadronization of those soft partons by recombi-
nation with the semi-hard partons results in a significant enhancement in
the intermediate-pT region that is missing in the fragmentation model.

∗ Presented at the XXXIV International Symposium on Multiparticle Dynamics,
Sonoma County, California, USA, July 26–August 1, 2004.

(227)



228 R.C. Hwa

If hard partons fragment in vacuum, whether or not they have lost energy
while in transit in the dense medium, the fragmentation products should be
independent of the medium. Thus the ratio of produced hadrons, when all
else are the same, should depend only on the ratio of the fragmentation
functions (FF), D(z). Given a parton, whether a quark or a gluon, its FF
for the production of a proton Dp(z) is much smaller than that for a pion
Dπ(z). The observed data reveal several anomalies according to that picture.

Anomaly 1. The ratio of proton to pion, Rp/π, in Au+Au collisions is
approximately 1 at pT ≈ 3 GeV/c.

Anomaly 2. The nuclear modification factor, RCP, in d+Au collisions is
greater for p than for π at pT ≈ 3 GeV/c.

Anomaly 3. The jet structure, i.e., the distribution of particles associated
with a trigger, is different for jets produced in Au+Au collisions compared
to that for p + p collisions.

Anomaly 4. The azimuthal anisotropy parameter v2 is larger for baryons
than for mesons for pT ≥ 2 GeV/c.

Another irregularity. Forward–backward asymmetry.
Time and space do not permit all the topics above to be addressed ade-

quately. I give only a sketch here.
How can recombination solve the puzzles? First of all, let it be under-

stood on general grounds that when a multi-parton state is to hadronize, it
is far more efficient for a q and q̄ to recombine than for a higher momen-
tum q to fragment, assuming that the parton distribution is falling rapidly
in momentum. That is simply because recombination involves the addition
of two lower momenta of q and q̄, where the densities are higher, whereas
fragmentation involves first the creation of a parton at higher momentum
(at a cost in yield), and then the production of a hadron at some momen-
tum fraction at the cost of another factor of suppression. The comparison is
meaningful only when there are many soft partons moving collinearly with
a hard parton, which is the case for heavy-ion collisions, but not for leptonic
and hadronic collisions.

The fragmentation process makes use of a phenomenological FF because
it describes the non-perturbative process of hadronization that cannot be
calculated in pQCD. Thus D(z) represents a black box, in which there are
gluon radiation, quark pair creation, etc., that generate a shower of partons
before hadronization. Although the density of shower partons cannot be
calculated from first principles, those partons are nevertheless there, and
their momentum distributions can possibly be determined phenomenologi-
cally. That is what we have done in the framework of recombination [1],
in which we write

xD(x) =

∫
dx1

x1

dx2

x2

Fqq̄′(x1, x2)RM (x1, x2, x) , (1)
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where Fqq̄′ is the joint distribution of a shower quark q and a shower an-
tiquark q̄′ that recombine to form a meson M . RM is the corresponding
recombination function. The FF on the LHS is known from phenomenologi-
cal analysis of leptonic and hadronic processes. RM is known from previous
work on the recombination model. So Fqq̄′ can be determined. If we assume

that Fqq̄′ has the factorizable form Sq
i S

q̄′

i , where i labels the hard parton

that initiates the shower, then there are 5 types of Sj
i to be determined from

5 types of Di, where i takes on the species: u, d, s, g, and j is allowed to be
u, d, s, but not g, on the grounds that gluon conversion to qq̄ relieves the bur-
den of considering direct hadronization of gluons. The distributions Sj

i (x)
of the shower partons have been determined in [1] at a fixed Q = 10 GeV/c.

The Q2 evolution of Sj
i (x) was not considered, although it constitutes an

interesting project in its own right. On the basis that hadron production in
the intermediate pT region at RHIC depends crucially on the recombination
of soft and shower partons, but not sensitively on the virtuality of Sj

i (x) we
have proceeded to the study of the consequences of considering the shower
partons in heavy-ion collisions [2], and found some remarkable results.

For pion production at large pT the inclusive distribution is

p
dNπ

dp
=

∫
dp1

p1

dp2

p2

Fqq̄′(p1, p2)Rπ(p1, p2, p), (2)

where

Rπ(p1, p2, p) =
p1p2

p
δ(p1 + p2 − p). (3)

Similar equations can be written for proton production [2]. The essence of
recombination is then in what one should include for Fud̄ in case of π+,
say, and for Fuud for p. If we denote thermal parton distribution by T and
shower parton distributions by S, then they ought to be

Fud̄ = T T + T S + SS , (4)

Fuud = T T T + T T S + T SS + SSS , (5)

where the pure T terms give the soft component, and the pure S terms
recover the fragmentation component. It is the mixed terms involving both
T and S that are new and dominate the intermediate-pT region, as we shall
show below.

To proceed, we need to specify T and S. For T we do not rely on any
low-pT model, but determine it phenomenologically from the low-pT data
of pion production, using the T T term of (4) in (2). In that way we can
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attribute the enhancement at higher pT directly to the T S term without
raising any question on the reliability of the low-pT model. For S we shall
use the distributions Sj

i determined in [1], convoluted with the distribution
of hard parton i in Au+Au collisions, and then sum over i. More specifically,
we write

T (p1) = C p1e
−p1/T , (6)

S(p2) = ξ
∑

i

∫
dk kfi(k)Sj

i (p2/k) , (7)

where fi(k) is the hard-parton distribution. C and T are parameters to be
varied to fit dNπ/pTdpT for pT < 2 GeV/c. ξ is the average fraction of hard
partons that can get out of the dense medium to produce showers. Without
discussing the details that can be found in [2], let me just show the results.

Fig. 1 shows the pion distribution that exhibits the dominance of the
T S component in the pT region between 3 and 9 GeV/c. The sum of all
components agrees well with data [3]. Similarly, the T T S and T SS compo-
nents dominate over other components of the proton spectrum in the same
pT region. The p/π ratio is shown in Fig. 2; indeed, it reaches the level of 1
at around pT ∼ 3 GeV/c, as observed [4]. Without the thermal-shower re-
combination, the proton spectrum would be too low in the intermediate-pT

region, so the first anomaly in the fragmentation picture is now satisfacto-
rily resolved. It should be mentioned that the large p/π ratio has also be
obtained in other recombination/coalescence models using slightly different
schemes to implement the hadronization process [5, 6].

2 4 6 8 10

10
−6

10
−4

10
−2

10
0

p
T
 (GeV)

dN
/p

T
dp

T
 (

G
eV

−
2 )

π0 (PHENIX)
sum
thermal−thermal
thermal−shower
shower−shower(1−jet)
shower−shower(2−jet)

Fig. 1. Transverse momentum distribution of π0 in Au+Au collisions. Data are

from [3].
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Fig. 2. Comparison of calculated p/π ratio with data from [4].

The second anomaly concerns the Cronin effect in d+Au collisions. The
traditional explanation of the effect is that multiple scattering of partons in
the initial state leads to the broadening of the pT distribution of hadrons at
high pT in the final state. If those hadrons are produced by the fragmentation
of high-pT partons, then RCP for protons should be much lower than that
for pions. However, the data at RHIC reveal Rp

CP
> Rπ

CP
for 1 < pT < 3

GeV/c [7]. This anomaly can be well explained in the recombination model
when the consideration given above for Au+Au collisions is extended to
d+Au collisions [8,9], as shown in Fig. 3. Although the soft partons in d+Au
are not thermal in the sense of Au+Au, the soft component nevertheless
plays a similar role and the recombination of soft and shower partons gives
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Fig. 3. Comparison of calculated ratios for RCP for π and p with data from [7].
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rise to components that can reproduce the π and p spectra in pT without any
initial parton broadening. Thus it is the final state rather than the initial
state interaction that is mainly responsible for the Cronin effect. The reason
is simply that the formation of proton by the recombination of 3 quarks,
some soft some semi-hard, is far more effective than the fragmentation of
a hard parton.

The third anomaly according to the fragmentation picture is that the
jet structure in Au+Au collisions is different from that in p + p collisions.
Data from STAR show that the charge multiplicity and total scalar pT in the
near-side jets are significantly higher for Au+Au than for p + p, even when
the trigger (that is the same for both) is included [10]. If the trigger were
not included, one would expect the associated particle distributions to be
drastically different for the two cases. Such behaviors cannot follow from the
fragmentation of hard partons, once the trigger momentum is fixed to be the
same. This problem has been studied in the framework of the recombination
model, in which at least two shower partons in a jet must be considered,
one for the trigger, the other for the associated particle. Specifically, for
π+ (trigger) and π+ (associated) in a jet the 4-parton distribution has the
structure

F π+π+

4 = (T S)(T S) + (T S)(SS) + (SS)(T S) , (8)

where the first pair of parentheses in each term correspond to the trigger,
the second pair the associated particle. We have omitted the term (SS)(SS)
in that equation because it is negligible in Au+Au collisions; however, it is
the only term that is important in pp collisions. This point clearly reveals
the difference between jets produced in heavy-ion and hadronic collisions.
The difference becomes even greater when other types of associated parti-
cles are included, since the thermal environment in heavy-ion collisions helps
the formation of other mesons and baryons in conjunction with shower par-
tons. In Fig. 4 we show the distribution associated with a π+ trigger when
π+, π− and p in the jets are all included [11]. The data [10] are for all
charged hadrons in both the trigger and the associated particles and are,
therefore, not exactly what we have calculated. Nevertheless, the agreement
is remarkably good.

The fourth anomaly concerns elliptic flow where v2 for baryon exceeds
that for meson. This phenomenon has nicely been explained by the coa-
lescence model [12], and the scaling of v2 with the number of constituent
quarks remarkably verified by the STAR data [13].

The final issue to be mentioned here is about the production of interme-
diate pT hadrons at large forward rapidity in d+Au collisions. It is the re-
gion where high hopes have been raised for the verification of a signature
of color glass condensate. As with pQCD, the hadronization mechanism is
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Fig. 4. Transverse momentum distribution of π+, π− and p associated with a π+

trigger in central Au+Au collisions. Data are from [10] for all charged hadrons.

fragmentation. BRAHMS data already show that RCP at η = 3.2 rises no
higher than 0.5 at pT ∼ 3 GeV/c [14]. This suppression is regarded as ev-
idence for gluon saturation [15]. However, before novel physics is invoked,
it is reasonable to ask whether the phenomenon can be understood in the
conventional way, i.e., by extrapolating what is known to work at midrapid-
ity to the forward region. We have preliminary results that show a general
agreement between the data and the expectation from parton recombination
at all η and pT. The spectra at forward rapidities are suppressed because
there are less soft partons as η is increased, resulting in less hadrons formed
that rely on soft partons recombining with shower partons. At η = 3.2 there
are so few hard partons that most hadrons are the result of soft–soft recom-
bination. We have also studied the backward–forward asymmetry and found
that there is no need for a transition of basic physics from multiple scatter-
ing in the initial-state interaction on the η < 0 side to gluon saturation on
the η > 0 side.

Our emphasis on the hadronization process in the final state provides
a universal framework for the description of particle production at all η
and pT, at all centralities. In that framework of interpreting the existing
high-pT data from RHIC there are no features that are puzzling. In a sense
that may be disappointing, since exciting new physics usually comes with
anomalies. However, it is far better to have no puzzles than to be misled by
false anomalies.

All the theoretical results reported here were done in collaboration with
C.B. Yang. This work was supported, in part, by the U.S. Department of
Energy under grant No. DE-FG02-96ER40972.
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