
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 2

FLUCTUATIONS AND CORRELATIONS:

INTRODUCTION AND OVERVIEW∗

W. Kittel

HEFIN, Radboud University of Nijmegen/NIKHEF
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

(Received November 11, 2004)

Higher-order correlations have been observed as particle-density fluctu-
ations. Approximate scaling with improving resolution provides evidence
for a self-similar correlation effect. Quantum-Chromodynamics branching
is a good candidate for a dynamical explanation of these correlations in
e+e− collisions at CERN/LEP and, as expected, also of those in pp colli-
sions at future CERN/LHC energies. However, also other sources such as
identical-particle Bose–Einstein interference effects contribute.

PACS numbers: 12.38.Lg, 12.38.Qk, 13.66.Bc, 13.85.Hd, 13.87.Fh, 13.90.+i

1. The correlation formalism

We start by defining symmetrized inclusive q-particle distributions

ρq(p1, . . . , pq) =
1

σtot

dσq(p1, . . . , pq)
q
∏

1
dpq

, (1)

where σq(p1, . . . , pq) is the inclusive cross section for q particles to be at
p1, . . . , pq, irrespective of the presence and location of any further parti-
cles, pi is the (four-) momentum of particle i and σtot is the total hadronic
cross section of the collision under study. For the case of identical particles,
integration over an interval Ω in p-space yields

∫

Ω

ρ1(p)dp = 〈n〉 ,

∫

Ω

∫

Ω

ρ2(p1, p2)dp1dp2 = 〈n(n − 1)〉 ,

∫

Ω

dp1 . . .

∫

Ω

dpqρq(p1, . . . , pq) = 〈n(n − 1) . . . (n − q + 1)〉 , (2)
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where n is the multiplicity of identical particles within Ω in a given event
and the angular brackets imply the average over the event ensemble.

Besides the interparticle correlations we are looking for, the inclusive
q-particle number densities ρq(p1, . . . , pq) in general contain “trivial” contri-
butions from lower-order densities. It is, therefore, advantageous to consider
a new sequence of functions Cq(p1, . . . , pq) as those statistical quantities
which vanish whenever one of their arguments becomes statistically inde-
pendent of the others [1–3]:

C2(1, 2) = ρ2(1, 2) − ρ1(1)ρ1(2) , (3)

C3(1, 2, 3) = ρ3(1, 2, 3) −
∑

(3)

ρ1(1)ρ2(2, 3) + 2ρ1(1)ρ1(2)ρ1(3) , (4)

etc. In the above relations, we have abbreviated Cq(p1, . . . , pq) to
Cq(1, 2, . . . , q); the summations indicate that all possible permutations must
be taken. Expressions for higher orders can be derived from the related for-
mulae given in [4]. Deviations of these functions from zero shall be addressed
as genuine correlations.

It is often convenient to divide the functions ρq and Cq by the product
of one-particle densities, which leads to the definition of the normalized
inclusive densities and correlations:

Rq(p1, . . . , pq) = ρq(pq, . . . , pq)/ρ1(p1) . . . ρ1(pq) , (5)

Kq(p1, . . . , pq) = Cq(p1, . . . , pq)/ρ1(p1) . . . ρ1(pq) . (6)

In terms of these functions, correlations have been studied extensively for
q = 2. Results also exist for q = 3, but usually the statistics (i.e. number
of events available for analysis) are too small to isolate genuine correlations.
To be able to do that for q ≥ 3, one must apply factorial moments Fq defined
via the integrals in Eq. (2), but in limited phase-space cells [5, 6].

2. Density spikes

To see whether it is worth the effort, we first look for density fluctua-
tions in single events, signaling high-order correlations. A notorious JACEE
event [7] at a pseudo-rapidity resolution (binning) of δη = 0.1 has local fluc-
tuations up to dn/dη ≈ 300 with a signal-to-background ratio of about 1:1.
An NA22 event [8] contains a “spike” at a rapidity resolution δy = 0.1 of
dn/dy = 100, as much as 60 times the average density in this experiment.

Bialas and Peschanski [5] suggested that this type of spikes could be a
manifestation of “intermittency”, a phenomenon well known in fluid dynam-
ics [9]. The authors argued that if intermittency indeed occurs in particle
production, large density fluctuations are not only expected, but should also
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exhibit self-similarity with respect to the size of the phase-space volume.
Ideas on self-similarity and fractals in jet physics had already been formu-
lated in [10,11]. For soft hadronic processes, fractals and self-similarity were
first considered in [12] and their quantitative measures in [13].

In multiparticle experiments, the number of hadrons produced in a single
collision is small and subject to considerable noise. To exploit the techniques
employed in complex-system theory, a method had to be devised to sepa-
rate fluctuations of purely statistical (Poisson) origin, due to finite particle
numbers, from the possibly self-similar dynamical fluctuations of the under-
lying particle densities. A solution, already used in quantum optics [14] and
suggested for multiparticle production in [5], consists in measuring Fq(δy)
in given phase-space volumes (resolution) δy of ever decreasing size.

Note that this approach of explicitely eliminating “trivial” effects is re-
cently being complemented by a more “holistic” approach presented here by
Liu Qin [15].

3. Power-law scaling

Besides the property of noise-suppression, high-order factorial moments
act as a filter and resolve the large-multiplicity tail of the multiplicity dis-
tribution. They are thus particularly sensitive to large density fluctuations
at the various scales δy used in the analysis. As shown in [5], a smooth
density distribution, which does not show any fluctuations except for the
statistical ones, has the property of normalized factorial moments Fq(δy)
being independent of the resolution δy in the limit δy → 0. On the other
hand, if self-similar dynamical fluctuations exist, the Fq obey the power law

Fq(δy) ∝ (δy)−φq , (δy → 0) . (7)

The powers φq (slopes in a double-log plot) are related [16] to the anoma-
lous (or co-) dimensions dq = φq/(q − 1), a measure for the deviation from
an integer dimension. Equation (7) is a scaling law since the ratio of the
factorial moments at resolutions L and ℓ

R =
Fq(ℓ)

Fq(L)
=

(

L

ℓ

)φq

(8)

only depends on the ratio L/ℓ, but not on L and ℓ, themselves.
One further has to stress the advantages of normalized factorial cumu-

lants Kq compared to factorial moments, since the former measure genuine

correlation patterns.
As an example, high statistics data of the OPAL experiment [17] are

given in Fig. 1 in terms of Kq, as a function of the number M ∝ 1/δy of
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phase space partitions for q = 3 to 5. In the leftmost column, the one-
dimensional rapidity variable y is used for the analysis. The data (black
dots) show an increase of Kq with increasing M for small M , but a satura-
tion at larger M . Even though weaker, some saturation still persists when
the analysis is done in the two-dimensional plane of rapidity y and azimuthal
angle Φ (middle column), but approximate power-law scaling is indeed ob-
served for the analysis in three-dimensional momentum space (right column).
Thus, in high-energy collisions, fractal behavior is fully developed in three
dimensions, while projection effects lead to saturation in lower dimension.

In Fig. 1, the data are also compared to a number of parametriza-
tions of the multiplicity distributions, as well as to the Monte Carlo models
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Fig. 1. Cumulants of order q = 3 to 5 as a function of M1/D in comparison
with the predictions of various multiplicity parametrizations and two Monte Carlo
models [17].
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JETSET and HERWIG. One can see that the fluctuations given by the neg-
ative binomial (NB) (dashed line) are weaker than observed in the data.
Contrary to the NB, the log-normal (LN) distribution (dotted line) overes-
timates the cumulants, while these expected for a pure birth (PB) process
(dash-dotted) underestimate the data even more significantly than the NB.
Among the distributions shown, a modified NB (MNB) gives the best re-
sults, even though significant underestimation is observed also there. The
Monte Carlo models do surprisingly well.

4. Density and correlation integrals

A fruitful development in the study of density fluctuations is the density
and correlation strip-integral method [18]. By means of integrals of the
inclusive density over a strip domain in y1, y2 space, rather than a sum of
box domains, one not only avoids unwanted side-effects such as splitting

Fig. 2. Comparison of density integrals for q = 2 in their differential form ∆F2

(in intervals Q2, Q2 + dQ2) as a function of 2 log(1/Q2) for e+e− (DELPHI) and
hadron–hadron collisions (UA1) [22].
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of density spikes, but also drastically increases the integration volume (and
therefore the statistical significance) at given resolution. In terms of the
strips (or hyper-tubes for q > 2), the density integrals can be evaluated
directly from the data after selection of a proper distance measure, as e.g.

the four-momentum difference Q2
ij = −(pi − pj)

2, and after definition of a

proper multiparticle topology (GHP integral, [18] snake integral, [19] star
integral [20]). Similarly, correlation integrals can be defined by replacing
the density ρq in the integral by the correlation function Cq.

Of particular interest is a comparison of hadron–hadron to e+e− results
in terms of same and opposite charges of the particles involved. Such a com-
parison is shown in Fig. 2 for q = 2. An important difference between UA1
and DELPHI can be observed in a comparison of the two sub-figures: For
relatively large Q2(> 0.03 GeV2), where Bose–Einstein effects do not play
a major role, the e+e− data increase much faster with increasing −2 log Q2

than the hadron–hadron results. For e+e−, the increase in this Q2 region is
very similar for same and for opposite-sign charges. At small Q2, however,
the e+e− results approach the hh results. For e+e− annihilation at LEP
at least two processes are responsible for the power-law behavior: Bose–
Einstein correlation at small Q2 following the evolution of jets at larger Q2.

5. Multifractal versus monofractal behavior

Anomalous dimensions dq fitted over the (one-dimensional) range
0.1 < δy < 1.0 are compiled in Fig. 3 [26]. They typically range from dq =
0.01 to 0.1, which means that the fractal (Rényi) dimensions Dq = 1 − dq

are close to one. The dq are larger and grow faster with increasing order q in
µp and e+e− (Fig. 3(a)) than in hh collisions (Fig. 3(b)) and are small and
almost independent of q in heavy-ion collisions (Fig. 3(c)). For hh collisions,
the q-dependence is considerably stronger for NA22 (

√
s = 22 GeV, all pT)

than for UA1 (
√

s = 630 GeV, pT > 0.15 GeV/c).
In multiplicative cascade models, the one-dimensional moments follow

the generalized power law [27]

Fq ∝ (g(δy))φq , (9)

where g(δy) is a general function of δy. Expressing g in terms of F2, one
finds the linear relation

ln Fq = cq +
φq

φ2
ln F2 , (10)

from which the ratio of anomalous dimensions is directly obtained. This
has been confirmed by experiment, not only in one dimension, but up to
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Fig. 3. Anomalous dimension dq as a function of the order q, for (a) µp and e+e−

collisions, (b) NA22 and UA1, (c) KLM [26].

3D [28]. Moreover, the ratios φq/φ2 are found to be largely independent
of the dimension of phase space and of the type of collision. The q depen-
dence is indicative of the mechanism causing intermittent behavior. For a
(multiplicative) cascade mechanism, in the log-normal approximation (long
cascades), the moments satisfy the relation

dq

d2
=

φq

φ2

1

q − 1
=

q

2
. (11)

However, the use of the Central Limit Theorem for a multiplicative process,
such as in the α-model, is a very crude approximation [29] particularly in
the tails. As argued in [30], a better description is obtained if the den-
sity probability distribution is assumed to be a log-Lévy-stable distribution,
characterized by a Lévy index µ. In that case (11) generalizes to

dq

d2
=

1

2µ − 2

qµ − q

q − 1
. (12)

For µ = 0, implying an order-independent anomalous dimension, the
multifractal behavior characterized by (11)–(12) reduces to a monofractal
behavior [31, 32] with dq/d2 = 1. This would happen if intermittency were
due to a second-order phase transition.

The data are best fitted with a Lévy index of µ = 1.6, but important
exceptions exist: While a fit to the combined NA22 data [33] on all variables
and dimensions, as well as a weighted average over all individual fits give µ
values in rough agreement with those of [28], the 3D-data have µ > 2, not
allowed in the sense of Lévy laws. Even larger values of µ, ranging from 3.2
to 3.5, have been found for µp deep-inelastic scattering in [30].
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6. Self-affinity versus self-similarity

Comparing log–log plots for one phase-space dimension, one notices that
the lnFq saturate, but at different Fq values for different variables y,Φ or
lnpT. However, also in three-dimensional analysis the power law is not exact.
The 3D hh data even bend upward. It has been shown in [37] that this
can be understood by taking the anisotropy of occupied phase space into
account. In view of this phase-space anisotropy, also its partition should be
anisotropic. If the power law holds when space is partitioned by the same
factor in different directions, the fractal is called self-similar. If, on the other
hand, it holds and only holds when space is partitioned by different factors
in different directions, the corresponding fractal is called self-affine [38].

If the phase-space structure is indeed self-affine, it can be characterized
by a parameter called roughness or Hurst exponent [38], defined as

Hij =
ln Mi

ln Mj
(0 ≤ Hij ≤ 1) (13)

with Mi (i = 1, 2, 3; M1 ≤ M2 ≤ M3) being the partition numbers in the
self-affine transformations δyi → δyi/Mi, of the phase-space variables yi.
The Hurst exponents can be obtained [37] from the experimentally observed
saturation curves of the one-dimensional F2(δyi) distributions,

F i
2(Mi) = Ai − BiM

−γi

i (14)

as Hij = (1 + γj)/(1 + γi). For hh collisions, Hij was indeed determined
to be of order 0.5 [39] for the longitudinal-transverse combinations, while it
was found consistent with unity within the transverse plane (Φ, pT).

The anisotropy is consistent with the fact that the longitudinal direction
is privileged over the transverse directions in hadron–hadron collisions. On
the contrary, no upward bending is observed in the three-dimensional self-
similar analysis of e+e− data [40], so the Hij are expected to be compatible
with unity. This observation is confirmed with the help of a full self-affine
analysis performed with a JETSET 7.4 Monte Carlo sample at 91.2 GeV [41]
and a full analysis of L3 data is underway [42] indicating an approximately
self-similar behavior for full e+e− events, but a self-affine one for single jets.

7. Local fluctuations and QCD

Substantial progress has been made to derive analytical QCD predic-
tions for fluctuations [23–25] in small angular phase-space intervals. As-
suming LPHD [43], these predictions for the parton level can be compared
to experimental data [44–46]. QCD is inherently intermittent and QCD
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predictions [23–25] grant the scaling behavior

Fq(Θ) ∝
(

Θ0

Θ

)(D−Dq)(q−1)

, (15)

where Θ0 is the half opening angle of a cone around the jet-axis, Θ is the
angular half-width of a ring around the jet-axis centered at Θ0, D is the
underlying topological dimension (D = 1 for single angle Θ), and Dq are
the Rényi dimensions.

A new scaling variable [25], z = ln(Θ0/Θ)/ ln(EΘ0/Λ), where the max-
imum possible region (Θ = Θ0) corresponds to z = 0, is used in Fig. 4(a).
In a fixed coupling regime, for moderately small angular bins,

Dq = γ0(Q)
q + 1

q
, (16)

where γ0(Q) =
√

2CAαs(Q)/π is the anomalous QCD dimension calculated
at Q ≃ EΘ0, E =

√
s/2, and gluon color factor CA = Nc = 3. This

corresponds to the thin solid lines in Fig. 4(a). In the running-coupling
regime, for small bins, the Rényi dimensions become a function of the size of
the angular ring (αs(Q) increases with decreasing Θ). Three approximations
derived in DLLA are compared in Fig. 4(a), according to (a) [24], (b) [25],
(c) [23]. In [24], an estimate for Dq has, furthermore, been obtained in
MLLA.

The fixed coupling approximates the running coupling for small z, but
does not exhibit the saturation effect seen in the data. For second order, the
running-αs predictions lead to the saturation effects observed in the data, but
significantly underestimate the observed signal. Predictions for the higher
moments are too low for low values of z, but tend to overestimate the data
at larger z. The DLLA approximation differs significantly at large z. The
MLLA predictions do not differ significantly from the DLLA result.

Using transverse momentum pT rather than Θ , within DLLA, the nor-
malized factorial moments of gluons which are restricted as pT < pcut

T are
expected [47] to follow,

Fq(p
cut
T ) ≃ 1 +

q(q − 1)

6

ln(pcut
T /Q0)

ln(P/Q0)
, (17)

where P is again the initial energy of the outgoing quark and pT is defined
relative to the direction of this quark.

Again, the DLLA predictions are on the parton level and should be
regarded asymptotic, i.e. valid at small pcut

T . Therefore, they should be
considered only as qualitative predictions when compared to the data in
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b)a)

Fig. 4. The L3 data [45] compared to the analytical QCD predictions for Λ =

0.16 GeV and Θ0 = 25◦: αs = const (thin solid line); DLLA (a) [24]; DLLA
(b) [25]; DLLA (c) [23]; MLLA [24]. (b) Factorial moments for charged particles
in the current region of the Breit frame of e+p collisions at HERA, as a function
of pcut

T , compared to Monte Carlo models at the hadron level (thick lines) and
ARIADNE with Q0 = 0.27 GeV at the parton level (thin solid line). The data are
corrected for Bose–Einstein correlations by the BE factor indicated [48].

conjugation with the LPHD hypothesis. Such a comparison has been made
by ZEUS [48] (see Fig. 4(b)). While DLLA (Eq. (17)) predicts the moments
to approach unity from above as pcut

T decreases, the data show the opposite.
The Monte Carlo models follow the trend of the data, with ARIADNE giving
the best overall description.

To check the effect of energy-momentum conservation, the moments were
also determined at the parton level of ARIADNE, the physics implementa-
tion of which strongly resembles the analytic calculations [47]. To satisfy
LPHD, the cut-off parameter Q0 was reduced to 0.27 GeV, also ensuring the
parton multiplicity to equal that of the hadrons. The results are given as the
thin solid line in Fig. 4(b). They indeed show the behavior expected from
Eq. (17), i.e., they disagree with the hadronic data. Analogous differences
between the hadron and parton levels of ARIADNE have been observed
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in e+e− annihilation [47]. So, one has to conclude with the authors that
here the limits of LPHD are crossed, i.e. the Fq are particularly sensitive to
dynamical details of non-perturbative QCD.

8. Bose–Einstein correlations

Whether derived as Fourier transform of a (static and chaotic) pion
source distribution, a covariant Wigner-transform of the (momentum de-
pendent) source density matrix, or from the string model, identical-pion
correlation leads to a positive, non-zero two-particle correlator K2(Q) (see
Eqs. (9) and (10)), i.e. to

R2(Q) = 1 + K2(Q) > 1 (18)

at small four-momentum difference Q. These Bose–Einstein Correlations, by
now, are a well-established effect in all types of collisions, even in hadronic Z0

decay (for recent reviews see [49,50]) originally expected to be too coherent
to show an effect. If existent also as inter-W BEC in fully hadronic WW
decay at LEP2, this could serve as an important laboratory for research on
the behavior of two (partially) overlapping strings. The status of this is
reviewed here by Todorova [51].

Other important recent observations are given in abstract form below.
1. When evaluated in two (or better three) dimensions in the Bertsch–

Pratt system, an elongation of the emission region (better region of ho-
mogeneity [52] is observed along the event axis in all types of collisions
(hadron–hadron [53], all four LEP experiments [54], ZEUS [55], RHIC [56]).
However, it is important to note that the longitudinal radius of homogeneity
is much shorter than the length of the sting (of order 1%).

The recent observation that the out-radius does not grow beyond the
side-radius at RHIC [56] points to a short duration of emission and causes
a problem for some hydrodynamical models [57], but not for e.g. the Buda–
Lund hydro model. The latter, in fact gives a beautifully consistent descrip-
tion of single-particle spectra and BEC in hadron–hadron and heavy-ion
collisions at SPS and RHIC [58]. The emission function resembles a Gaus-
sian shaped fire-ball for AA collisions, but a fire-tube for hh collisions.

2. The form of the correlator at small Q is steeper than Gaussian, in fact
consistent with a power law as would be expected from the intermittency
phenomenon described above. Recent unifying progress is reported here by
Csörgő [59].
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3. The approximate transverse mass m
−1/2
T scaling first observed in

heavy-ion collisions at the SPS [60] and usually blamed on collective flow, is
now observed at RHIC [56], but also in e+e− collisions [61]. Quite generally,
it follows from a strong position momentum correlation [62], be it due to
collective flow or to string fragmentation.

4. Genuine three-pion correlations exist in all types of collisions and, in
principle, allow a phase to be extracted from

cos φ ≡ ω(Q3) = K3(Q3)/2
√

K2(Q3) . (19)

At small Q, this ω is near unity (as expected from incoherence) for hh [63]
and e+e− [64] collisions, as well as for PbPb [65,66] and AuAu [67] collisions
at SPS and RHIC, while it is near zero (compatible with full coherence) in
collisions of light nuclei [65]. This contradiction can be solved [49, 68] if ω

is interpreted as a ratio of normalized cumulants (Eq. (10)). Since K
(N)
q

of N independent overlapping sources gets diluted like 1/N q−1, ω would
be reduced if strings produced by light ions (or in WW decay!) do not
interact. If, in heavy ion collisions, the string density gets high enough for
them to coalesce, some kind of percolation sets in (see also the talks of Dias
de Deus [69] and Ferreiro [70]) and full inter-string BEC gets restored.

5. Azimuthal anisotropy is now also observed in configuration space of
non-central heavy-ion collisions at AGS energies [71], but also at RHIC [72].
Contrary to elliptic flow, it is directed out of the event plane, but consistent
with the elliptic nuclear overlap in a non-central collision. Due to larger
pressure in the event plane, the anisotropy gets reduced but not destroyed
at RHIC. Also this is evidence for a short duration of pion emission.

Since a reaction plane also exists in hA, hh, and three-jet e+e− collisions,
application to those would be interesting. Of course, a three-dimensional
(e.g. Bertsch-Pratt) analysis in bins of azimuthal angle requires a very high
statistics. For hA collisions, this will hopefully soon become available from
HERA-B (see Mureşan [73]).

9. Summary

Multiparticle production in high-energy collisions is an ideal field to
study genuine higher-order correlations. They are directly accessible in
their full multi-dimensional characteristics, under well controlled experimen-
tal conditions. Methods also used in other fields are being tested and ex-
tended here for general application. Indications for genuine, approximately
self-similar higher-order correlations are indeed found in high-energy particle
collisions. At large four-momentum distance Q2, they are not only expected
to be an inherent property of perturbative QCD, but are directly related
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to the anomalous multiplicity dimension and, therefore, to the running cou-
pling constant αs. At small Q2, the QCD effects are complemented by
Bose–Einstein interference of identical mesons carrying information on the
unknown space-time development of particle production during the collision.
The interplay between these two mechanisms, important for an understand-
ing of the process of hadronization, is a particular challenge at the moment.

REFERENCES

[1] B. Kahn, G.E. Uhlenbeck, Physica 5, 399 (1938).
[2] K. Huang, Statistical Mechanics, John Wiley and Sons, 1963.
[3] A.H. Mueller, Phys. Rev. D4, 150 (1971).
[4] M.G. Kendall, A. Stuart, The Advanced Theory of Statistics, Vol. 1, C. Griffin

and Co., London 1969.
[5] A. Bialas, R. Peschanski, Nucl. Phys. B273, 703 (1986); Nucl. Phys. B308,

857 (1988); A. Bialas, Festschrift Van Hove, eds. A. Giovannini, W. Kittel,
World Scientific, Singapore 1990, p. 75.

[6] E.A. De Wolf, I.M. Dremin, W. Kittel, Phys. Rep. 270, 1 (1996).
[7] T.H. Burnett et al. (JACEE Coll.), Phys. Rev. Lett. 50, 2062 (1983).
[8] M. Adamus et al. (NA22 Coll.), Phys. Lett. B185, 200 (1987).
[9] Ya.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff in The Almighty Chance,

World Scientific Lecture Notes in Physics, Vol. 20, World Scientific, Singapore
1990.

[10] K. Konishi, A. Ukawa, G. Veneziano, Phys. Lett. 78B, 243 (1978); Nucl. Phys.
B157, 45 (1979).

[11] A. Giovannini, Proc. Xth Int. Symp. on Multiparticle Dynamics, Goa 1979,
eds. S.N. Ganguli, P.K. Malhotra, A. Subramanian (Tata Inst.) p. 364.

[12] P. Carruthers, Minh Duong-Van, Evidence for a Common Fractal Dimensionin
Turbulence, Galaxy Distributions and Hadronic Multiparticle Production, Los
Alamos preprint LA-UR-83-2419, 1983.

[13] I.M. Dremin, JETP Lett. 45, 643 (1987); I.M. Dremin, Festschrift L. Van
Hove, eds. A. Giovannini, W. Kittel, World Scientific, Singapore 1990, p. 455.

[14] G. Bédard, Proc. Phys. Soc. 90, 131 (1967); D. Cantrell, Phys. Rev. A1, 672
(1970).

[15] Liu Qin, Acta Phys. Pol. 36, 315 (2005) these proceedings.
[16] P. Lipa, B. Buschbeck, Phys. Lett. B223, 465 (1989); R. Hwa, Phys. Rev.

D41, 1456 (1990).
[17] E.K.G. Sarkisyan, Phys. Lett. B477, 1 (2000); I.G. Abbiendi et al. (OPAL),

Phys. Lett. 523, 35 (2001).
[18] H.G.E. Hentschel, I. Procaccia, Physica D 8, 435 (1983); P. Grassberger, Phys.

Lett. A97, 227 (1983); I.M. Dremin, Mod. Phys. Lett. A13, 1333 (1988);
P. Lipa et al., Phys. Lett. B285, 300 (1992).



304 W. Kittel

[19] P. Carruthers, I. Sarcevic, Phys. Rev. Lett. 63, 1562 (1989).
[20] H.C. Eggers et al., Phys. Rev. D48, 2040 (1993).
[21] N. Neumeister et al. (UA1 Collab.), Z. Phys. C60, 633 (1993).
[22] F. Mandl, B. Buschbeck in Proc. Cracow Workshop on Multiparticle Produc-

tion, eds. A. Bialas et al. , World Scientific, Singapore 1994, p. 1.
[23] W. Ochs, J. Wosiek, Phys. Lett. B289, 159 (1992); Phys. Lett. 305, 144 (1993);

Z. Phys. C68, 269 (1995).
[24] Y.L. Dokshitzer, I.M. Dremin, Nucl. Phys. B402, 139 (1993).
[25] Ph. Brax, J.-L. Meunier, R. Peschanski, Z. Phys. C62, 649 (1994).
[26] A. Bialas, K. Zalewski, Nucl. Phys. A545, 345c (1991).
[27] W. Ochs, J. Wosiek, Phys. Lett. B214, 617 (1988); Phys. Lett. B232, 271

(1989).
[28] W. Ochs, Phys. Lett. B247, 101 (1990); Z. Phys. C50, 339 (1991).
[29] J. Alberty, A. Bialas, Z. Phys. C50, 315 (1991).
[30] Ph. Brax, R. Peschanski, Phys. Lett. B253, 225 (1991).
[31] H. Satz, Nucl. Phys. B326, 613 (1989); B. Bambah, J. Fingberg, H. Satz,

Nucl. Phys. B332, 629 (1990).
[32] A. Bialas, R. Hwa, Phys. Lett. B253, 436 (1991).
[33] I.V. Ajinenko et al. (NA22 Coll.), Phys. Lett. B222, 306 (1989); Phys. Lett.

B235, 373 (1990); N.M. Agababyan et al., Phys. Lett. B261, 165 (1991).
[34] S.P. Ratti et al., Z. Phys. C61, 229 (1994); S.P. Ratti et al. (IHSC), Proc. XXI

Int. Symp. on Multiparticle Dynamics, Wuhan, China, 1991, eds. Y.F. Wu,
L.S. Liu, World Scientific, Singapore 1992, p. 409; V. Arena et al. (IHSC),
Nuovo Cim. 108A, 417 (1995).

[35] R.C. Hwa, Phys. Rev. D51, 3323 (1995); Hu Yuan et al., Chin. Phys. Lett.
16, 553 (1999).

[36] Wang Shaoshun, Wu Chong, Phys. Lett. B473, 172 (2000); Chin. Phys. Lett.
18, 18 (2001).

[37] Y.F. Wu, L.S. Liu, Phys. Rev. Lett. 70, 3197 (1993); Science in China A38,
435 (1995); Y.F. Wu, Y. Zhang, L.S. Liu, Phys. Rev. D51, 6576 (1995);
Liu Feng, Liu Fuming, Liu Lianshou, Phys. Rev. D59, 114020 (1999).

[38] B.B. Mandelbrot, in Dynamics of Fractal Surfaces, eds. E. Family, T. Vicsek,
World Scientific, Singapore 1991.

[39] N.M. Agababyan et al. (NA22 Coll.), Phys. Lett. B382, 305 (1996); Phys.
Lett. B431, 451 (1998).

[40] Liu Lianshou, Zhang Yang, Deng Yue, Z. Phys. C73, 535 (1997).
[41] Gang Chen, Lian-shou Liu, Yan-min Gao, Int. J. Mod. Phys. A14, 3687

(1999).
[42] L3 Coll., Gang Chen, Proc. XXXI Int. Symp. on Multiparticle Dynamics, eds.

Bai Yuting et al., World Scientific, Singapore 2002, p. 361.
[43] Ya.I. Azimov et al., Z. Phys. C27, 65 (1985).



Fluctuations and Correlations: Introduction and Overview 305

[44] P. Abreu et al. (DELPHI Coll.), Phys. Lett. B457, 368 (1999).
[45] M. Acciari et al. (L3 Coll.), Phys. Lett. B428, 186 (1998).
[46] J. Breitweg et al. (ZEUS Coll.), Eur. Phys. J. C12, 53 (2000); S. Chekanov

et al., Phys. Lett. 510, 36 (2001).
[47] S. Lupia, W. Ochs, J. Wosiek, Nucl. Phys. B540, 405 (1999).
[48] S. Chekanov et al. (ZEUS Coll.), Phys. Lett. B510, 36 (2001).
[49] W. Kittel, Acta Phys. Pol. B 32, 3927 (2001).
[50] G. Alexander, Rep. Prog. Phys. 66, 481 (2003).

[51] Š. Todorova, Acta Phys. Pol. B 36, 321 (2005) these proceedings.
[52] S.V. Akkelin, Yu.M. Sinyukov, Phys. Lett. B356, 521 (1995); Z. Phys. C72,

501 (1996).
[53] N.M. Agababyan et al. (NA22 Coll.), Z. Phys. C71, 405 (1996).
[54] M. Acciari et al. (L3 Coll.), Phys. Lett. B458, 517 (1999); P. Abreu et al.

(DELPHI Coll.), Phys. Lett. B471, 460 (2000); G. Abbiendi et al. (OPAL
Coll.), Z. Phys. C16, 423 (2000); A. Heister et al. (ALEPH Coll.), CERN-
EP/2003-079.

[55] S. Chekanov et al. (ZEUS Coll.), Phys. Lett. B583, 231 (2004).
[56] D. Magesto, not submitted to these proceedings.
[57] T. Hirano, Acta Phys. Pol. B 36, 187 (2005) these proceedings; Y. Hama,

Acta Phys. Pol. B 36, 347 (2005) these proceedings.
[58] N.M. Agababyan et al. (NA22 Coll.), Phys. Lett. B422, 359 (1998); A. Ster,

T. Csörgő, B. Lörstad, Nucl. Phys. A661, 419 (1999); M. Csanád, T. Csörgő,
B. Lörstad, A. Ster, Acta Phys. Pol. B 35, 191 (2004); nucl-th/0402037;
hep-ph/0406042.

[59] T. Csörgő, Acta Phys. Pol. B 36, 329 (2005) these proceedings.
[60] H. Beker et al. (NA44 Coll.), Z. Phys. C64, 209 (1994); I.G. Bearden et al.,

Phys. Rev. Lett. 87, 112301 (2001); S.V. Afanasiev et al. (NA49 Coll.), Phys.
Lett. B557, 157 (2003).

[61] B. Lörstad, O.G. Smirnova, Proc. 7th Int. Workshop on Multiparticle Produc-
tion, eds. R.C. Hwa et al., World Scientific, Singapore 1997, p. 42.

[62] T. Csörgő, J. Zimányi, Nucl. Phys. A517, 588 (1990); A. Bialas, K. Zalewski,
Acta Phys. Pol. B 30, 359 (1999).

[63] N.M. Agababyan et al. (NA22 Coll.), Z. Phys. C68, 229 (1995).
[64] P. Achard et al. (L3 Coll.), Phys. Lett. B540, 185 (2002).
[65] H. Bøggild et al. (NA44 Coll.), Phys. Lett. B455, 77 (1999); I.G. Bearden et

al., Phys. Lett. B517, 25 (2001).
[66] N.N. Aggarwal et al. (WA98 Coll.), Phys. Rev. Lett. 85, 2895 (2000).
[67] J. Adams et al. (STAR Coll.), Phys. Rev. Lett. 91, 262301 (2003).
[68] M.A. Braun, F. del Moral, C. Pajares, Phys. Lett. B551, 291 (2003).
[69] J. Dias de Deus, Acta Phys. Pol. B 36, 307 (2005) these proceedings.
[70] E. Ferreiro, Acta Phys. Pol. B 36, 543 (2005) these proceedings.



306 W. Kittel

[71] D. Miskowiec et al. (E877 Coll.), Nucl. Phys. A590, 473c (1995); M.A. Lisa
et al. (E895 Coll.), Phys. Lett. B496, 1 (2000).

[72] J. Adams et al. (STAR Coll.), Phys. Rev. Lett. 93, 012301 (2004).
[73] R. Mureşan, Acta Phys. Pol. B 36, 339 (2005) these proceedings.


