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We argue that recent NA49 results on multiparticle distributions and
fluctuations, as a function of the number of participant nucleons, suggest
that percolation plays an important role in particle production at high
densities.
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Recently, the NA49 collaboration has presented results, from the experi-
ment CERN/SPS at 158 A GeV, on multiplicity fluctuations or, to be more
precise, on V (n)/〈n〉,

V (n)/〈n〉 ≡ 〈n2〉 − 〈n〉2
〈n〉 , (1)

as a function of the number Npart of participant nucleons, from pp to PbPb
collisions [1].

These data are very interesting for several reasons:

(1) They show evidence for universal behaviour: the experimental points
in the plot V (n)/〈n〉 versus Npart fall into a unique curve (see Fig. 1).
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Fig. 1. Variance over average multiplicity, for negative particle production, as a

function of the number of participants. The curve is from (5′) with (12), (16) and

(22). Data are from NA49 [1].

(2) The physics in the small Npart limit (pp,Npart → 2) and in the large
Npart limit (PbPb, Npart → 2APbPb) seems to be quite the same, as in
both cases the quantity (1) approaches 1. The fluctuations are larger
in the intermediate Npart region (see Fig. 1).

(3) The (negative) particle distribution, in the low density and in the
high density limits, is in fact a Poisson distribution (see Fig. 2), the
distribution being wider than Poisson in the intermediate Npart region.

In the framework of the string model with percolation [2], these results
are quite natural. On one hand, percolation is a universal geometrical phe-
nomenon, the properties depending essentially on the space dimension (di-
mension 2, impact parameter plane, in our case), and being controlled by
the transverse density variable η,

η ≡
( r

R

)2
N̄S , (2)

where r is the transverse radius of the string (r ≃ 0.2 fm), R the radius of
the interaction area, and N̄S the average number of strings. The quantity
(R/r)2 is nothing but the interaction area in units of the string transverse
area. As R and N̄S are functions of the number Npart of participants, Npart,
similarly to η, becomes, at a given energy, a universal variable.

On the other hand, in percolation [3], what matters is the fluctuation in
the size of the clusters of strings: one starts, at low density (small Npart),
from a situation where strings are isolated, at intermediate density one finds
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Fig. 2. Multiplicity Distributions, P (n−), as a function of n−. The curves are

Poisson (dashed lines) and Negative Binomial (full line).

clusters of different sizes, and one ends up, at high density, above the perco-
lation threshold, with a single large cluster. In both, low and high, density
limits, fluctuations in cluster size vanish (see Fig. 3). In the simplest string
model the particle distribution is Poisson (as observed in e+e− and pp at
low energy) and V/〈n〉 → 1 in both, low and high, density limits (see Figs. 1
and 2).

Let us try to be more specific. In hadron–hadron and nucleus–nucleus
collisions, during the collision strings are produced along the collision axis,
and these strings may overlap and form clusters of different sizes. In the
spirit of percolation theory, we shall assume that fluctuations in the number
N of strings per cluster dominate over fluctuations in the number NC of
clusters.

From our calculations [4] we obtain:

〈n〉 = N̄C〈N〉n̄ , (3)
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Fig. 3. Impact parameter percolation. For small densities (η ≤ φ) and for large

densities (η ≫ 1) there are no strong fluctuations in the number N of strings per

cluster. For intermediate densities (η ≃ 1) N -fluctuations are large.

and

〈n2〉 − 〈n〉2 = N̄C

[

(〈N2〉 − 〈N〉2)n̄2 + 〈N〉(n̄2 − n̄2)
]

, (4)

where n̄ is the single string particle multiplicity, and, finally, for the (vari-
ance)/(multiplicity) ratio,

V (n)

〈n〉 = n̄
V (N)

〈N〉 + 1 , (5)

where
V (N)

〈N〉 ≡ 〈N2〉 − 〈N〉2
〈N〉 . (6)

In order to have agreement between (5) and Fig. 1, it is required that

V (N)

〈N〉 −→
η → 0

0 and
V (N)

〈N〉 −→
η → ∞0 . (7)

At low density (η → 0, few strings in the interaction area) 〈N〉 ≃ 1 and
〈N2〉 − 〈N〉2 ≃ 0, and condition (7), for low η, is satisfied.

At high density, statistical models without percolation, of the kind of
“coins-in-boxes” (fixed size clusters or boxes) [5, 6] 〈N2〉 − 〈N〉2 ∼ 〈N〉 and
(7) is not satisfied for η → ∞. In order to satisfy (7), as η → ∞, one needs
percolation. In fact, in percolation, at high density (above the percolation
threshold, ηc), one forms a single cluster with all the strings and 〈N〉 ≃ N̄S,
and 〈N2〉 − 〈N〉2 ≃ 0.

We shall next develop a simple and general percolation model. If N
stands for the number of strings in a cluster, NC the number of clusters and
NS the number of strings, two sum rules follow:

N̄C〈N〉 = N̄S , (8)
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and

N̄C〈A〉 =

(

R

r

)2

(1 − e−η) , (9)

where 〈A〉 is the average area occupied by a cluster (see, for instance, [3]).
In the usual “coin-in-boxes” model 〈A〉 is fixed — the size of the box —
independent of η. In the percolation model 〈A〉 increases with η, approaching
the full area of interaction in the η → ∞ limit.

We thus write for 〈A〉, [7],

〈A〉 = f(η)

[

(

R

r

)2

(1 − e−η) − 1

]

+ 1 , (10)

where f(η) is a percolation function, such that f(η) → 0, as η → 0, and
〈A〉 → 1, as expected for isolated strings, and f(η) → 1, as η → ∞, and
〈A〉 → (R

r )2 as expected in percolation. For f(η) we have chosen

f(η) = (1 + e−(η−ηc)/a)−1 , (11)

with a = 0.85 and ηc = 1.15 [7].
From (8), (9) and (10) we obtain

〈N〉 =
η

1 − e−η
(f(η)

[

(

R

r

)2

(1 − e−η) − 1

]

+ 1) , (12)

with 〈N〉 → 1 as η → 0, and 〈N〉 → N̄S, as η → ∞.
Regarding the cluster string variance, 〈N2〉 − 〈N〉2, we have to satisfy

the general constraint,
〈N2〉 − 〈N〉2 ≥ 0 , (13)

and the, already mentioned, constraints,

〈N2〉 − 〈N〉2 −→
η → 0

0 , (14)

and
〈N2〉 − 〈N〉2 −→

η → ∞0 . (15)

We thus write for the variance,

V (N) ≡ 〈N2〉 − 〈N〉2 =

[

1

b

1 − (1 + bη)e−bη

ebη − 1

]

〈N〉2 , (16)

where b > 0 is an adjustable parameter (fixed at the value b = 1.65). Note
that (16) satisfies (13), (14) and (15).
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Before making a comparison between our string percolation model and
NA49 data, there are two questions to be addressed:

(i) F (η) factor due to random colour summation
When strings fuse in a cluster the effective colour charge is not just

the sum of the colour charges of the individual strings [8]. In practice, the
effective number N of strings is reduced, [9],

N −→
√

〈A〉
〈N〉N −→ F (η)N , (17)

where (see (8) and (9)),

F (η) =

√

1 − e−η

η
, (18)

such that, instead of (3) and (5), have

〈n〉 = F (η)N̄C〈N〉n̄ = F (η)N̄Sn̄ , (3′)

and

V (n)

〈n〉 = F (η)n̄
V (N)

〈N〉 + 1 . (5′)

Note that the F (η) correction is more important for 〈n〉, (3′), then for
Eq. (5′). If the single particle distribution is Poisson with average multiplic-
ity n̄, the average cluster has also a Poisson distribution with multiplicity
F (η)〈N〉n̄.

(ii) The relation between η and Npart

In the definition of η (2), what appears is not Npart but rather the average
number N̄S of strings and the radius R of interaction. Making use of simple
nuclear physics and multiple scattering arguments, one has [10]

R ≃ R1N
1/3
A , (19)

and
N̄S ≃ N̄p

SN
4/3
A , (20)

where R1 is the nucleon radius (≃ 1fm), N̄p
S is the (energy dependent)

number of strings in pp collisions, at the same energy, and NA is given by

NA =
Npart

2
. (21)
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We would like to mention that Eqs. (19) and (20) are not rigorous: in (19)
geometrical factors are not taken into account, in (20) no distinction is made
between valence strings and sea strings, [10].

From (2), (19), (20) and (21) we obtain for the relation between η and
Npart,

η =

(

r

R1

)2

N̄p
SN

2/3
A (22)

We shall now present our results:

1. V (n)/〈n〉

In Fig. 1 we show our curve, Eq. (5′) with (12), (16) and (22), in compari-
son with NA49 data. The obtained values for n̄(n̄ = 0.12) and Np

S (Np
S = 4.5)

are consistent with the additional constraint 〈n〉p ≃ 0.52 (as seen in Fig. 2).
In Fig. 2 we show fits of the multiplicity distributions for different values

of Npart, with Negative Binominals. Reasonable fits are obtained with values
for the NB parameter: k = ∞, Poisson, at low and high density, and k = 29,
for intermediate density.

2. 〈n〉NA
and 〈n〉p

We can relate 〈n〉NA
to 〈n〉p by making use of (3’) and (22):

〈n〉NA
=

F (ηNA
)

F (ηp)
〈n〉pN4/3

A (23)

we first note that (25) satisfies saturation as seen at RHIC[10] when NA →
∞:

1

NA
〈n〉NA

−→
NA → ∞

const. (24)

Relation (23) is valid for high energy. At low energy –
√

s ≃ 20GeV is the
energy at SPS — the presence of valence quarks cannot be ignored. We take
them into account by writing, instead of (23)

〈n〉NA
=

F (ηNA
)

F (ηp)
〈n〉pN4/3

A

[

1 − c
(

1 − 1/N
1/3
A

)]

, (23′)

where c is a parameter decreasing with energy, 1 ≥ c ≥ 0, measuring the
relative contribution of valence quarks to multiplicity,

c ≡
〈n〉Vp
〈n〉p

. (25)

In Fig. 4 we show (23′) in comparison with NA49 data.
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Fig. 4. The average multiplicity divided by 1/2Npart as a function of Npart. The

curve corresponds to Eq. (23’). Multiplicities were calculated from the distributions

of Fig. 2. For c was taken the value c = 0.53.

In conclusion, we find that the recent NA49 results, regarding the mul-
tiplicity distribution dependence on the number of participant nucleons
are quite consistent with the impact parameter, percolation description of
hadron–hadron and nucleus–nucleus collisions at high energies and high den-
sities.
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