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PROBING HADRON-PRODUCTION PROCESSES

BY USING NEW STATISTICAL METHODS

TO ANALYZE DATA
∗
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It is pointed out that the powerful statistical methods introduced by
Bachelier and Mandelbrot in Economics, and those introduced by Hurst
and Feder in Marine Sciences, can be readily used to examine fluctuation
phenomena in hadron-production processes. Evidences for the existence
of non-Gaussian stable, stationary, scale invariant distributions, fractal di-
mensions, and the validity of Hurst’s empirical law are presented. Since
none of the observed features is directly related to the basis of the conven-
tional physical picture, it is not clear whether (and if yes, how and why)
these striking empirical regularities can be understood in the framework of
the conventional picture including QCD.

PACS numbers: 13.85.Tp, 05.40.–a, 13.85.Hd

1. Introduction and motivation

The talk is a brief summary of two recent papers [1, 2] written in col-
laboration with Prof. Meng Ta-chung. What you see in this talk are the
results obtained in a series of preconception-free data-analyses. The purpose

of these analyses is to extract useful information on the reaction mecha-
nism(s) of hadron-production processes, directly from experimental data.
The methods we used to perform such analyses are borrowed from other sci-
ences, namely, Mandelbrot’s approach in Economics [3], and Hurst’s R/S
analysis in Marine Sciences [4].

First of all, we see a great need for preconception-free data-analyses!
This is because the currently popular ways of describing hadron-production
processes are based either on a “Three-Step Scenario” in terms of parton-
momentum distributions, pQCD, and parton-fragmentation functions, or on
a “Two-Component Picture” in which the fluctuations in every experimental
distribution are separated by hand into a “pure statistical part” and a part
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which is considered to be physical. Under this assumption, the method
of Bialas and Peschanski [5] is used to calculate factorial moments. The
common goal of these conventional approaches (for a recent review in which
various experimental and theoretical aspects of hadron-production processes
are discussed, see Ref. [6]) seems to be the following: Explain all the details
about the reaction mechanism(s). The price one has to pay for such details is,
however, the large number of inputs (assumptions, adjustable parameters,
etc.) which one must make in order to do calculations. Hence, a rather
natural question is: Do we really need all these inputs, if we only wish to
know the key features of such hadron-production processes?

2. Fluctuation

It is well-known that fluctuations are of considerable importance in non-
equilibrium as well as in equilibrium systems. There are several reasons for
this. One of them is that fluctuation studies provide a natural framework
for understanding a large class of phenomena, among which the best known
one is “Brownian motion” or “random walk”.

Bachelier, a then young French student, was the first [7] who used the
idea of random walk to study fluctuations. It was in year 1900, which is five
years earlier than Einstein’s [8]. Bachelier’s Gaussian hypothesis says: (1)
price changes, z(t + T ) − z(t), are independent random variables; (2) these
changes are approximately Gaussian. The mathematical basis of Bachelier’s
theory is the classical central limit theorem [9], but a fatal defect of his
theory is that the empirical data are not Gaussian.

In Mandelbrot’s well-known 1963-paper [3], he pointed out an important
observation namely that the variances of the empirical distribution of price
changes,

LM(t, T ) = ln z(t + T ) − ln z(t), (1)

can behave as if they were infinite. An immediate result of this observation
is that the Gaussian distribution in Bachelier’s approach should be replaced
by a family of limiting distributions called stable distributions which contain
Gaussian as the only member with finite population variance. The mathe-
matical basis of this result is the generalized central limit theorem [9], and
the main advantage of Mandelbrot’s approach is that the empirical data
conform best to the non-Gaussian members of stable distributions.

To study fluctuations in subnuclear reactions, we consider the two well-
known JACEE events [10] as examples. They exhibit significant fluctuations
of multiplicities in rapidity distributions. In analogy with Mandelbrot’s
LM(t, T ), we introduce the quantity:

L(η,∆η) = ln
dN

dη
(η + ∆η) − ln

dN

dη
(η) , (2)
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where dN/dη is a measurable quantity, and ∆η can be integer times of the
resolution power which is 0.1 in JACEE events. Under the assumption that
these L(η,∆η)’s are identically distributed random variables, we examine
their resulting distributions by using the data for the two JACEE events
(usually known as JACEE1 and JACEE2) and show that the obtained dis-
tributions are stable, stationary, and scale invariant.

To study the space-time properties of such fluctuations, we introduce,
in analogy with rapidity, a quantity l which we call “locality”; and its corre-
sponding “pesudolocality” is

λ =
1

2
ln

r − x||

r + x||
. (3)

The uncertainty principles lead, in particular, to

∆λ∆η ∼ constant , (4)

which is useful for the further discussion of scale invariance in space-time.
For stability test, we make use of the fact that a non-degenerate random

variable X is stable, if and only if for all integers m > 1, there exist constants
cm = m1/α with α ∈ (0, 2] and dm ∈ R such that

Sm ≡ X1 + X2 + · · · + Xm
d
= cmX + dm , (5)

where Xi’s are independent, identical copies of X. Let X ≡ L(η,∆η), and for

the convenience of data-analyses we use c−1
m (Sm−dm)

d
= L to check whether

the variable is stable. Here, {L1, L2, · · · , Lm} stands for a m-dimensional
random variable the components of which can be considered as independent.
It is seen (see Figs. 5 and 6 of Ref. [1]) that the above-mentioned cm’s can
be readily found, and thus the two sets of L(η,∆η) obtained from the two
JACEE events are indeed stable random variables.

Stationarity expresses the invariance principle with respect to time.
Hence in hadron-production processes, the property of stationarity mani-
fests itself in the sense that the L(η,∆η)’s obtained from the η-distribution
measured at different times (or time-intervals) have the same statistical prop-
erties. It is seen (cf. Fig. 7 of Ref. [1]) that the tail distributions of JACEE1
and JACEE2 are very much the same. The fact that these two events oc-
curred at different times; in reactions at different energies; by using different
projectiles and targets, makes the observed similarity particularly striking.

For scale invariance test, we propose to evaluate the running sample
variance

S2
n =

1

n − 1

n∑

i=1

[L(ηi,∆η) − L̄n(η,∆η)]2 (6)
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of JACEE-data and then plot their frequency distributions. (See Figs. 12
and 13 of Ref. [1].) From the straight-line structure the scale invariance
property is evident. In contrast, we also consider two sets of sample values
of a standard Gaussian random variable as many as those in the two JACEE
events, and wish to see in particular also how their running sample variances
behave. The results are plotted in the same figures (see Figs. 12 and 13 of
Ref. [1]) as those of JACEE cases for comparison. Here we see clearly that
for such variables with finite variance, there exists a scale, which is in sharp
contrast to the power-law structure of JACEE events. Combined with the
result that L(η,∆η) is stable, we are led to the conclusion that it is not only

stable but also non-Gaussian.

3. Correlations

In order to find out, whether/how the L(η,∆η)’s and/or the dN/dη(η)’s
are (statistically) co-related with one another, we propose to follow Feder
[11], Mandelbrot and his collaborators [12], and apply Hurst’s rescaled range

analysis (also known as R/S analysis) to the rapidity distributions of the
two above-mentioned JACEE events. The obtained results (see Fig. 1 of
Ref. [2]) can be summarized as follows: First, the Hurst’s empirical law
and the scaling behavior are valid for dN/dη(η)’s with universal features of
H = 0.9 for both JACEE events, where H is the Hurst exponent. Second,
the Hurst exponent H(yi) is independent of the selected starting point yi.
Third, the fact that H = 0.9 > 0.5 shows the existence of global statistical
dependence and thus global structure in the two data sets. Furthermore,
we see that not only the divider (or trail) dimension DT = 1/H, but also
the self-affine properties of the system of produced hadrons together with its
associated fractal dimension DG = 2 − H can be readily determined, once
the corresponding Hurst exponents are found. Further studies along this
line are underway.

4. Concluding remarks

The results obtained from the preconception-free data-analyses per-
formed in Refs. [1] and [2] have led us to the following conclusions: First,
the fact that non-Gaussian stable distributions which are stationary and
scale-invariant describe the existing data remarkably well calls for further
attention, and it would be very helpful to have a comparison with data taken
at other energies and/or for other collision processes. Second, the validity of
Hurst’s empirical law with the same exponent for the two JACEE events is
not only another example for the existence of universal features in the com-
plex system of produced hadrons, but also implies the existence of global
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statistical dependence and thus the existence of global structure between
the different parts of the system. Third, the fact that the extremely robust
quantities such as the frequency distribution of running sample variance and
the rescaled range R/S obey universal power-laws which are independent of
the colliding energy, independent of the colliding objects, and independent
of the size of the rapidity intervals, strongly suggests that the system un-
der consideration has no intrinsic scale in space-time. Finally, since none
of the above-mentioned features can be directly related to the basis of the
conventional picture, it is not clear whether, and if yes how and why, these
striking empirical regularities can be understood in terms of the conventional
approaches, including QCD.

This work is supported by the National Natural Science Foundation of
China under Grant No. 70271064.
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