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The Bose–Einstein (or HBT) correlation functions are evaluated for the
fractal structure of QCD jets. These correlation functions have a stretched
exponential (or Lévy-stable) form. The anomalous dimension of QCD de-
termines the Lévy index of stability, thus the running coupling constant
of QCD becomes measurable with the help of two-particle Bose–Einstein
correlation functions. These considerations are tested on NA22 and UA1
two-pion correlation data.

PACS numbers: 05.40.Fb, 13.85.Hd, 13.87.Ce, 25.75.–q

1. Introduction

The study of fractal phenomena was introduced to high energy particle
and nuclear physics by Bialas and Peschanski in Ref. [1], see also Ref. [2]
for a review. In QCD, jets emit jets that emit additional jets and so on.
The resulting fractal structure of QCD jets was explored with the help of
a beautiful geometric picture in Refs. [3–5]. These ideas were developed
further by the Lund group in Refs. [6–8], by Dokshitzer and Dremin in
Ref. [9] as well as by Ochs and Wosiek in Refs. [10, 11]. Both theoretical
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and experimental aspects of the so-called intermittency or fractal structures
in high energy physics were reviewed by De Wolf, Dremin and Kittel in
Ref. [12].

Bialas realized, that Bose–Einstein correlations and intermittency might
be deeply connected [13]. The mathematical properties of Bose–Einstein
correlation functions for Lévy stable (convolution invariant) sources were
written up by three of us in Refs. [14, 15]. Here we add a physical interpre-
tation and show, that the fractal properties of QCD cascades can naturally
be measured by the Lévy index of stability of Bose–Einstein correlations.
Our analytical results are similar in spirit to the numerical investigations of
Wilk and collaborators in Ref. [16].

2. (Multi)fractal structure of the QCD jets

In this section we recapitulate earlier theoretical results of the Lund
group, [3–8], that related the properties of QCD cascades to intermittency.
These results are based on a beautiful geometric interpretation of the color
dipole picture, and on an infrared stable measure on parton states related
to hadronic multiplicity.

Fig. 1. The phase–space of QCD jets in the (y, κ) plane, where κ = log(k2

t
). (a)

The phase–space available for a gluon emitted by a high energy qq system is a

triangular region in the (y, κ) plane. (b) If one gluon is emitted at (y1, κ1), the

phase–space for a second (softer) gluon is given by the area of this folded surface.

(c) The total gluonic phase–space can be described by this multifaceted fractal

surface [3–5].

A high energy qq system radiates gluons according to the dipole formula

dn =
3αs

4π2

dk2
⊥

k2
⊥

dydφ , (1)

hence the phase–space for the emission of a gluon is given by the relation

|y| ≤
1

2
ln

(

s

k2
⊥

)

, (2)
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which corresponds to the triangular region in a (y, ln k2
⊥
) diagram as shown

in Fig. 1(a). If two gluons are emitted, then the distribution of the hardest
gluon is described by Eq. (1). The distribution of the second, softer, gluon
corresponds to two dipoles, the first is stretched between the quark and the
first gluon, and the second between the first gluon and the anti-quark. The
phase–space available for the second gluon corresponds to the folded surface
in Fig. 1(b), with the constraint k2

⊥,2 < k2
⊥,1, as the first gluon is assumed to

be the hardest one. This procedure can be generalized so that the emission
of a third, still softer gluon corresponds to radiation from three color dipoles,
with n gluons emitted already the emission of the (n + 1)-th gluon is given
by a chain of n+1 dipoles. Thus, with many gluons, the gluonic phase–space
can be represented by a multi-faceted surface as illustrated in Fig. 1(c). Each
gluon adds a fold to the surface, which increases the phase–space for softer
gluons. (Note, that in this process the recoils are neglected, as is normal in
leading log approximation). Due to its iterative nature, the process generates
a Koch-type fractal curve at the base-line. The length of this base-line of the
partonic structure in figure 1(c) is proportional to the particle multiplicity.
This curve is longer, when studied with higher resolution: it is a fractal curve,
embedded into the four-dimensional energy-momentum space, characterized
by the fractal dimension

df = 1 +

√

3αs

2π
, (3)

or one plus the anomalous dimension of QCD [3–5].

With the help of the Lund string fragmentation picture, this fractal in
momentum space is mapped into a fractal in coordinate space, and the
constant of conversion is the hadronic string tension, κ ≈ 1 GeV/fm. This
mapping does not change the fractal properties of the curve. The emission
of softer and softer gluons corresponds to a smaller and smaller modification
of this curve, as a gluon with a very small transverse mass creates a very
small kink on the Lund string. Hence this process is infrared stable.

3. Bose–Einstein correlations for Lévy stable source distributions

Let us discuss here the stability of the particle emitting source in QCD,
and consider the Bose–Einstein correlation functions for such sources. The
two-particle Bose–Einstein correlation function is defined as the ratio of the
two-particle invariant momentum distribution to the product of the single-
particle invariant momentum distributions:

C2(k1,k2) =
N2(k1,k2)

N1(k1)N1(k2)
. (4)
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If long-range correlations can be neglected or corrected for, and if the short-
range correlations are dominated by Bose–Einstein correlations, this two-
particle Bose–Einstein correlation function is related to the Fourier-trans-
formed source distribution. For clarity, let us consider the case of a one-
dimensional, factorized coordinate and momentum space distribution,

S(x, k) = f(x) g(k) . (5)

In this case [14, 15], the Bose–Einstein correlation function is

C2(k1, k2) = 1 + |f̃(q)|2 , (6)

where the Fourier transformed source density (often referred to as the char-

acteristic function) and the relative momentum are defined as

f̃(q) =

∫

dx exp(iqx) f(x) , q = k1 − k2 . (7)

Let us focus on the property of particle emission from QCD jets, that
the fractal defining the particle emission is infrared stable: adding one more,
very soft gluon does not change the resulting source distributions. Thus the
source of particles is stable for convolution. The Bose–Einstein correlation
functions for such particle emitting sources were evaluated recently by three
of us, which we summarize in this section following Refs. [14] and [15].

For the case of the jets decaying to jets to jets and so on, the final position
of a particle emission is given by a large number of position shifts, hence the
distribution of the final position x is obtained as a convolution,

x =

n
∑

i=1

xi , f(x) =

∫ n
∏

i=1

dxi

n
∏

j=1

fj(xj) δ

(

x −

n
∑

k=1

xk

)

. (8)

Various forms of the Central Limit Theorem state, that under certain con-
ditions, the distribution of the sum of a large number of random variables
converges (for n → ∞) to a limit distribution. In case of “normal” elemen-
tary processes, that have finite means and variances, the limit distribution
of their sum is a Gaussian. Stable distributions are precisely those limit
distributions that can occur in Generalized Central Limit theorems. Their
study was begun by the French mathematician Paul Lévy in the 1920’s.
The stable distributions are frequently given in terms of their characteris-
tic functions, as the Fourier transform of a convolution is a product of the
Fourier-transforms,

f̃(q) =
n
∏

i=1

f̃i(q) (9)
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and limit distributions appear when the convolution of one more elementary
process does not change the shape of the limit distribution, but it results
only in a modification of its location and scale parameters. The characteristic
function of univariate and symmetric stable distributions is

f̃(q) = exp (iqδ − |γq|α) , (10)

where the support of the density function f(x) is (−∞,∞). Deep mathe-
matical results imply that the index of stability, α, satisfies the inequality
0 < α ≤ 2, so that the source distribution be always positive. These Lévy
distributions are indeed stable for convolutions, in the following sense:

f̃i(q) = exp (iqδi − |γiq|
α) ,

n
∏

i=1

f̃i(q) = exp (iqδ − |γq|α) , (11)

γα =
n
∑

i=1

γα
i , δ =

n
∑

i=1

δi. (12)

Thus the Bose–Einstein correlation functions for univariate, symmetric
stable distributions (after a core-halo correction, and a re-scaling) read as

C(q;α) = 1 + λ exp (−|qR|α) . (13)

For the special value of α = 2 we obtain the well known Gaussian case.
Refs. [14] and [15] discuss further examples and details and generalize these
results to three dimensional, hydrodynamically expanding, core-halo type
sources as

C(q,K;α) = 1 + λ(K) exp
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. (14)

Figure 2(a) shows univariate symmetric Lévy source distributions. Fig-
ure 2(b) illustrates, that values of the index of stability α are related to
the tails of these distributions. If α < 2, for large values of s = r/R the
Lévy sources decay as fα(s) ∝ s−1−α. Figure 2(c) shows a two-dimensional
symmetric Lévy stable source. Bose–Einstein correlation functions for Lévy
stable source distributions are shown in figure 2(d) for various values of the
index of stability α, and for a constant value of the radius parameter R.
These Bose–Einstein correlation functions are sensitive to the value of α
not only in the small Q < ~/R region, but are also in the “large” relative
momentum region of Q > ~/R. Thus these correlations are sensitive to the
structure of the particle emission in the region which is shaped by the jets.
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Fig. 2. (a) Source functions for univariate symmetric Lévy laws, as a function of

the dimensionless variable s = r/R, on a linear–linear scale, for various values

of the Lévy index of stability, α. (b) Same as (a), but on a linear–logarithmic

plot. Note the power-law tails that decay in case of α < 2 for large values of s

as fα(s) ∝ s−1−α. (c) Source function for two-dimensional symmetric Lévy laws,

for α = 0.6. (d) Bose–Einstein correlation (or HBT) correlation functions for

univariate symmetric Lévy laws, for a fixed scale parameter of R = 0.8 fm and

various values of the Lévy index of stability, α.

A random walk, where the length of the steps is given by a Lévy distri-
bution, and the direction of the steps is random, corresponds to a fractal
curve, in physical terms it can be interpreted as the path of a test parti-
cle performing a generalized Brownian motion. This motion is referred to
as anomalous diffusion and the probability that the test particle diffuses to
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distances r greater than a certain value of |s| is given by P (r > |s|) ∝ |s|−α.
This relation is valid for anomalous diffusion not only in one, but also in
two and three dimensions. Thus the Lévy index of stability α is the fractal
dimension of the trajectory of the corresponding anomalous diffusion [17].
When we apply this result to QCD, there are two key considerations.

First, if gluon radiation is neglected, the qq system hadronizes as a 1+1
dimensional hadronic string, which has no fractal structure. If the gluon
emission is switched on, the emission of gluon n from one of the n dipoles
corresponds to a step of an anomalous diffusion in the plane transverse to
the given dipole. Hence the anomalous dimension of QCD equals to the
Lévy index of stability of this anomalous diffusion,

√

3αs

2π
= αLévy . (15)

Second, data on Bose–Einstein correlations are often determined in terms
of the invariant momentum difference Qinv =

√

−(p1 − p2)2. Bose–Einstein
correlation functions that depend on this invariant momentum difference
can be obtained within the framework of the so-called τ -model. This model
assumes a broad proper-time distribution, H(τ) and very strong correlations
between coordinate and momentum in all directions, xµ/τ ∝ pµ/m(t). Hence

(x1−x2)(p1−p2) ∝ τQ2
inv, see Refs. [18,19] for details. In this case, the Bose–

Einstein correlation function measures the Fourier-transformed proper-time
distribution H̃ in the following, unusual manner:

C2(Qinv) ≃ 1 + λRe H̃2

(

Q2
inv

2m(t)

)

, (16)

where m(t) stands for the (transverse) mass of the pair for (two)- or more
jet events. From this relation it follows, that αBEC = 2αLévy. Thus we
find the following relationship between the strong coupling constant and
the exponent of an invariant relative momentum dependent Bose–Einstein
correlation function:

αs =
π

6
α2

BEC . (17)

4. Application to NA22 and UA1 data

In Ref. [14] three of us have fitted the NA22 [20] and the UA1 data [21] on
two-particle Bose–Einstein correlation functions with the Lévy stable form
of Eq. (13). The results were summarized in Table I of that paper. Here we
re-interpret the exponent of this fit with the help of Eq. (17) and extract αs,
the coupling constant of QCD, as given by Table I of this paper.
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TABLE I

Converting the best Lévy fits to UA1 and NA22 two-particle correlations using
the τ -model converted with Eq. (17) to values for the running QCD coupling con-
stant αs.

NA22 UA1

Parameter Value Error Value Error

αBEC from Ref. [14] 0.67 ± 0.07 0.49 ± 0.01

αs from Eq. (17) 0.24 ± 0.05 0.13 ± 0.01

5. Summary, conclusions

Using the picture of strongly correlated coordinate and momentum space
distributions, we determined the (running of the) strong coupling constant
from NA22 and UA1 two-pion Bose–Einstein correlation measurements.
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