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Resummation in QCD provides insight into the evolution of final state
jets from short to long distances, and of accompanying interjet radiation.
Applications to event shapes, including the recently-proposed angularities,
suggest experimental tests of the interrelations between weak- and strong-
coupling dynamics.
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1. Introduction

Jets are the imprint on final states of dynamics at short distances,
whether from transitions within the standard model (Drell–Yan annihila-
tion or QCD scattering, for example) or from the creation of new degrees of
freedom. An individual jet, however, provides scant clues to its origin. In-
deed, a jet is simply a collection of co-moving particles in relative isolation.
The number of particles in a given jet, and consequently its total energy and
momentum, are never uniquely defined. Nevertheless, the distributions of
particles and momenta within and between high energy jets encode infor-
mation at all scales, from the largest momentum transfer or mass, through
QCD evolution to the scale of the strong coupling, ΛQCD. From the point
of view of quantum field theory, the system passes through a stage of weak
coupling at the shortest distances on to strong coupling and nonperturbative
dynamics at the longest. Starting with perturbation theory, resummations
provide one bridge between these regimes.
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2. Resummation: Why? When? How?

Only the most inclusive observables depend on a single hard scale. More
common — and more interesting — are functions of two ordered but per-
turbative scales, Q ≫ Q1 ≫ ΛQCD. Varying the lower scale, Q1 allows us to
move continuously between the ultraviolet and the infrared. Typically, as Q1

decreases, the perturbative series develops one or two logarithmic enhance-
ments in the ratio Q/Q1 for every power of αs. These enhancements may
often be organized, that is resummed, to all orders in perturbation theory.
Examples include enhancements that are explicit in the perturbative cross
section, such as those in the transverse momentum distributions (Q1 = QT)
of vector bosons [1], and enhancements that are implicit in inclusive dis-
tributions, as in threshold resummation for inclusive Higgs production [2],
integrated over QT.

Perturbative calculations in QCD depend on the fundamental property
of asymptotic freedom. The most tractable perturbative quantities are one-
scale cross sections that are fully infrared safe, that is, cross sections that can
be expressed as series in αs with finite coefficients. Infrared safe observables
are essentially descriptions of the flow of energy [3]. The class of infrared
safe, single-scale cross sections is limited to e+e− total and jet cross sections,
however, and the latter are single-scale only when the masses of the jets are
comparable to the total energy Q. When jet masses become small compared
to Q, it is necessary to resum, even in these infrared safe cross sections.

Resummation of two-scale logarithms can be derived whenever a cross
section (sometimes amplitude) is a product or convolution of factors that
separate the disparate scales Q and Q1 through the introduction of a third
scale, the factorization scale, µ ≫ ΛQCD. Schematically, a factorizable cross
section σ that depends on a very large momentum scale Q and a much softer
scale m can be written as σ(Q,m) = ω(Q,µ)⊗ f(µ, ,m). Here m labels the
soft scale(s), typically light quark masses and ΛQCD, although it may also
represent the lower of two perturbative scales (say a jet mass) in an infrared
safe cross section. Whenever there is such a factorization, there is evolution.
Since the physical cross section cannot depend on the factorization scale,
the variation of the short distance function, ω, with µ must cancel that of
the long distance function, f ,

µ
d

dµ
lnσphys(Q,m) = 0 ⇒ µ

d ln f

dµ
= −P (αs(µ)) = −µ

d lnω

dµ
, (1)

where the “kernel” P can depend only on the variables that the two functions
hold in common. Wherever there is evolution there is resummation [4], which
is simply the solution to the evolution equation or equations. An alternative
route to resummed cross sections is based on coherent branching, which
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analyzes repeated gluon emissions [5]. One may think of each branching as
a “minifactorization”, an incremental step from short to long distances.

Factorization proofs [6] are based on the quantum incoherence of dy-
namics at incommensurate length scales, and of the evolution of systems
of particles mutually receding at nearly the speed of light. These consid-
erations are reflected in the structure of factorizable cross sections near an
“elastic” limit, with final states that may be characterized by a single hard
scattering and a fixed number of jets,

σ(Q, a + b → Njets) = H ⊗ Pa′/a ⊗Pb′/b ⊗
Njets
∏

i=1

Ji ⊗ S . (2)

The convolutions may be in partonic momentum fractions, transverse mo-
menta or energies, depending on the observable. Physics at the hard scale
is in H, while the remaining functions generate perturbative logarithms and
nonperturbative dependence. In effect, the calculation of any such cross
section can be broken down into a set of standard components: the prod-
uct of P’s, which describe how two partons a′ and b′, which result from
the quantum evolution of partons a and b, collide at H, leaving behind
forward jets of “spectators”, and producing a set of outgoing jets, Ji and
coherent soft emission S. For example, in hadronic collisions when partonic
energy is just sufficient for W or Z production, the cross section takes the
form H ⊗ Pq/a ⊗ Pq̄/b ⊗ S. Such an inclusive cross section is sensitive to
long distance dynamics only through the forward jets and the soft radiation.
Similarly, for e+e− → 2J the cross section can be factorized into a hard part
times two jets, H ⊗ Jq ⊗ Jq̄ ⊗ S, while a DIS structure function near x = 1
breaks up into H ⊗ Pq/a ⊗ Jq ⊗ S. Because the cross sections factorize in
these limits, their logarithmic dependence on the masses of the jets and on
1 − x, respectively, may be resummed [4, 5, 7].

3. Application: angularities in e
+

e
−

Among the many applications of resummation, event shapes near the
two-jet limit in e+e− annihilation have received perhaps the most attention,
in large part because of the large lever arm provided by the LEP data, both
in the large scale, the total c.m. energy, and in the smaller scale, typically
the jet mass.

A generalized class of event shapes, the “angularities”, were proposed in
Ref. [8] (reanalyzed and renamed by Berger and Magnea in [9]), with the
motivation of providing a new parameter that interpolates between distinct
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traditional measures of jet substructure. For final state N , we define

τa =
1

Q

∑

i in N

Ei (sin θi)
a (1 − | cos θi|)1−a ≡ 1

Q

∑

i inN

Ei wa(cos θi) . (3)

Here θi is the angle between the direction of final-state particle i and the
thrust axis. Special cases are a = 0, the thrust, a = 1 broadening, and the
total cross section, a → −∞. The “elastic” limit for any finite a is τa = 0,
where the final state consists of two perfectly collimated jets. Following
the reasoning outlined above to next-to-leading logarithm (NLL) in τa, the
differential cross section factorizes in the space of Laplace moments [8],

σ (τa, Q, a) = σtot

∫

C

dν eν τa [Ji(ν, pJi) ]2 ,

Ji(ν, pJi) =

∫

0

dτa e−ντJi Ji(τJi, pJi) = e
1
2
E(ν,Q,a) , (4)

into a product of jet functions, J . At the level of NLL, it is possible to define

Scc̄ = 1, which essentially serves as a definition of the jets. This definition
is equivalent to the calculation of the cross section in terms of jets evolving
independently according to coherent branching [5].

Logarithms in the transform variable ν are in close correspondence with
those in τa. In transform space when a < 1, logs of ν exponentiate in
Sudakov form, with up to n + 1 logarithms at order αn

s in the exponent E
in Eq. (4), given in terms of known anomalous dimensions A(αs) and B(αs)
by

E(ν,Q) = 2

1
∫

0

du

u







uQ2
∫

u2Q2

dp2
T

p2
T

A (αs(pT))
(

e−u1−aν(pT/Q)a − 1
)

+
1

2
B

(

αs(
√

uQ)
)

(

e−u(ν/2)2/(2−a) − 1
)






. (5)

A characteristic feature of resummed cross sections, illustrated by this ex-
pression, is an integral over scales of the running coupling. Taken literally,
these expressions are ill-defined, from regions where the integration variable
pT is of order ΛQCD. Although this singularity can be avoided while re-
taining NLL accuracy [7], it is also useful to study the implications of such
ambiguities, as we shall see below.
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The a-dependent expression (5) has yet to be confronted with real LEP
data, except for the case a = 0, the thrust. Fig. 1 shows data for the closely-
related heavy jet mass distribution at the Z pole [10]. The perturbative-only
NLL prediction has the right shape overall, but is shifted toward smaller val-
ues of jet mass. We will attribute this shift to nonperturbative corrections
below. These considerations may be generalized to jet shapes in deeply in-
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Fig. 1. Heavy jet mass distribution at the Z [10]. Dashed line: NLL resummed.

elastic lepton–hadron and hadron–hadron scattering when the overall final
state can be characterized by a definite set of jets accompanied by soft ra-
diation, as in Eq. (2) above. Such cross sections, were termed “global” by
Dasgupta and Salam in Ref. [11]. Recently, Banfi, Salam and Zanderighi
have extended NLL resummation to a wide class of global observables in
e+e−, DIS and hadron–hadron scattering, by developing an innovative soft-
ware package [12].

4. Non-global effects: color and energy flow

Complementary to jet shapes are descriptions of interjet energy flow. A
simple illustration is shown in Fig. 2, where we trigger on two jet events in
the scattering of particles A and B, and measure the inclusive distribution
ΣΩ(E), where E ≥ EΩ ≥ 0, with EΩ the energy that flows into some angular
region Ω, away from both the collision axis and the jet directions.

We can imagine (at least) two choices for such a cross section. First,
it may be fully inclusive in the region Ω̄ between Ω and the jets. In this
case, the number of jets is not fixed, and the observable is nonglobal in the
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Fig. 2. Geometry for energy flow observables.

terminology Dasgupta and Salam [11]. This observable cannot be factorized
into a fixed number of jets as in Eq. (2), and as such cannot be resummed to
a simple exponential in the same way as the event shapes described above.
Alternatively, we may limit radiation into region Ω̄ by constructing a corre-
lation with an event shape such as τa that fixes the number of jets [8, 13].

Cross sections where the number of jets is not fixed are not fully un-
derstood, but they remain infrared safe, so that we should be able to learn
about them in perturbation theory. Indeed, Banfi, Marchesini and Smye [14]

showed that at leading logarithm, αn
s lnn(

√
S/EΩ), and in the limit of large

numbers of colors, Nc, these cross sections obey a beautiful nonlinear evo-
lution equation,

∂∆Σab(E) = −∂∆Rab Σab(E)+

∫

k not in Ω

dNab→k (Σak(E)Σkb(E) − Σab(E)) ,

(6)
where ∂∆ = E∂E . Here dNab→k describes the angular distibution of ra-
diation from a pair (dipole) of color charges, and Rab the corresponding
logarithmic angular integration, where the β are four-velocities of partons
within the jets that radiate soft gluons directly into Ω (case 1 in Fig. 2),

dNab→k =
dΩk

4π

βa · βb

βk · βb βk · βa
Rab =

Q
∫

E

dE′

E′

∫

Ω

dNab→k . (7)

These quantities control the linear term on the right-hand side of Eq. (6).
The nonlinear terms describe radiation from a hard gluon of momentum
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k into region Ω̄. This gluons acts as a new, recoil-less source of further
emission into region Ω (2 in Fig. 2). In the large-Nc limit, any gluon may
be thought of as a pair of sources q(k)q̄(k), with quark–antiquark color.
In this way, for large Nc, the combination q̄(a)G(k)q(b) is equivalent to
an independent pair of dipole sources, q̄(a)q(k) ⊕ q̄(k)q(a). An intriguing
relation has been pointed out of this equation with small-x evolution in the
unitarity (saturation) limit [15].

In the more restrictive approach, the correlation with an event shape, for
example an angularity, can fix the number of jets by setting τaQ ∼ E [8], and
we may factorize and resum as above, dσ/dEdτa ∼ S(E/τaQ)⊗dσresum/dτa.
In a combination of both approaches [13], one may trigger on two narrow
jets, and take the limit E/(τaQ) → 0, using the nonlinear evolution above
for the function S that describes radiation into the interjet region.

With methods such as these, we can study the influence of color flow at
short distances on energy flow at wide angles [16], including applications to
final state rapidity gaps [17].

5. From resummed perturbation theory to nonperturbative QCD

We now return to the interpretation of expressions like (5), where the
argument of αs vanishes in the infrared limit, As required by infrared safety,
if we reexpand the running coupling in terms of αs(Q) for any fixed mo-
mentum scale Q, the result is finite at all orders. The divergence associated
with the running coupling comes from an n! behavior of this expansion at
order αn

s [18]. We treat such contributions as ambiguities in the perturbative
expansion that may be resolved by supplementing the series with nonpertur-
bative parameters, which turn out to be associated with power corrections
in the large scale Q. Shape functions [19] organize the dominant corrections
for event shapes such as angularities to all powers of Q.

To be specific, in Eq. (5), we treat the region pT > κ using perturbation
theory, with κ > ΛQCD a new factorization scale. For pT < κ, we expand

the integrand and replace the complete series of powers of νpT/Q by f̃a,NP,
the shape function,

E(ν,Q, a) = EPT+
2

1 − a

∞
∑

n=1

1

n n!

(

− ν

Q

)n
κ2
∫

0

dp2
T

p2
T

pn
T A (αs(pT))

≡ EPT + ln f̃a,NP

(

ν

Q
, κ

)

. (8)
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The jet function is now factorized in ν-space into perturbative and nonper-
turbative functions, resulting in a convolution after the inverse transform (4),

σ(τa, Q) =

τaQ
∫

0

dξ fa,NP(ξ) σPT(τaQ − ξ,Q) . (9)

Because the momentum space shape function is independent of Q, once it
is chosen to describe the τa-distribution at some fixed Q, say the Z mass, it
gives predictions for all Q [9, 19–21].

Fig. 3 illustrates for the heavy jet mass the quality of fit that may be
achieved in this way for a very wide range in Q. What we learn from

Fig. 3. Jet mass fit with a shape function at the Z mass, with predictions and data

for other energies.

such an event shape is illustrated by the functional form discussed in [20]

f0,NP(ρ) = const ρc−1 e−dρ2
. The parameter c may be interpreted in terms of

the transverse momenta emitted per unity rapidity range, while d is related
to the flow of energy between the hemispheres associated with the jets. More
generally, shape functions are related to correlations of energy flow. This
connection may be made in a manner that recalls the moment analysis of
multiplicity distributions [22]. We introduce an energy flow operator E(Ω)
by its action on states,

E(Ω)|k1, . . . kN 〉 =
N

∑

j=1

k0
j δ

2(Ω − Ωj)|k1, . . . kN 〉 . (10)

For τa → 0, the final state is characterized by two narrow jets accompanied
by soft radiation. In this limit, moments of the shape function may be
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represented as [19]

∞
∫

0

dξ ξnfa(ξ) =

∫ n
∏

j=1

dΩi wa(cos θj)〈E(Ω1) . . . E(Ωn)〉 , (11)

where the angular functions wa(cos θ), have been defined above in Eq. (3).
The expectations in (11) are taken in the presence recoilless color sources
(Wilson lines) that accurately represent the coupling of the soft radiation to
the jets. The logarithm of the shape functions is a cumulant expansion in
these expectations [20].

By generalizing the thrust and related event shapes to angularities, we
recognize in Eq. (8) an interesting scaling property for the associated event
shapes, which may be thought of as a test of the rapidity-independence of
nonperturbative dynamics [9, 21],

f̃a

(

ν

Q
, κ

)

=

[

f̃0

(

ν

Q
, κ

) ]
1

1−a

. (12)

It would be interesting to confront this prediciton with LEP data. For the
present, however, we must content ourselves with a comparison to PYTHIA,
which is fairly encouraging, as Fig. 4 shows [21]. It is worth emphasizing that
most event shapes were invented for the e+e− jet physics of the late 70’s, and
there is more to learn by addressing existing data with new analyses [23].
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Fig. 4. Scaling predictions for the shape function in a as tested by PYTHIA.

Also relatively unexplored are power corrections for single particle in-
clusive cross sections. Here we would like to understand single-particle
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cross sections from fixed target to collider energies. Using the formalism
of Ref. [24], and the analysis of resummed cross sections described above,
it is possible to study the energy dependence of power corrections in cross
sections at measured xT = 2pT/

√
S [25]. For example, in the phase space

limit, xT → 1 for A + B → γ + X, the cross section may be written as
the inverse transform of the Mellin moments of the fixed-order cross section
with a resummation of higher order logarithms, in a form analogous to (5),

p3
T

dσAB→γ

dpT
∼

i∞
∫

−i∞

dN

2πi
σ̃

(0)
AB→γ(N)

(

x2
T

)

−N−1
eEPT(N,pT) eδ ENP(N,pT) .

(13)
Isolating low scales as above, we derive a nonperturbative exponent with the
N dependence

δENP(N) = const
N2

p2
T

ln
pT

N
⇒

⇒ δENP(xT) = const
1

p2
T ln2

(

4p2
T

S

) ln

(

pT ln

(

4p2
T

S

))

, (14)

where we have used the conjugate relation of the variables N and ln x2
T. We

find a complex behavior in S at fixed pT, associated with energy conserva-
tion [25].

6. Hopeful conclusion

Resummations can bring perturbative QCD to the doorstep of nonper-
turbative field theory. This analysis is still evolving, and alternative treat-
ments of the perturbative/nonperturbative transition are possible. Theoret-
ical and experimental studies of the interplay of color and energy flow in
hadronic scattering should aid these developments. Eventually we will learn
to translate fully the language of partons into the language of hadrons.
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