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In the recent years we have seen a lot of activity around systems and
experiments, like DIS at HERA or the heavy-ion experiments at RHIC,
involving a large number of partons due to the high energy and/or the
high number of participants of those experiments. The main problem in
this regime is that of the high parton densities. In fact, in most of the
models of multiparticle production, two contributions to the multiplicity
are considered: one proportional to the number of participant nucleons,

Npart, and a second one proportional to the number of collisions, N
4/3
part. In

order to get the right multiplicities at RHIC it is necessary to lower the
second contribution. A possible mechanism for this is the saturation. Here,
I am going to review the saturation of parton densities in the initial state,
in two different frameworks: the Colour Glass Condensate and the string
clustering.

PACS numbers: 12.38.Mh, 24.85.+p, 25.75.Nq

1. The colour glass condensate

1.1. Parton saturation at small x and the saturation momentum

It has been much activity in the last years trying to understand the phy-
sics of nuclear and hadronic processes in the regime of very small Bjorken’s
x (very high energy). The main problem in this regime is that of the high
parton densities. At high energy, the QCD cross sections are controlled
by small longitudinal momentum gluons in the hadron wavefunction, whose
density grows rapidly with increasing energy or decreasing x, due to the
enhancement of radiative process. If one applies perturbation theory to this
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regime, one finds that, by resuming dominant radiative corrections at high
energy, the BFKL equation leads to a gluon density that grows like a power
of s and in consequence to a cross section that violates the Froissart bound.
Nevertheless, the use of perturbation theory to high-energy problems is not
obvious. In fact, the BFKL and DGLAP equations are linear equations that
neglect the interaction among the gluons. With increasing energy, recom-
bination effects, that are non-linear, favoured by the high density of gluons
should become more important and lead to an eventual saturation of parton
densities.

These effects become important when the interaction probability for the
gluons becomes of order one. Taking (αsNc)/Q

2 as the transverse size of
the gluon and (xG(x,Q2))/πR2 as the density of gluons, the interaction
probability is expressed by

αsNc

Q2

xG
(

x,Q2
)

πR2
. (1)

Equivalently, for a given energy, saturation occurs for those gluons having
a sufficiently large transverse size r2

⊥ ∼ 1/Q2, larger than some critical value
1/Qs(x,A). So the phenomenon of saturation introduces a characteristic
momentum scale, the saturation momentum Qs(x,A), which is a measure of
the density of the saturated gluons, and grows rapidly with 1/x and A (the
atomic number). The probability of interaction, that can be understood as
“overlapping” of the gluons in the transverse space, becomes of order one for
those gluons with momenta Q2 <∼ Qs(x,A) where

Q2
s (x,A) = αsNc

xG(x,Q2
s )

πR2
≡

(colour charge)2

area
. (2)

For Q2 <∼ Q2
s (x,A), the non-linear effects are essential, since they are

expected to soften the growth of the gluon distribution with τ ≡ ln(1/x). For
a nucleus, xGA(x,Q2

s ) ∝ A and πR2
A ∝ A2/3, so Eq. (2) predicts Q2

s ∝ A1/3.
One can estimate the saturation scale by inserting the BFKL approximation
into Eq. (2). This gives (with δ ≈ 1/3 and λ ≈ cᾱs in a first approximation):

Q2
s (x,A) ∼ Aδ x−λ , c =

−β +
√

β(β + 8ω)

2
= 4.84 . . . , (3)

which indicates that an efficient way to create a high-density environment
is to combine large nuclei with moderately small values of x, as it is done at
RHIC.

This equation also shows that for sufficiently large energy or x small
enough, Q2

s (x,A) ≫ Λ2
QCD and αs(Qs) ≪ 1, which characterises the regime

of weak coupling QCD. But although the coupling is small, the effects of
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the interactions are amplified by the large gluon density: at saturation,
GA(x,Q2

s ) ∼ 1/αs(Qs) ≫ 1, so the gluon modes have large occupation
numbers, of order 1/αs (corresponding to strong classical fields A ∼ 1/g),
which suggests the use of semi-classical methods.

1.2. The effective theory for the CGC: the renormalisation group equation

One can write a classical effective theory based on this general idea: the
fast partons — valence quarks with large longitudinal momentum — are
considered as a classical source that emits soft gluons — with smaller longi-
tudinal momenta — which are treated as classical colour fields A[ρ]. The fast
partons move nearly at the speed of light in the positive x+ direction, and
generate a colour current Jµ = δµ+ρ. By Lorentz contraction, the support
of the charge density ρ is concentrated near the light-cone longitudinal coor-
dinate x− = 0. By Lorentz time dilation, ρ is independent of the light-cone
time x+.

The Yang–Mills equation describing the soft gluon dynamics reads

DνF
νµ = δµ+ρ(x−,x) . (4)

Physical quantities, as the unintegrated gluon distribution, are obtained as
an average over ρ:

〈

Ai(X)Ai(Y )
〉

x
=

∫

D[ρ] Wx[ρ] Ai[ρ](X)Ai[ρ](Y ) , (5)

where Ai(X) corresponds to the classical solution for a given ρ, and Wx[ρ]
is a gauge-invariant weight function for ρ. What we are doing is a kind
of Born–Oppenhaimer approximation: first, we study the dynamics of the
classical fields (Weizsacher–William fields) for a given configuration ρ of the
colour charges, and second, we average over all possible configurations.

For the classical solution we find:

F+i(x−, x⊥) = δ(x−)
i

g
V (x⊥)

(

∂iV (x⊥)†
)

= ∂+Ai , (6)

where V (x⊥) is the Wilson line

V †(x⊥) ≡ P exp
{

ig

∫

dx−A+(x−,x)
}

(7)

and A+[ρ] is the solution of the equation of motion (4) in the covariant
gauge: −∇2

⊥A+ = ρ.
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The weight function Wτ [ρ] is obtained by integrating out the fast par-
tons, so it depends upon the rapidity scale τ = ln(1/x) at which one con-
siders the effective theory. This can be taken into account via a one loop
background field calculation, and leads to a renormalisation group equa-
tion (REG) for Wτ [ρ] which shows how the correlations of ρ change with
increasing τ . Schematically

∂Wτ [ρ]

∂τ
=

1

2

∫

x⊥,y⊥

δ

δρa
x

χab
xy[ρ]

δ

δρb
y

Wτ [ρ] . (8)

This is a functional diffusion equation, where the kernel χ[ρ] plays the role of
the diffusion coefficient in the functional space spanned by ρ(x−, x⊥). This
kernel is positive definite and non-linear in ρ to all orders. It depends upon
ρ via the Wilson line (7).

As it has been said above, the physical quantities, as the gluon density,
are obtained as an average over ρ

n(x, k⊥) ≡
1

πR2

dN

dτ d2k⊥
∝

〈

F+i(k⊥)F+i(−k⊥)
〉

x
. (9)

In order to calculate this average, we need to solve the REG (8). Approxi-
mate solutions to this equation can be obtained in two limiting cases:

• At low energy, or large transverse momenta k2
⊥≫Q2

s (x), we are in a dil-
ute regimewhere fields and sources areweak, and the Wilson lines can
be expanded to lowest order in A+, V †(x⊥) ≈ 1+ ig

∫

dx−A+(x−, x⊥).
In this case, the REG equation reduces to the BFKL equation, and
the gluon density of equation (9) grows both with (1/k2

⊥) and (1/x)
(Bremsstrahlung):

n(x, k⊥) ∼
1

k2
⊥

1

xωαs

.

• At high energies, or low momenta k2
⊥

<∼ Q2
s (x), the colour fields are

strong, A+ ∼ 1/g, so the Wilson lines rapidly oscillate and average
away to zero: V ≈ V † ≈ 0. Then the kernel χ becomes independent
of ρ, and we obtained a gluon density that increases linearly with the
evolution “time” τ = ln(1/x):

n(x, k⊥) ∼
1

αs
ln

Q2
s (x)

k2
⊥

∝ ln
1

x
.

That is, we find saturation for the gluon density, that grows logarith-
mically with the energy since τ ∼ ln s: unitarity is restored.



Saturation: Colour Glass Condensate and Colour Sources 547

We call the high density gluonic matter at small x described by this
effective theory a Colour Glass Condensate (CGC) [1]: colour since gluons
carry colour under SU(Nc); glass since we have a random distribution of
time-independent colour charges which is averaged over in the calculation
of physical observables, in order to have a gauge independent formulation;
and condensate because at saturation the gluon density is of order 1/αs,
typical of condensates, so we have a system of saturate gluons that is a Bose
condensate.

1.3. Phenomenology at RHIC

The particle production in RHIC collisions has been analysed from the
perspective of the CGC, considering it as a pertinent description of the
initial conditions. Taking into account that the multiplicity is proportional
to the number of gluons, parton–hadron duality, the centrality dependence
of multiparticle production has been related to the density of gluons [2], that
at saturation (see Eq. (2))

dN

dy
∼ xG

(

x,Q2
s

)

=
πR2

A Q2
s (x,A)

αs (Q2
s )

, (10)

where πR2
A ∝ N

2/3
part corresponds to the nuclear overlap area, and Qs is

the saturation momentum for the considered centrality, Q2
s (x,A) ∝ N

1/3
part.

To compute the centrality dependence, it is necessary to know the evolution
of the gluon structure function, which is governed by the DGLAP equation.
Taking 1/αs(Q

2
s ) ≈ ln (Q2

s/Λ
2
QCD) ∼ lnNpart, one finally finds that the

multiplicity per participant behaves as ln Npart.
Besides, it has been obtained from saturation a proportionality between

the mean transverse momentum and the multiplicities,

〈pT〉
2 ∼

1

πR2
A

dN

dy
. (11)

This observation indicates that the pT broadening seen in elementary and
heavy ion collisions results from the same physics, the intrinsic generated pT

broadening in the partonic phase [3].

2. String clustering

In the clustering approach, the colour strings created in the nuclear
collisions are considered as effective sources with a fixed transverse area,
r⊥ ≈ 0.2 fm. Notice that this radius coincides with the estimate satura-
tion momentum of the CGC at RHIC. If the string density is high enough,



548 E.G. Ferreiro

the strings overlap, forming clusters [4], very much like disks in continuum
two-dimensional percolation theory. In order to calculate the physical ob-
servables, as the particle multiplicity or the mean transverse momentum, we
need to study the dynamics of those clusters.

We assume that a cluster of n strings behaves as a single string with
a higher colour field ~Qn, corresponding to the vectorial sum of the colour
charges of each individual ~Q1 string. The resulting colour field covers the
area Sn of the cluster. As ~Q2

n = (
∑n

1
~Q1)

2, and the individual string colours

may be oriented in an arbitrary manner, the average ~Q1i
~Q1j is zero, so

~Q2
n = n~Q2

1.
~Qn depends also on the area S1 of each individual string that

comes into the cluster, as well as on the total area of the cluster Sn, Qn =
√

(n Sn)/(S1)Q1. We take S1 constant and equal to a disc of radius r⊥ ≃
0.2 fm. Sn corresponds to the total area occupied by n discs1. Knowing
the colour charge Qn, one can compute the multiplicity µn and the mean
transverse momentum 〈p2

T〉n of the particles produced by a cluster of n
strings. One finds [5]

µn =

√

nSn

S1
µ1 ,

〈

p2
T

〉

n
=

√

nS1

Sn

〈

p2
T

〉

1
, (12)

where µ1 and 〈p2
T〉1 are the mean multiplicity and mean p2

T of particles
produced by a simple string. In the saturation limit, i.e. all the strings
overlap into a single cluster that occupies the whole interaction area, one
gets the following scaling law that relates the mean transverse momentum
and the multiplicity per unit rapidity and unit transverse area:

〈

p2
T

〉

AA
=

S1

SAA

〈p2
T〉1
µ1

µAA . (13)

This scaling relation is similar to the one obtained in the framework of the
CGC when the initial gluon density saturates.

Moreover, in the limit of high density η = NsS1/SAA, one obtains

〈

nS1

Sn

〉

=
η

1 − exp (−η)
≡

1

F (η)2
(14)

and the equations (12) transform into the analytic ones [6]

µ = NsF (η)µ1 ,
〈

p2
T

〉

=
1

F (η)
〈p2

T〉1 , (15)

1 Notice that if the strings do not overlap, Sn = nS1 and Qn = nQ1, so the strings act
independently. On the contrary, if they fully overlap, Sn = S1 and Qn =

√

nQ1.
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where µ and 〈p2
T〉 are the total multiplicity and mean momentum and Ns is

the total number of strings created in the collision.
In order to study the transverse momentum distribution, one needs the

distribution f(x,mT) for each string or cluster, and the cluster size distri-
bution W (x). For f(x,mT) we assume the Schwinger formula, f(x,mT) =
exp(−m2

TxF (η)), used also for the fragmentation of a Lund string. In this
formula x is related to the string tension, or equivalently to the mean trans-
verse size of the string. The weight function W (x) obeys a gamma distri-
bution [6]. Assuming that a cluster behaves similarly to a single string but
with different string tension, that depends on the number of strings that
come into the cluster, we can write for the total pT distribution

f(mT) =

∫

W (x) f(x,mT) ,

W (x) =
γ

Γ (k)
(γx)k−1 exp (−γx) . (16)

Performing the integral in Eq. (16) we obtain

dN

dp2
Tdy

=
dN

dy

k − 1

γ
F (η)

1
(

1 +
F (η) p2

T

γ

)k
, (17)

where k can be obtained from the fluctuations in multiplicy.

3. Some similarities: the results from string clustering

and from the CGC

To finish, let us remember some of the similarities of the explained ap-
proaches:

• In the clustering approach, when taking the saturation limit — all the
strings overlap into a single cluster that occupies the whole nuclear
overlap area, — one finds that the particle multiplicity of a central

collision, µAA, behaves as µAA = µn =
√

nSn

S1
µ1 =

√

NsSAA

S1
µ1. Taking

into account that the number of strings produced in the nuclear col-
lision, Ns, is proportional to the number of inelastic nucleon-nucleon
collisions, Ncoll ∼ A4/3, and SAA corresponds to the nuclear overlap
area, SAA ∼ A2/3, we obtain a multiplicity that scales with the num-
ber of participants A. This coincides with the multiplicity obtained in
first approximation, without evolution, in the framework of the CGC
(Eq. (10)).
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• In the CGC, there is a relation between the mean transverse momen-
tum and the multiplicity, which is developed in Eq. (11). This relation
shows that at saturation the mean transverse momentum should scale
with the multiplicity per unit rapidity and unit transverse area. This
coincides with the proportionality relation obtained in the clustering
model (Eq. (13)).

• In both approaches, the initial state interactions — gluon saturation
in the CGC or clustering of strings — produce a suppression of high pT

and multiplicities. On the contrary, in the framework of the jet quench-
ing phenomena, the energy loss of the jet with a hot and dense medium
produces additional soft gluons that would fragment into hadrons in-
creasing the multiplicities, unless strong shadowing occurs in the gluon
structure functions.
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