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OBSERVATIONAL ASPECTS OF CRITICAL QCD∗
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A systematic search for observables associated with the critical sector
of QCD is attempted in view of the progress made recently in lattice QCD
regarding the existence and the location of a critical endpoint in the phase
diagram of the theory. Our search is necessarily oriented towards multipar-
ticle dynamics in collisions of nuclei and in particular towards the σ-mode
in multipion production where critical fluctuations are expected to occur.
The predictions of critical QCD are incorporated in a Monte Carlo sim-
ulation of critical events and the domain in the vicinity of the endpoint,
where critical fluctuations prevail, is examined on the basis of the Ginzburg
criterion. The relevance of our results for measurements in the experiments
with nuclei is also discussed.

PACS numbers: 25.75.Nq, 12.38.Mh

1. Introduction

The existence of a critical point of second order in strongly interacting
matter at high temperatures, is a fundamental property of QCD in close
association with chiral phase transition of the vacuum [1]. The latest results
of lattice QCD give the location of the critical point in the phase diagram,
close to the area accessible by experiments with nuclei at the CERN/SPS,
namely: Tc ≈ 162 ± 2MeV, µc ≈ 360 ± 40MeV [2]. This result is the
improved version in a series of solutions in lattice QCD [2,3] and corresponds
to realistic values of the quark masses (mu,md). Increasing the masses of the
light quarks, the chemical potential µc increases as well in these solutions but
the temperature Tc remains almost constant. We may, therefore, conjecture
that in the final solution, which requires the continuum limit, the critical
temperature is not going to change substantially even if the critical chemical
potential ends up to a smaller value. In what follows we fix, for simplicity,
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the critical temperature taking the upper bound of the three lattice QCD
solutions, Tc = 165MeV and restrict, therefore, the problem of localisation
of the critical point along the direction of fixed temperature, T = Tc, in the
phase diagram.

The basic ingredients in our approach are (a) the effective action of the
sigma field in the vicinity of the critical point, (b) the mass of the sigma
field mσ(T, µc) in thermal environment, along the direction µ = µc in the
phase diagram and (c) the Ginzburg criterion [4,5] applied to critical QCD.
With these ingredients one may build up a theory of critical fluctuations for
the sigma field, (δσ)2 ≈ 〈σ2〉, translate it to a theory of density fluctuations
of isoscalars in momentum space and determine the region in the neighbour-
hood of the critical point beyond which these fluctuations die out (critical
region). Our main objective, in what follows, is to extract the observational
aspects of this scheme in the framework of heavy-ion physics.

In Sec. 2 we formulate the theory of critical fluctuations on the basis
of the effective action of the σ-field with the constraints of the universality
class of the critical point (3d Ising system). With arguments inspired by
the Ginzburg criterion for critical systems the domain of the phase diagram
which may accommodate critical fluctuations is examined in association with
the location of freeze-out points of a number of processes in experiments at
the CERN/SPS or AGS [6].

In Sec. 3 a class of observables associated with the development of critical
fluctuations in the sigma mode, is discussed. We have restricted ourselves
to the reconstruction of sigmas in the environment of pions (σ → π+π−)
created in collisions of nuclei. The ideal environment for studying fluctua-
tions of a zero mass σ-field would be the system of pairs of collinear photons,
produced in the electromagnetic mode σ → γγ, but taking into account the
degree of difficulty of the experimental measurements in these two cases,
certainly the study of π+π− pairs near the two-pion threshold is of higher
feasibility and priority.

2. The effective action and the Ginzburg domain

Critical QCD as a thermal theory near a critical point is consistently
described by an effective action written in terms of a scalar field (σ-field) in
medium, with mass mσ dependent on the temperature and baryon density
(or chemical potential) of the environment created in the extreme condi-
tions of central collisions of nuclei at high energies. At the critical point
(T = Tc, µ = µc) the mass of sigma vanishes, mσ = 0, and increases to-
wards its physical value as the system expands and cools. Critical QCD
belongs to the 3d-Ising universality class [7] and the corresponding effective
action Γ[σ] is written, in the vicinity of the critical point, as follows:
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Γ[σ] = Γc[σ] + Γ0[σ] ,

Γc[σ] = T−1
c

∫

d3~x
[

1
2(∇σ)2 + GT 4

c (T−1
c σ)δ+1

]

,

Γ0[σ] = T−1
c

∫

d3~x
[

m2
σσ2 + g4mσT−1

c σ4
]

. (1)

For simplicity, we have omitted in Eqs. (1) a small term proportional to the
quark mass which plays the role of a weak magnetic field in the analogue
Ising system. The first component Γc is a singular term which survives at
the critical point (mσ = 0) whereas the second, Γ0, is a smooth correction as
we depart from the critical point (mσ 6= 0). The exponent δ is the isotherm
critical exponent of the Ising universality class (δ ≈ 5) and the dimensionless
constants (G, g4) are also fixed by a universal effective potential [8] in this
class (G ≈ 2, g4 ≈ 1).

An important observation in the theory (1) is that it introduces two
independent, characteristic length scales in the description of the system:
T−1

c and m−1
σ (T, µ). The first is a conventional scale of strong interactions

(T−1
c is of the order of 1 fm); it defines a finite correlation length, independent

of temperature or density, and has no association whatsoever with the critical
fluctuations of the system. On the contrary, the second scale, m−1

σ , depends
on the temperature and chemical potential, and defines a correlation length
which diverges at the critical point of the system. Comparing these two
scales (Ginzburg criterion) one may define a region in the phase diagram
where critical fluctuations prevail. This important area (Ginzburg domain)
is specified by the inequality: mσ(T, µ) ≤ Tc, which guarantees that inside
the Ginzburg domain the critical correlation length m−1

σ dominates and
creates fluctuations at all scales when the system comes close to the critical
point (mσ → 0). Outside this domain (mσ > Tc) the system develops
conventional correlations with a finite correlation length of the order of T−1

c .

In order to determine the critical region in the phase diagram and ask for
phenomenological implications one needs a theory for the σ-field in medium
and in particular a knowledge of its mass as a function of temperature and
chemical potential. In the absence of such a detailed theory we shall follow
a simplified approach restricting our discussion along the line of constant
chemical potential, µ = µc, where scaling arguments lead to the following
parametrisation [9]:

mσ(T, µc) ≈ m∗

σ

[

1 −

(

T

Tc

)2
]ν/βδ

, (2)
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where (ν, β, δ) are the Ising critical exponents (ν ≈ 2/3, β ≈ 1/3, δ ≈ 5) and
m∗

σ the physical mass of sigma at zero temperature (m∗
σ ≥ 400MeV). In this

case the Ginzburg criterion leads to a critical domain δT = Tc − T

δT

Tc
= 1 −

[

1 −

(

Tc

m∗
σ

)
βδ
ν

]1/2

, (3)

which, with the conservative choice m∗
σ ≈ 400MeV and the upper bound of

the lattice values, Tc ≈ 165MeV, defines a narrow strip in the phase diagram
(Fig. 1) the width of which is δT ≈ 8MeV. Inside this domain, critical fluc-
tuations are expected to get developed, in small areas close to the critical
point, the location of which is not fixed but it is restricted along the upper
boundary of the strip (T = Tc). In the same figure the three lattice solu-
tions for the critical point are shown together with the freeze-out points of
a number of processes, extracted recently from measurements at the SPS and
AGS in a systematic study of chemical equilibrium in nucleus–nucleus colli-
sions [6]. We observe that the cluster of systems of different size (PbPb, SiSi,
CC) and approximately the same chemical potential, (µb ≈ 245MeV) corre-
sponding to collision energy 158GeV/c, obeys the Ginzburg criterion. It is
also suggested that the critical point is likely to be located in the neighbour-
hood of the smaller systems (CC, SiSi) in the cluster, namely near the point:
Tc ≈ 165MeV, µc ≈ 245MeV in the phase diagram. We also expect that
the strength of critical fluctuations diminishes as we move from the smaller
systems (CC, SiSi) to the largest one (PbPb). In particular the freeze-out
point of the system PbPb lies close to the borderline of the Ginzburg domain
and, therefore, the critical fluctuations in the process Pb+Pb at 158GeV/c
(CERN/SPS) must be rather weak.
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Fig. 1. QCD phase diagram.
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Given the limitations of this approach and the simplifications in the
construction of the Ginzburg domain, the above predictions cannot be con-
clusive. They provide us, however, with further guidance in the search for
the QCD critical point, suggesting in particular that the final answer may
come after systematic measurements of particle density fluctuations in the
σ-mode within the framework of an observational theory of critical fluctua-
tions. In the next section we briefly describe how to build up such a theory
and which are the prospects to reveal, with its help, critical phenomena in
collisions of nuclei and verify the formation of a Ginzburg domain in the
phase diagram of QCD matter.

3. Critical fluctuations of QCD matter

When QCD matter becomes critical its properties are specified by the
term Γc[σ] in Eqs. (1). The system undergoes a second-order phase transition
and the prevailing phenomenon in the critical state is the development of
self similar density fluctuations in the σ-mode. In what follows we consider
cylindrical geometry in the collision and restrict ourselves in boost-invariant
configurations of the σ-field along the rapidity axis. We end up with a two-
dimensional system described by the corresponding effective action [10]:

Γ(2)
c [σ] = ∆

τc

Tc

∫

d2~x⊥

[

1
2 |∇⊥σ|2 + GT 4

c

(

T−1
c σ

)δ+1
]

, (4)

where ∆ is the total rapidity gap available in the collision and τc the proper
time scale of the critical system. The fluctuations of the σ-field, (δσ)2 ≈
〈σ2〉, at the critical point, are measured by the density–density correlations
of σ-particles with respect to an arbitrary origin, 〈σ2(~x⊥)〉 = 〈ρ(~x⊥)ρ(0)〉.
Therefore, dynamical fluctuations of the σ-field at large scales (critical fluc-
tuations) manifest themselves as density fluctuations of sigma mesons at
small scales in momentum space, leading to a measurable intermittency ef-
fect [11]. This physical picture can be formulated by solving approximately
the theory, namely, summing over the dominant saddle points of the effective
action (4) and writing the partition function as follows:

Z =
∑

σ

e−Γ
(2)
c [σ] , δΓ(2)

c [σ] = 0 . (5)

The solution of Eqs. (5) leads to fractal structures in transverse space [10]

〈ρ(~x⊥)ρ(0)〉 ∼ |~x⊥|
−

4
δ+1 , d

(2)
F =

2(δ − 1)

δ + 1
, (6)
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within σ-clusters of maximal size: ξ⊥ ≈ π3/2

32 R⊥ (correlation length) where
R⊥ is the transverse radius of the critical system, formed by the excitation
of the vacuum in nucleus–nucleus collisions at high energies. In momentum
space, the solution (6) leads to a similar fractal geometry but with different
dimension:

〈ρ(~p⊥)ρ(0)〉 ∼ |~p⊥|
−

2(δ−1)
δ+1 , d̃

(2)
F =

4

δ + 1
. (7)

Eq. (7) implies a strong intermittency effect in the σ-mode, revealed by

a power-law behaviour of the factorial moments: F2(M) ∼ (M2)
δ−1
δ+1 , where

M−2 measures the size of a 2d cell in momentum space over which the
correlation function (7) is integrated [10].

0 2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

HIJING

CMC

(b)

( )

  (MeV)

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

(a)

2
( )

Fig. 2. The functions (a) φ2(ε) and (b) η(ε) for CMC events.
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With these ingredients it is possible to develop a Monte Carlo generator
(CMC) simulating the critical σ-sector as well as the pions produced by the
decay of the sigmas during the freeze-out. The properties of the CMC events
can be used as a guide for the formulation of a self-consistent algorithm
revealing the critical geometry through the reconstruction of the sigma’s
momenta from the measurable pion momenta [10]. All possible pairs of pions
of opposite charge are formed for each event and subsequently filtered out
only those with invariant mass lying within a very small kinematical window
ε above 2mπ. The background introduced by combinatorics leading to fake
sigmas can be simulated through mixed events and subtracted out using the
correlator G2 instead of the factorial moment F2 [12]. It is straightforward
to show that the fractal pattern in the sigma momenta leads to a power-
law behaviour of the correlator as a function of the resolution scale M :
G2(M,ε) ∼ M2φ2(ε) with the condition φ2(0) = 1−d̃

(2)
F /2. In a similar way it

is possible to calculate the percentage of real sigmas η(ε) in the reconstructed
sector. In Figs. 2(a), (b) we present the functions φ2(ε) and η(ε) for a set of
105 CMC events with parameters adapted to the SPS C + C-system. These
two quantities offer the most suitable observables to characterise and reveal
the formation of a critical sigma sector in A + A collisions.

4. Conclusions

We have discussed the characteristic features of an observational theory
of critical fluctuations in QCD matter and have examined its applicability
to heavy-ion physics. We have argued that severe restrictions on the criti-
cal region, in the phase diagram of QCD, are imposed on general grounds
(Ginzburg criterion, universality class of the critical point, critical temper-
ature in lattice QCD, lower bound of the physical mass of sigma) providing
us with an extra guideline in the search for the QCD critical point. The
theory of critical fluctuations is incorporated in a Monte Carlo code (CMC)
and a method how to single out, in the reconstructed σ-mode, the genuine
critical effect, in the form of a power law, is proposed.

Preliminary studies of chemical equilibrium in nucleus–nucleus collisions
[6] shows that the freeze-out points of the collisions Pb+Pb, C+C, Si+Si
at 158GeV/c are located, within errors, inside the Ginzburg domain, at
the same chemical potential, suggesting for the critical point, the physical
values: Tc ≈ 165MeV, µc ≈ 245MeV. From our point of view, in order to
verify this very preliminary suggestion, one has to pursue systematically the
search for critical fluctuations, in the spirit of the proposed theory, analysing
the data of NA49 experiment for PbPb, CC, SiSi collisions at 158GeV/c.
Work along this direction is now in progress.
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