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The existence of a Hückel–Debye color screening is often proposed as a
signal of the presence of a QCD plasma. Here the particular case is exam-
ined where the quark density is largely dominant over the gluon density. In
this case the two body correlation shows a spatial decay like exp[−ar2/3]/r
to be compared with the usual electric case exp[−ar]/r. The usual elec-
trodynamical case is rapidly re-examined in order to compare it with the
chromodynamical case.

PACS numbers: 12.38.Mh, 25.75.Nq

1. The commutative case

One starts from the definition of canonical partition function [1]:

Z =
Z0

V N

∫

e−βU(r)d3Nr .

The interaction is given by the Coulomb potential

U =
∑

i<j

uij , uij = αzizj/rij , rij = |ri − rj | ,

where the behavior at rij → 0 must be suitably regularized in order to
prevent a divergence of the partition function.
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The integrand of Z can be expanded in multiple correlations as:

e−βU(r) =
∏

l

D(rl) +
∑

i<j

C(2)(ri, rj)
∏

l 6=i,j

D(rl)

+
∑

i<j<k

C(3)(ri, rj, rk)
∏

l 6=i,j,k

D(rl) + · · · .

For a uniform plasma the one-body distribution is a constant:

D(rl) = (Z/Z0)
1/N .

The many-body functions C(2), C(3), . . . , are defined to be pure correla-
tions, i.e.:

∫

C(J)d3
rJ = 0 .

It is useful to renormalize the functions C(J) = (Z/Z0)
J/N C(J) so that

the expressions of the many-body distributions become:

W2(ri, rj) =
Z0

ZV N−2

∫

e−βU(r)
∏

l 6=i,j

drl =
[

1 + C(2)(ri, rj)
]

,

W3(ri, rj , rk) = 1 +
[

C(2)(ri, rj) + C(2)(ri, rk) + C(2)(rj, rk)
]

+C(3)(ri, rj, rk) .

And so on.
Using then the expression of W2,W3 one gets for C ≡ C(2) the following

equation

∂C(r1, r2)

∂r1,v
= −β

(

∂u12

∂r1,v
+

1

V

∑

l 6=1,2

∫

d3rl

[ ∂u12

∂r1,v
C(rl, r2)

]

)

v = x, y, z .

Then one follows the standard procedure: by taking a second derivative
of C and using the geometrical symmetries of the problem the known result
is obtained:

C(r) ∝ 1

r
exp[−ar] , a =

√

βαn , n =
N

V
.

The length 1/a is the Debye radius of the system, in order for the whole
treatment to be consistent the radius at which the potential has been regu-
larized must be much smaller than 1/a.
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2. The noncommutative case

The formal definition of the canonical partition function is the same 1,
but since there is a matrix structure in color space a matrix multiplication
is understood and, finally, a trace must be taken. The integrand of the par-
tition function is expanded into multiple correlations as in the commutative
case and the plasma is assumed uniform in space and isotropic in the color
so the one particle distribution is a constant diagonal in the color indices
D(qi) = R. The functions C(J) are again defined as the pure correlations
of order J and we redefine them as C(J) = RJC(J). So for the two-body
distribution we still have an expansion as before, with W and C which are
matrices in color space. Now we would like to find an equation for the two-
body distribution W (qi, qj). In general the derivative of U will not commute
with U , because they are matrices, so we use the representation:

d

dt
eA =

1
∫

0

exA dA

dt
e(1−x)Adx

which may be verified by comparing the series expansion of both sides.
Identifying now A with −βU and defining τ = xβ distributions at dif-

ferent temperatures enter into the game 2, so the variable τ appear, as an
index, in the color matrices Cτ . The equation for the two-body correlation
is now:

∂Cβ(r1, r2)

∂r1,v
=

−
β

∫

0

dτ

(

∂u12

∂r1,v
+

1

3V

∑

l 6=1,2

∫

d3rl

[

∂u12

∂r1,v
Cβ−τ (rl, r2) + Cτ (rl, r2)

∂u12

∂r1,v

])

.

Here also one takes the second derivative, owing to the presence of an in-
tegration in the inverse temperature τ , one performs the Laplace-transform
with respect to β [conjugate variable s] and the Fourier-transform with re-
spect to space [conjugate variable k]. With these transformations the result
takes the form:

−k2Č(s; k) =
αT

s2
+

α

3V s

∑

l 6=1,2

[

T Č(s; k) + Č(s; k)T
]

.

1 The literature on QCD is immense, the few references here given [2–4] leads either
to general reviews or to papers which contain arguments or points of view related to
the present attempt.

2 The presence of integrations over the inverse temperature is a well known feature of
Quantum Statistics, see standard textbooks [5].
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Both Č(s; k) and T are color matrices: in order to proceed on, the explicit
color structure is needed, one can start from the definitions:

Č = M for the pair qq̄ , M = “1”, “8”,

Č = Q for the pair qq , Q = “3̄”, “6”,

Č = Q̄ for the pair q̄q̄ , Q̄ = “3”, “ 6̄” .

The term T come from the potential u (gluon exchange): it is a pure octet
in t-channel. For two incoming quarks (with colors a, c) and two outgoing

quarks (with colors b, d) the interaction is Ib,d
a,c = [δd

aδb
c − δb

aδ
d
c /3]/2 .

For a quark–antiquark pair with incoming colors a, d and outgoing colors

b, c the interaction is −Ib,d
a,c .

The unit tensor in color space: U b,d
a,c = δb

aδ
d
c is introduced, it has the

property that U b,d
a,c I

a,c
b,d = 0, The color projectors are explicitly written out

in terms of U and I

1
Π = 2

I

3
+

U

9
, 8

Π = −2
I

3
+ 8

U

9
, 3

Π = −I +
U

3
, 6

Π = I + 2
U

3

and they are normalized to state multiplicity

1
Π

f,g
f,g = 1 , 8

Π
f,g
f,g = 8 , 3

Π
f,g
f,g = 3 , 6

Π
f,g
f,g = 6 ,

(one has the same projectors for “3” and “3̄” and the same projectors for “6”
and “ 6̄”). The projector expressions are then introduced into the different
forms of Č.

M = 1
ΠF1 + 8

ΠF8 Q = 3
ΠF3 + 6

ΠF6 Q̄ = 3
Π F̄3 + 6

Π F̄6

and the final result is an inhomogeneous system of linear equations, where
the inhomogeneous terms come from T . Using the orthogonality between I
and U the identities

F8 = −F1

8
, F6 = −F3

2
, F̄6 = − F̄3

2

are obtained and the system of equations is reduced to:

k2F1 −
4α

3s2
+

α

2s
[2ρF3 + 2ρ̄F̄3 + (ρ + ρ̄)F1] = 0 ,

k2F3 −
2α

3s2
+

α

2s
[2ρF3 + ρ̄F1] = 0 ,

k2F̄3 −
2α

3s2
+

α

2s
[2ρ̄F̄3 + ρF1] = 0 .
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Here ρ and ρ̄ are the densities of quarks and antiquarks and α is the chro-
modynamical fine-structure constant.

This system yields F1 = F3 + F̄3 so it is furthermore reduced to a

k2F3 −
2α

3s2
+

α

2s
[(2ρ + ρ̄)F3 + ρ̄F̄3] = 0 ,

k2F̄3 −
2α

3s2
+

α

2s
[(2ρ̄ + ρ)F̄3 + ρF3] = 0 .

The solution depends only on the total fermionic density n = ρ+ ρ̄, it is:

F3 = F̄3 =
2α

3

1

k2s2 + nαs
= Ǧ(k2, s) .

From

Ǧ(k2, s) =
2

3n

[

1

s
− 1

s + αn/k2

]

we get its Laplace-anti-transform:

Ĝβ(k2) =
2

3n

[

1 − exp [ − βαn/k2]
]

.

From this expression it is possible to calculate the correlation energy, but
in order to understand how the correlations behave in space the Fourier
transform is needed:

Gβ(r2) =
1

(2π)3

∫

exp[ik · r]Ĝβ(k2)d3k .

After performing the angular integration the resulting expression is esti-
mated by means of the saddle point method [6], for large values of r:

Gβ(r2) =
1

2π2r
ℑ

∞
∫

0

exp[ikr]Ĝβ(k2)kdk

with the result:

Gβ(r2) ∝ 1

r
exp [ − 3(ar/2)2/3/2] cos [3

√
3(ar/2)2/3/2 − π/3] + · · · .

The subsequent terms contain higher negative powers of r but the same
exponential behavior.

It is simple to read out the main result: the Debye screening is still
present, but there are two differences: the screening is not a simple expo-
nential, the decay is in fact slower since at the exponent one finds a power
of r smaller than 1, moreover there in an oscillating behavior, controlled by
the same parameter a. We note also that at this approximation the behavior
of the (qq̄)-pair is the same as the behavior of the (qq)-pair.
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3. Concluding observations and outlook

There are treatments of the same physical system which are from the be-
ginning very different from the present one, they are strong coupling methods
[4,7,8]; the attitude of the present investigation has been to keep the proce-
dure as close as possible to the electric case in order to make the comparison
easier3. The conclusion is that the qq̄-plasma behaves in a way similar but
not strictly equal to the Coulomb plasma. At this level of approximation
only the total number of fundamental charges is relevant, not the number
of quarks and antiquarks separately. The result for the qq̄ pair is the same
as for the qq, so the screening effect on meson and on baryon formation is
the same4.

The main neglected effect is the presence of gluons:

Virtual gluons reflect in the running coupling constant, the correction
is possible, the final calculation (i.e. the inversion of the Laplace and
Fourier transforms) become very complicated, but no very significant
result may be foreseen.

Two (or more) gluons in t-channel make the color structure more com-
plicated.

More important is the presence of real gluons. This involves a situation
which is not realized in the electric case. Since all color channels are coupled
also the gluon–gluon case should be considered; an investigation is now being
performed looking for the influence of gluons over quark correlations i.e.

systems where the quarks still dominate over the gluons but the effects of
these latter are not negligible.
Added in proofs: In all formulae where it appears, except in the first one,
the expression α must be substituted by 4πα.
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