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The effects of energy conservation and saturation are studied in the
coordinate space dipole formulation for QCD cascades. Preliminary results
for dipole–dipole and dipole–nucleus scattering are presented. Very large
effects are obtained from energy conservation, corresponding to a factor
∼ 10 in the cross section and ∼ 3 in λeff . Some results on the gluon fusion
process g+g → g are also presented.
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1. Introduction

The leading order BFKL equation has solutions with asymptotic be-
haviour F ∼ 1/xλ, with λ = 4 ln 2 ᾱ ≈ 0.5, for ᾱ ≡ 3αs/π = 0.2. There are
various corrections which reduce the value of λ. First the NLO corrections
are very large. It is well-known that a large fraction of these corrections are
related to energy conservation [1]. Secondly the growth for small x-values
is reduced by saturation effects, due to multiple Pomeron exchange. These
effects are taken into account in the Balitsky–Kovchegov equation [2] by
a non-linear component in Mueller’s dipole formulation [3], which is a de-
scription in transverse coordinate space (r⊥) instead of transverse momen-
tum space (k⊥). In this talk I want to discuss effects of energy conserva-
tion in the dipole formalism, and compare with the effects of non-linearity.
Some preliminary results are presented for dipole–dipole scattering (γ∗γ∗-
collisions) and dipole–nucleus scattering. At the end I also give some com-
ments on effects of gluon–gluon fusion, g + g → g, in the parton cascade.
The results are obtained in collaboration with Emil Avsar and Leif Lönnblad,
and some of the results are presented in Avsar’s diploma thesis, Ref. [4].
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2. Formalism

Study the process γ∗ → QQ̄ → QgQ̄ → QggQ̄ → . . . . Here a virtual
gluon is split into a QQ̄ colour dipole, which is first split into two dipoles by
the emission of a gluon, then into three dipoles by a second gluon, etc. The
process is illustrated in transverse coordinate space in Fig. 1. The probability
for such a dipole splitting is given by the expression (for notation see Fig. 1)
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Here S denotes a Sudakov form factor. We note that the integral over d2
r2

in the exponent diverges for small values of r02 and r12. Therefore, Mueller
introduced a cutoff ρ, such that the integration region satisfies r02 > ρ and
r12 > ρ. A small cutoff value ρ will here imply that we get very many dipoles
with small r-values.
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Fig. 1. A quark–antiquark dipole in transverse coordinate space is split into suc-

cessively more dipoles via gluon emission.

If a dipole size, r, is small, it means that the gluons are well localised,
which must imply that transverse momenta are correspondingly large. This
implies that not only the new gluon gets a large k⊥ ∼ 1/r, also the original
gluon, which is close in coordinate space, gets a corresponding recoil. Let
us study the example in Fig. 2. For the emissions of the gluons marked 2, 3,
and 4 the dipole sizes become smaller and smaller, a ≫ b ≫ c ≫ d, in each
step of the evolution. The corresponding k⊥, therefore, become larger and
larger in each step. After the minimum dipole, with size d, the subsequent
emissions, 5 and 6, give again larger dipoles with correspondingly lower k⊥
values. The probability for this chain is proportional to
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For the first emissions, 2 and 3, we in this expression recognise the prod-
uct of factors d2

ri/r
2
i ∼

∏

d2
ki/k

2
i , just as is expected from a “DGLAP

evolution” of a chain with monotonically increasing k⊥. Emission number 4
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corresponds to the minimum dipole size, d, and we here note that the factors
of d cancel in Eq. (2). We, therefore, get the weight d2

r4 ∼ d2
kmax/k

4
max,

which corresponds to a hard gluon–gluon collision. When the dipole sizes
get larger again, this gives factors corresponding to a “DGLAP chain” from
the other end of the chain, up to the central hard subcollision.
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Fig. 2. A dipole cascade, where a chain of smaller and smaller dipoles is followed by

a set of dipoles with increasing sizes. This is interpreted as one k⊥-ordered cascade

from the left and one from the right, up to a central hard subcollision, which is

represented by the dipole with minimum size and, therefore, maximum k⊥.

It is also easy to see that for a chain with increasing dipole sizes up to
a maximum value, rmax, which thus corresponds to a minimum transverse
momentum, k⊥min, we get the weight d2

rmax/r
4
max ∼ d2

kmin. Therefore,
there is no singularity for the minimum k⊥-value. This result agrees exactly
with the result in the Linked Dipole Chain model, LDC [5], which is a refor-
mulation of the CCFM model [6], interpolating between DGLAP and BFKL
for non-k⊥-ordered chains.

To study γ∗γ∗ scattering we imagine that the two virtual photons split up
into quark–antiquark pairs, which develop into dipole cascades as schemat-
ically illustrated in Fig. 3. When the two central dipoles collide, it implies
a recoupling, as indicated by the arrow, and the probability for this is given
by the expression [7]
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. (3)

As the dipole cascades from the two virtual photons branch out, it is also
possible to have multiple interactions with dipoles from the left and from the
right. The total cross section is then given by

σ ∼

∫

d2b
(

1 − e−
P

fij

)

, (4)

where b denotes the impact parameter.
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Fig. 3. A symbolic picture of a γ∗γ∗ collision in rapidity-r⊥-space. The two dipole

chains interact and recouple with probability f given by Eq. (3).

With a small cutoff ρ (r > ρ) we get, as mentioned above, very many
small dipoles. If these are interpreted as real emissions, it would imply
a violation of energy-momentum conservation. The emission of these small
dipoles must be compensated by virtual emissions. Thus the result in Eq. (4)
will describe the inclusive cross section, but the many dipoles produced in
all the branching chains will not correspond to the production of exclusive
final states. To be able to describe final state properties we will make the
following conjecture:

In the cascade an emission with a (transverse) dipole size r corresponds
to transverse momentum k⊥ = 1/r, as discussed above. Emissions satisfying
energy-momentum conservation correspond to real emissions. Keeping only
these emissions corresponds to keeping what is called “primary gluons” in
Ref. [5] and “backbone gluons” in Ref. [8]. These emissions determine both
the total cross section and the structure of exclusive final states, and all
softer emissions can be treated as final state emissions.

This conjecture implies that a chain of small dipoles is regarded as a sin-
gle “effective” dipole. Keeping only the energy conserving emissions implies
a dynamical cutoff, ρ(∆y), which is large for small steps in rapidity, ∆y, but
gets smaller for larger ∆y. (Alternatively it could be described as a cutoff
for ∆y which depends on ρ.) This is similar to the approach by Andersen–
Stirling and Orr–Stirling [9] in transverse momentum space. Conserving also
the negative lightcone momentum p− implies that we in a similar way also
get a maximum value for r in each emission.

This conjecture is very easy to implement in a MC simulation. The re-
sult is that the number of dipoles grows much more slowly with energy. It is
straight forward to calculate cross sections and to study saturation effects,
by comparing the unitarised expression

∫

d2b(1 − e−
P

fij ) in Eq. (4) with
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∫

d2b
∑

fij representing single IP exchange. (The large numerical compli-
cations in MCs without energy conservation, discussed in Ref. [7], are not
present.) The next section describes some preliminary results obtained with
a fixed coupling ᾱ = 0.2.

3. Applications

Dipole–dipole scattering. Let us study the scattering of two dipoles with
sizes r1 and r2. With a fixed coupling the scaled cross section, σ/r2

2, depends
only on the ratio r1/r2. We can imagine a target with size r2 ∼ 1/M , and

a varying projectile size r1 ∼ 1/
√

Q2. The results in Fig. 4 show that
the cross section grows faster with the total rapidity range, Y ∼ ln s, for
smaller r1 (larger Q2). This corresponds to a larger effective power λeff

for larger virtuality Q2 (see Fig. 4(b)), in a way qualitatively similar to the
behaviour of the proton structure function. The effect of energy conservation
is demonstrated in Fig. 4 by the results obtained for the case r1 = r2, with
a constant cutoff, ρ = 0.02 ri. We see that energy conservation has a very
strong effect, reducing σ by a factor 10 for Y ∼ 13 and λeff by a factor of 3.
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Fig. 4. Left: The scaled cross section, σ/r2
2 , for scattering of two dipoles with sizes

r1 and r2, respectively, as a function of Y = ln s for different ratios r1/r2. The

filled squares show results without energy conservation for r1 = r2. Right: The

effective power λ as function of r2/r1.

For dipole–dipole scattering we find that the effect of multiple IP ex-
change (saturation) is much smaller than the effect of energy conservation.
The result is a reduction in the cross section which increases with energy up
to about 20% for Y ∼ 15.

Dipole–nucleus collisions. We study a toy model nucleus with a Gaussian
distribution in dipole size r and impact parameter b. The dipole density is
given by

dN = B · d2
r e−r2/r2

0 · d2
b e−b2/b2

0 . (5)
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The widths of the distributions are taken to be r0 = 1fm and b0 = A1/3 ·1 fm
(where A is the mass number of the nucleus). The normalisation constant
B is adjusted so that the transverse energy is given by A·1GeV.

Some results are shown in Fig. 5 for A = 200. We see here that multiple
IP effects are important for large projectile sizes and large target nuclei,
being about 40% for rproj = 1/(1GeV) and A = 200. We also see the effect
of colour transparency for small projectile sizes, as multiple IP exchange
gives only a small correction for rproj = 1/(10GeV), also for large A-values.
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Fig. 5. Dipole–nucleus cross sections, σ/r2
proj, for A = 200 and rproj = 1/(1GeV)

(left) and rproj = 1/(10GeV) (right). The crosses show the one IP contribution,

and the plus signs the uniterised result.

4. Dipole fusion

At large rapidities and high gluon densities we can imagine that a process
where two dipoles combine to a single dipole, becomes important. We note
that this effect is not related to the multi-IP exchange processes included in
the Balitsky–Kovchegov equation, and in the results presented above. We
now make three important assumptions or approximations:

1. Nc = ∞.

2. Local factorising approximation.

3. Forward–backward symmetry.

The first point implies that only neighbouring dipoles can fuse. The as-
sumptions that the fusion can be described by a local factorising expression,
independent of the rest of the cascade, and is such that the same result is
obtained if the cascade was generated from right to left, instead of from left
to right, implies that the probability that the dipoles rij and rjk fuse to
form the dipole rik must have the form:



Effects of Energy Conservation and Saturation in Mueller’s Dipole . . . 725

Pfuse = C
r2
ij r2

jk

r2
ik

dy . (6)

Here C is a constant with dimension (length)−2. The only relevant scale in
this process is ΛQCD, and we, therefore, use the notation C = ξ (ᾱ/2π)Λ2

QCD,
where ξ is a dimensionless phenomenological parameter, which defines the
strength of the fusion process.

The expression in Eq. (6) gives, however, rise to an infrared problem.
It implies that the fusion process becomes independent of the position, rj,
of the common vertex for the fusing dipoles. Thus the total contribution
∝

∫

d2rj diverges. Obviously the confinement mechanism must suppress
contributions from very large dipoles, where the point rj is very far away.
To describe this we introduce an infrared cutoff: when a dipole r01 is split
into two dipoles r02 and r12, we add a suppression factor exp[−D (r02 +r12)]
to the expression in Eq. (1). Here D is a constant, which should be of order

ΛQCD, and we introduce the notation D = ξ̂ ΛQCD.
Thus we conclude that in order to describe the dipole fusion process,

we must introduce two fundamental parameters of order ΛQCD, related to
confinement. We have studied the effect of this fusion process for different
parameter values. The result is that very large values are needed for a
significant effect. For ξ = 100 and ξ̂ = 1 the cross section for dipole–dipole
scattering is only reduced by 25% for Y = 10.
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