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We discuss general properties of the Color Glass Condensate. We show
that predictions for particle production in p(d)A and AA collisions derived
from these properties are in agreement with data collected at RHIC.
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In this paper we discuss the experimental signatures of the new form
of nuclear matter — the Color Glass Condensate (CGC) in particle pro-
duction at RHIC. Let us first see how the notion of the CGC arises in pA
collisions at high energy. Consider a process of inclusive particle produc-
tion in pA collisions in a nucleus rest frame. At high energies the typical
values of the Bjorken x are small. It is well-known that at small x hard
processes develop over large ‘coherence length’ lc. In particular, a gluon
production is coherent over lc ≃ 1/(Mx), where M is the proton’s mass.
For instance, at midrapidity at RHIC the coherence length of 2 GeV gluon
is lc ≃ 20 fm (at

√
s = 200 GeV). It is much bigger than the size of the

target ≃ 6.5 fm. This allows formal separation of the gluon production pro-
cess into two parts: slow gluon emission described by the proton’s light cone
wave function, and almost instantaneous interaction with the target at given
impact parameter b described by the amplitude NG(r, b, x), where r is the
variable Fourier-conjugated to the gluon’s transverse momentum k. In the
one gluon exchange approximation, assuming that scattering on different
nucleons is independent, one arrives at the formula [1–3]

NG(r, b, x) = 1 − exp

[

−1

4
r2Q2

sS(b) ln(1/rµ)

]

, (1)
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similar to the Glauber formula for the low energy hadron-nucleus scattering.
Here Qs is a parameter with dimension of mass, S(b) is a nuclear profile
function and r ≡ |r|. NG(r, b, x) can be interpreted as a forward scattering
amplitude of a gluon dipole off a heavy nucleus. One can see from (1) that
for hard gluons, such that 1/r ∼ k ≫ Qs the scattering amplitude coincides
with the usual perturbative expression

Npert
G (r, b, x) = r2 π2 αs ρT (b)xG(r, x)/(2CF) . (2)

In the opposite limit k ≪ Qs the scattering amplitude (1) becomes inde-
pendent of its variables r, b and x as it approaches its unitarity limit. This
is the phenomenon of saturation in nuclear and hadronic reactions [4]. The
scale Qs is called the saturation scale. Eq. (2) implies that Q2

s ∝ A1/3, where
A is the atomic number. Thus, for a very big nucleus A ≫ 1 the satura-
tion scale becomes a perturbative scale Qs ≫ ΛQCD which in turn means
that αs(Q

2
s ) ≪ 1. It can be argued that the total multiplicity of produced

gluons is dominated by gluons with the typical momentum k ≃ Qs. There-
fore, gluon production in pA collisions at high energies is calculable in the
perturbation theory.

Note, that the scattering amplitude (1) was calculated in a quasi-classical
approximation. The quasi-classical approximation corresponds to a quan-
tum system with high occupation numbers. In terms of the QCD action
SQCD this implies SQCD ≫ 1. At small x gluons dominate over quarks.
Therefore, we have

1

g2

∫

d4x tr G̃µν(x) G̃µν(x) ≫ 1 , (3)

where the rescaled gluon field is defined as Ãa
µ(x) = g Aa

µ(x). On the other

hand, αs(Q
2
s ) ≪ 1. Therefore, the typical gluon field of nucleus is of order

of Aa
µ ∼ 1/g [1]. This strong gluon field at small coupling is called the

Color Glass Condensate. This configuration is very much different from
the perturbation theory where both the gluon (and quark) field and the
coupling are small, and from the non-perturbative regime where both gluon
(and quark) field and the coupling are large [5]. Phenomenologically, the
CGC in a quasi-classical approximation manifests itself as a saturation of
the scattering amplitude NG(r, b, x) at small transverse momenta [4].

The CGC in a quasi-classical approximation can be thought of as a model
of multiple rescatterings of a hadron in a heavy nucleus at high energy. As
such it has much in common with many other models of multiple rescat-
terings. In particular, their common prediction is the Cronin effect, i.e.

enhancement of particle production at intermediate transverse momenta k
in pA collisions as compared with pp scaled by the atomic number A. The
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origin of this effect is simple: a gluon traversing a heavy nucleus gains ad-
ditional transverse momentum due to multiple rescatterings. On the other
hand, in a quasi-classical approximation the total number of particles is con-
served. Therefore, if there are less particles with low transverse momentum,
then there are more particles with high transverse momentum [6–9]. Of
course, this effect is predicted to increase for heavier nuclei or more central
collisions.

However, a quasi-classical approximation breaks down at high energy
since quantum evolution becomes an important process. Indeed, additional
gluon production is parametrically of order αs ln(1/x). Therefore, at
x ≪ e1/αs a quasi-classical approximation is no longer valid. One might at-
tempt to take the evolution into account using collinear factorization, which
basically means incoherent production of gluons in the proton’s wave func-
tion. As a result, proton will suffer more scatterings in a nucleus and the
Cronin effect will increase with energy/rapidity. However, this expectation
contradicts the experimental data as we discuss later, see Fig. 2. The rea-
son is that the collinear factorization scheme and the OPE break down as
soon as multiple rescatterings are important, see e.g. [11]. This is because
each additional scattering is a higher-twist effect. The effect of coherence
of the parton evolution at high energies can be taken into account in the
nonlinear evolution equations of QCD [4, 12, 13]. These equations describe
the high energy quantum evolution of the CGC. That is, if the scattering
amplitude NG(r, b, x) is known at some initial value of x0, e.g. as given by
(1), the evolution equations allow calculation of the scattering amplitude at
any x < x0.

In the large Nc approximation the differential cross section for a gluon
production can be written in the kT-factorized form [3,14, 15]

dσpA
G

d2k dy
=

CF SA Sd

αs π (2π)3
1

k2

∫

d2r∇2
z nG(z, Y − y) e−ik·r ∇2

r NG(r, y), (4)

where y = ln(1/x) and nG(r, b, y) is a forward gluon dipole scattering am-
plitude off a proton. SA and Sp are cross sectional areas of the gold nucleus
and proton correspondingly and Y is the total rapidity interval. The evolu-
tion effects in a nucleus are enhanced by a factor of A1/3 ≫ 1 as compared
to those in proton (deuteron). Therefore, nG(r, b, y) approximately satisfies
the linear BFKL evolution equation [16] (this is correct at not very high
energies, when the Pomeron loops are small). The gluon dipole scattering
amplitude can be related to the unintegrated gluon distribution function
φ(k, x) as [14]

φ(k, x) =
CF

αs(2π)3

∫

d2b d2r e−ik·r ∇2
r NG(r, b, x) . (5)
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The main property of φ(k, x) which follows directly from the nonlinear
evolution equations is the geometric scaling which means that φ(k, x) =
φ(k/Qs(x)), i.e. the gluon distribution becomes a function of only one vari-
able at low x [4]! Here Qs(x) is the same saturation scale as in (1). Being
the only dimensional parameter at low x, Qs(x) sets the scale for the gluon
field. Eq. (3) implies Aa

µ ∼ Qs(x)/g. In course of evolution Aa
µ increases

as x decreases due to increase of number of color sources. Hence, Qs(x) is
increasing function of 1/x. It follows from the nonlinear evolution equation
that [17]:

Q2
s (x) =

(x0

x

)λ
A1/3 GeV2, (6)

where λ ≈ 0.3 [18]. The same gluon distribution function φ(k, x) (5) enters
expressions for the structure functions in Deep Inelastic Scattering. It allows
to fit the initial value of x using experimental data collected at HERA. In
(6): x0 = 3 × 10−4 and λ = 0.28. For RHIC and LHC it is convenient to
write (6) in the center-of-mass frame

Q2
s =

( √
s

3.3TeV

)λ

e±λy A1/3 GeV2. (7)

The geometric scaling of the gluon distribution holds as long as the
logarithms of energy gained in course of the BFKL evolution are bigger
than the logarithms of transverse momentum gained in course of the DGLAP
evolution:

αs log Q2
s/Λ

2 ∼ αs y ≫ αs log k2/Q2
s , (8)

which implies the geometric scaling in a wide kinematical region k < kgeom =
Q2

s/Λ [19]. The experimental evidences of the geometric scaling in DIS and
heavy ion collisions are shown in Fig. 1.

Another consequence of the quantum evolution on the unintegrated gluon
distribution (5) is that its anomalous dimension γ acquires strong depen-
dence on the scaling variable k/Qs. In the perturbative regime k ≫ kgeom we
get the usual leading-twist expression φ(q, x) ∝ SA Q2

s/q
2 modulo DGLAP

corrections. However, in the saturation k < Qs, φ(q, x) ∝ SA, i.e. γ → 0.
As we have already noted this signals the breakdown of the OPE. In the
intermediate region Qs < k < kgeom the saddle point of the BFKL ampli-
tude is located at γ ≈ 1/2, which implies φ(q, x) ∝ SAQs/q. Recalling, that

Qs ∝ A1/3 we find that at k < kgeom the gluon distribution in a nucleus of
atomic number A is less than A times the gluon distribution in a proton:

φA(k, x)

Aφp(k, x)
=

1

Aρ
, (9)
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Fig. 1. (a) Geometric scaling of the total DIS cross section σ(Q2, x) as a function

of τ = Q2/Q2
s [20]. (b) Geometric scaling of the total charged hadron multiplicity

in Au–Au collisions at RHIC. Solid lines: prediction of the saturation model of [5].

Prediction based on the collinear factorization is quite different dN/dη N−1
part ∝

N
1/3

part.

with ρ = 1/3 at k ≪ Qs and ρ ≈ 1/6 at Qs < k < kgeom. Let me emphasize
that the CGC takes into account two nuclear shadowing effects. First one
is a quasi-classical effect of multiple rescatterings. It necessarily requires
higher twist effects to be included in a calculation. It predicts suppression
at k < Qs followed by enhancement at k ∼ Qs. Second one is a quantum
evolution effect. It predicts suppression in wide kinematical region k < kgeom

both in the linear evolution region at k > Qs (‘leading twist shadowing’) and
the nonlinear evolution one at k < Qs (saturation). Using (4) and (5) it is
easily seen that nuclear shadowing in φA(k, x) translates into suppression
of particle production in deuteron-gold collisions [6–10]. In Fig. 2 recent
RHIC data for charged particle production at different rapidities and cen-
tralities [21] is shown. We see that at η = 0 there is the Cronin enhancement
of the particle production in dA as compared to pp in central collisions as
predicted by the CGC as well as by many multiple rescatterings models [22].
This implies that quasi-classical approximation is valid. At pseudo-rapidity
η = 3.2 corresponding to 25 times smaller x’s than at η = 0 for the same
transverse momentum, the evolution becomes essential. It manifests itself
as suppression of particle production at large transverse momenta in p(d)A
as compared to pp at higher rapidities and centralities. Not only that none
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Fig. 2. The nuclear modification factor: ratio of the charged hadron multiplicity in

central (full dotes, b ≈ 3 fm) and semi-central (open dots, b ≈ 5 fm) dA collisions to

those in peripheral ones (b ≈ 7 fm) rescaled by the ratio of corresponding numbers

of participated nucleons. Lines: result of a simple CGC model of [6].

of the existing conventional nuclear shadowing models can explain both the
Cronin effect and the suppression in the deuteron fragmentation region, but
also none of those shadowing models can explain the large value of that sup-
pression [23]. In the framework of CGC both effects are predicted to follow
from the nonlinear evolution equation [6–8, 10]. The value of suppression
factor comes naturally as a consequence of (9).

Since the suppression of charged particles in p(d)A and AA at forward ra-
pidities at RHIC originates in a gluon shadowing (9) there should be similar
suppression in open charm production. In that case the region of the geomet-
ric scaling, and hence of suppression, is mt < kgeom, where m2

t = k2+m2
c [24].

Another important signature of CGC is weakening of jet–jet correlations [25].
Indeed, since at low x a lot of particles with a typical momentum Qs can be
produced in single nucleon–nucleon subcollision any two of them need not to
be correlated back-to-back unless their transverse momenta are very large.
Once all these pieces of evidence all collected together they will become a
strong evidence for the Color Glass Condensate at RHIC.
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