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A non-perturbative approach to the calculation of generalized parton
distributions (GPD) through their relation to deeply virtual Compton scat-
tering (DVCS) and vector meson photoproduction is suggested. In the first
approximation, GPDs are proportional to the imaginary part of the DVCS
amplitude. A model for DVCS, developed earlier in the framework of the
analytic S-matrix and incorporating duality between resonances and Regge
behavior, is used for this purpose. Furthermore, a bootstrap procedure is
suggested in which this GPD is used as an input in the handbag diagram,
whose convolution with the perturbative kernel (loop diagram) results in
the DVCS amplitude to be reconstructed from the analytic S-matrix theory
and/or the experiment.

PACS numbers: 13.60.Hb, 14.20.Dh, 12.40.Nn, 12.38.Lg

Generalized parton distributions (GPD) [1] unify the concept of ordinary
parton distributions and form factors. Apart from the momentum fraction
variable x and skewedness ξ ∼ xB/2 ∼ 1/s (see below), GPDs depend on
the invariant momentum transfer t.
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Contrary to ordinary parton distributions, related to inclusive cross sec-
tions or, equivalently to the imaginary part of the forward Compton scatter-
ing amplitude, GPDs are supposed to be extracted from exclusive reactions,
such as ep → epγ, where the outgoing photon may be replaced by a vector
meson or by a virtual photon, decaying into a lepton pair. The configura-
tion ep → epγ implies three processes, one being the genuine deeply virtual
Compton scattering (DVCS) (Fig. 1(a)), and the other two corresponding
to the accompanying en electromagnetic Bethe–Heitler process, in which the
photon is radiated by the incoming or outgoing electron (Fig. 1(b) and 1(c),
respectively). The interference of the two enables the experimental deter-
mination of the amplitude phase and opens the way to nuclear holography
(spatial picture of the nucleon or the nucleus).
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Fig. 1. (a) DVCS and (b), (c) accompanying Bethe–Heitler processes.

The usual notations for the DVCS kinematics are P = p1 + p2,
∆ = p2 − p1, q = (q1 + q2)/2, generalized Bjorken variable ξ = −q2/(P q)
(see Fig. 1). They are related to the variables used in deeply inelastic scat-
tering (DIS): ∆2 = t, s = (p1 + q1)

2), Q2 = q2
1, and the Bjorken variable

xB = −q2
1/(2p1 q1). If the virtuality of the outgoing photon is different

from zero, we have an extra variable, called skewedness, and defined as
η = (∆ q)/(P q). For q2

2 = 0 it is related to ξ, η = ξ(1 + t/(2Q2))−1 and ξ is
related to xB by ξ = xB (1 + t/(2Q2))/(2 − xB + (xBt)/Q2).

GPDs cannot be measured directly experimentally, instead they appear
in convolution integrals of the form (so-called “handbag” diagram, Fig. 2)

ADVCS(ξ, η, t, xB, Q2) =

1
∫

−1

dx
GPD(x, ξ, η, t, xB, Q2)

x − ξ + iε
, (1)

where x is a loop variable. A is the complex DVCS scattering amplitude
and GPD is an unknown real function.
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Fig. 2. “Handbag” diagram, corresponding to the convolution integral, Eq. (1).

Since these convolution integrals cannot be easily converted, GPD are
often “extracted” from the data by writing [2,3] a model ansatz for the GPD
with various free parameters. For example, a plausible ansatz at low t is
GPD ∼ x−α(t), where α is a Regge trajectory.

If one is interested only in the imaginary part of the amplitude, Im ADVCS,
then it can be immediately related to the GPD: from Eq. (1) one obtains

Im ADVCS

(

ξ, η, t, xB, Q2
)

= iπ GPD
(

x = ξ, ξ, η, t, xB, Q2
)

. (2)

Our main idea is to consider ADVCS(ξ, η, t, xB, Q2) as a generalization
of the ADIS(xB, Q2), see Fig. 3. Let us consider a symmetric case when
q2
1 = q2

2 = −Q2. Then η = 0, ξ = xB (1 + t/(4Q2))/(1 + xB t/(2Q2)) is not

an independent variable anymore, but t may differ from zero, t = −~∆2
t 6= 0.

In this limit

ADVCS(η = 0, t, xB, Q2) = ADIS(t, xB, Q2) . (3)
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Fig. 3. Relating DVCS and DIS diagrams.
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The authors of Refs. [4, 5] presented a model for DIS amplitude as an off-
mass-shell continuation of an ordinary scattering amplitude A(s, t), e.g.

a Dual Model with Mandelstam Analyticity (DAMA) (see Fig. 4). The
next step should be to develop a model for the scattering amplitude of an
asymmetric γ ∗ p → γ ∗ p scattering with η 6= 0.

A(s, t) ⇒ ADIS(t, xB, Q2) ⇒ ADVCS(ξ, η, t, xB, Q2)
DAMA ⇒ Modified DAMA [4,5] ⇒ DAMA for DVCS ?

Furthermore, for η = 0 and t = 0 we can relate our GPD to the nucleon
structure function:

GPD(x = ξ = xB, ξ = xB, η = 0, t = 0, xB, Q2)

∼ Im ADVCS(ξ = xB, η = 0, t = 0, xB, Q2)

= Im ADIS(xB, Q2) ∼ F2(xB, Q2) = xB q(xB, Q2) , (4)

where q(xB, Q2) is the ordinary parton distribution (PD) function1. Then,
for example, in the small xB limit (small ξ in our case) we have Bjorken
scaling

GPD
(

x = ξ = xB → 0, η = 0, t = 0, xB → 0, Q2
)

∼ x
−α(t=0)+1
B . (5)

Now the main question is how to generalize the scattering amplitude
A(t, xB, Q2) to A(ξ, η, t, xB, Q2)?

Let us consider the case of the real outgoing photon and small t. Then
−η = ξ and also ξ = xB/(2 − xB), the independent variables are only xB,
Q2 (t ≪ s,Q2). If also Q2 → 0 we restore the symmetric situation and can
write

GPD
(

x= ξ, ξ =xB/(2 − xB) → 0, η =−ξ → 0, t → 0, xB → 0, Q2 → 0
)

= Im ADVCS

= Im ADIS(t → 0, xB → 0, Q2 → 0) . (6)

Our idea is to assume as a first approximation that the above expression is
valid in all the range of xB and Q2, i.e. take

GPD0(x, ξ = x, η = −x, t, xB = 2x/(1 + x), Q2)

= GPD0(x, t,Q2)

= cIm ADIS(t, xB = 2x/(1 + x), Q2) , (7)

1 The relation F2(xB, Q2) = xB q(xB, Q2) modifies if one takes into account higher
order QCD corrections.
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where c is a normalization coefficient. Then we use this GPD0 as an input
into the handbag diagram, whose convolution with the perturbative kernel
(loop diagram) results in the complete DVCS amplitude. The resulting
amplitude will have the good analytic and asymptotic properties s, t and
Q2, known from dual models.

Breit−Wigner               
resonances:                
A(s,t)~f(t)/(n−α(s))  

Regge behavior                
A(s,t)~β(t) sα(t) 
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Fig. 4. Off-mass-shell continuation of the scattering amplitude. Veneziano, or

resonance–reggeon duality [6] and Bloom–Gilman, or hadron–parton duality [7]

in strong interactions. From [4].

As a candidate model for the DVCS we utilize the off-mass extrapolation
of DAMA, so called modified DAMA (MDAMA) developed in [5]:

D(s, t,Q2) =

1
∫

0

dz

(

z

g

)

−αs(s′)−β(Q2′′)−1(1 − z

g

)

−αt(t′′)−β(Q2′)−1

, (8)

where a′ = a(1− z), a′′ = az, αs,t are complex, nonlinear Regge trajectories
in the corresponding channel, function β(Q2) is given by (see Ref. [5])

β(Q2) =











−1 −
αt(0)
ln g

ln
(

Q2+Q2

0

Q2

0

)

for Q2 ≥ 0 ,

−1 −
αt(0)
ln g

ln
(

Q2

0
−Q2

Q2

0

)

for Q2 < 0 ,

(9)

and g > 1. Note that quarks and gluons here are manifest indirectly through
the scaling behavior of the amplitude, due to the logarithmic asymptotic
behavior of the trajectories. The complete amplitude is a sum of a sin-
glet (pomeron) and nonsinglet (reggeon) terms (for more details see [4, 5]).
Further calculations, and fits to the experimental data will be presented
elsewhere [8].
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To summarize, we have presented a fairly general model for GPDs. Its
remaining flexibility can be used in solving the bootstrap program, to match
with QCD evolution, and to fit the data on DVCS, measure now at JLab,
HERA (HERMES, H1 and ZEUS) and at CERN (COMPASS). The virtue
of the present approach is that we gain a complex DVCS amplitude, related
to GPD. The knowledge of its explicit s-, t- and Q2-dependence as well as
of its complex phase (ratio of the real to the imaginary part) for all vales
of the variables may provide us with a practical tool to be used in nuclear
tomography and holography.

L.J. thanks the organizers of this ISMD meeting as well as UCLA, where
this work was completed, for their hospitality and support.
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