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We investigate perturbative unitarity constraints in a model for a singlet
scalar dark matter candidate. Considering elastic two particle scattering
processes of the Higgs particle and the dark matter candidate, a real Klein–
Gordon scalar field, perturbative unitarity constrains the self-couplings of
the scalar fields.
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Despite the unique success of the Standard Model (SM) in the particle
physics accelerator experiments, there have been strong indications of fun-
damental physics related to particle physics beyond the SM in the past few
years, such as neutrino oscillations and masses, the baryon asymmetry of
the Universe cannot be explained by the SM, recent fits to the cosmological
parameters [1] need dark energy. About 23% of the total energy density of
the Universe is made up of some dark matter. Assuming that gravity does
not change significantly at distances larger than a few kpc the dark matter
must be non-baryonic to maintain the success of big bang nucleosynthesis.

These problems were addressed among others in [2] where a possible
minimal extension of the SM was proposed. They added the minimal num-
ber (6) of new degrees of freedom purely to answer the empirical challenges.
The non-baryonic dark matter candidate is assumed to be a Z2 symmetric
gauge singlet scalar field, S. It can account for the observed dark matter
abundance and is consistent with the limit from CDMS-II experiment [3].
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Davoudiasl et al., [2] considered a few consequences of the model such as
triviality and stability of the Higgs potential, Higgs decays into new particles.

In this note we apply perturbative unitarity [4] to a singlet dark matter
field S coupled to the Higgs field H and itself in the SM completed by terms
describing S,H interactions. The constraints are valid also for [2] because
the inflaton field of [2] is too heavy to participate in the scattering. We get
various upper bounds for the relevant scalar couplings.

Start with the minimal renormalizable extension of the Standard Model
providing a scalar non-baryonic dark matter candidate S. S is required to
be odd under a Z2 symmetry in order to be stable. The odd singlet scalar
can have renormalizable interaction only with the standard Higgs and not
with the ordinary fermions and gauge bosons. This model was proposed
earlier in the literature by Silveira and Zee [5], a complex scalar field case
was studied in [6]. The parameters of the model were first constrained by
Burgess et al. [7, 8], later in [2].

The Lagrangian of the scalar sector is

LSH = |DµH|2−λ

2

∣

∣

∣

∣

H†H− v2

2

∣

∣

∣

∣

+
1

2
∂µS∂µS−1

2
m2

0S
2−k

2
H†H S2−λS

4!
S4. (1)

Beside the usual Higgs potential parameters λ, v = 254 GeV, there are three
new parameters m0, k, λS determining the properties of S. The potential of
the H–S sector is bounded from below if λ, λS > 0 and k > 0 or

3k2 < λSλ , for k < 0 . (2)

The Higgs field gets a vacuum expectation value v while 〈S〉 = 0 in order
to respect the Z2 symmetry. The Higgs mechanism generates a mass of
m2
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Next we apply tree-level perturbative unitarity [4] to scalar elastic scat-
tering processes in the model (4). The zeroth partial wave amplitude
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i

s
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∫
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T2→2d cosθ (5)

must satisfy |Re a0| ≤ 1
2
. s is the centre of mass (CM) energy and pCM

i,f are
the initial and final momenta in CM system.

There are three possible two particle states HH,HS, SS and four scat-
tering processes. Inclusion of the gauge bosons does not significantly alter
our consideration since they do not interact with the new singlet scalar S at
tree level.

(1) HH → HH. The tree-graphs contributing to this process are drawn
in Fig. 1. We get
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Fig. 1. Tree level Feynman diagrams for HH → HH in the SM.
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(2) SS → SS. The contact graph and the H-exchange graphs can be
seen in Fig. 2.
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Fig. 2. Tree level Feynman diagrams for SS → SS.
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(3) SS → HH. The T matrix (Fig. 3) is
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Fig. 3. Tree level Feynman diagrams for SS → HH .
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(4) HS → HS. The T matrix (Fig. 4.) is
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Fig. 4. Tree level Feynman diagrams for SH → SH .

From (5) we have the following partial wave projection of the coupled
system in the J = 0 channel
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are kinematical factors.
Perturbative unitarity will be imposed in the high energy limit s≫m2

H ,
m2

S . The coupled amplitudes are
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Requiring |Re a0| ≤ 1

2
for each individual process above we obtain

HH → HH mH ≤
√

8π

3
v , (11)

HS → HS and HH → SS |k| ≤ 8π , (12)

SS → SS λS ≤ 8π . (13)

While (11) is the well known bound in [4], (12) shows that the maximum
contribution of the Higgs mechanism to mS is 900 GeV.

Eq. (12) can be improved for k < 0 by using (11), (13) in the positivity
relation

−k ≤ 8π

3
∼ 4.2 and
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2
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For mH = 150GeV, λ = 0.38 this goes into 1
2
kv2 & −(230GeV)2.
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These bounds can be refined considering the partial wave unitarity for
the three coupled channel system HH, SS, SH and constraining the eigen-
channel with the highest eigenvalue. Actually SH decouples from HH and
SS and the remaining two eigenvalues are

µ1,2 =
3λ + λS

2
± 1

2

√

(3λ + λS)2 + 4k2 ,

providing the constraint

λS +
k2

8π
≤ 8π − 3λ . (15)

The constraint (15) contains all the previous bounds (11) – (13).
After the new measurement of the top mass [9] the upper bound of the

Higgs mass from radiative corrections is 251GeV at 95 % C.L. and the direct
lower bound is 114.5GeV from LEP2 implying the range 0.21–0.97 for λ. We
see, however, that for λ = 0.21–0.97 (mH = 114.5GeV–251GeV) the right
hand side of (15) changes very small, 24.5–22.1, and λS + k2/(8π) . 8π.
Only a heavy Higgs would provide a stronger upper bound.

In conclusion we have considered a simple non-baryonic dark matter
candidate model added to the Standard Model. We have calculated the
J = 0 partial wave amplitudes for the two particle elastic scattering processes
and found that the scalar couplings of the model are restricted.

In general our results did not restrict the S mass, however, assuming
mS comes from the Higgs mechanism we get mS < 900GeV. The model
can account for the dark matter in the Universe and is consistent with the
limits from CDMS-II. Perturbative unitarity constraints allow also higher
λS , k than those obtained from stability and triviality described in [2].
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