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Using the techniques developed by Ponsot and Teschner we derive the
formulae for analytic continuation of the general 4-point conformal block.
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1. Introduction

The operator product expansion of primary fields in the standard CFT [1]
can be written as

¢A1A_1(Z7 5)¢A2A'2(07 0) = Z Clop yAp—A1-A25 Ap—A1-As Wop(z,2), (1)
p

where for each p the descendent field ¥i9,(z, Z) is uniquely determined by
the conformal invariance. Acting on the vacuum |0) it generates a state
Piop(2,2)|0) = [Y12p(2)) ® [¥h12(2)) in the tensor product Va, ® V5, of
the Verma modules with the highest weights A, and A, respectively. The
z dependence of each component is uniquely determined by the conformal
invariance. In the “left” (holomorphic) sector one has

rop(2)) = vp+ > 2"05,|32]
n=1

(845)
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where v}, is the highest weight vector in V, and ﬁc’?AP [ﬁﬂ € VZP C Va,.
In the n-th level subspace V A"p we shall use a standard basis consisting of

vectors of the form
I/;L’I = L_[I/p = L—ik RPN L—igL—ill/pa (2)

where I = {ig,...,i1} is an ordered (ix > ... > 43 > 1) sequence of positive
integers of the length |I| =i + ... +41 =n.

The conformal Ward identity for the 3-point function implies the equa-
tions

LiB3[42] = (4 +idi — Ay +n—i)s3i[ %] |

which in the basis (2) take the form

J
n| A _ A
2. [GALJﬁA[Aﬂ _FYA[Ai]I’ ®)
|7|=n
where [G A]I = (vr,vy) is the Gram matrix of the standard symmetric

bilinear form in V4, and

VA[ﬁﬂl =(A+ i) — Ag+ig_1+...+i1). ..
X (At iy — Ay +i1)(A+ i1 Ar — Ay). (4)

For all values of the variables ¢ and A for which the Gram matrices are
invertible the equations (3) admit unique solutions

I 1J
n| A A
533 = 3 [oa) a3
|J|=n
In this range the 4-point conformal block is defined as a formal power series [1]

Fal3i3](2) = A7 (1 +3 = F[E: ﬁf]) |

n=1

Filfd] = X uld][ea] halg], ©®
H|=[J|=n

One of the long standing open problems has been the calculation of the radius
of convergence of this series. The basic difficulty is that no closed formula for
the coefficients is known, what makes a direct analysis prohibitively difficult.
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As the dimension of V§ grows rapidly with n also numerical calculations by
inverting the Gram matrices became very laborious for higher orders.

A more efficient method based on a recurrence relation for the coefficients
was developed by Zamolodchikov [2]. It should be stressed however that the
analytic properties of the conformal block with respect to its parameters
which are crucial for this method are derived under the assumption that the
radius of convergence is nonzero. Also some conjectured formulae of this
approach are still to be rigorously proved.

The commonly accepted hypothesis justified by all special cases where
the conformal block can be explicitly calculated is that the series (5) con-
verges for all |z] < 1. It has been recently suggested [3] to apply the free
field representation of the chiral vertex operator [3,4| to solve this problem.
We assume in the present paper that the radius of convergence is 1.

Another hypothesis supported by all known examples concerns an ana-
lytic continuation of the function defined by the series (5). It states that the
only singularities of the conformal block with respect to the z variable are
branching points (in general of a transcendental kind) at 0, 1, and oo [5].
This in particular means that the conformal block is a single-valued ana-
lytic function on the universal covering of a 3-punctured Riemann sphere
and can be expressed by a power series convergent in the entire domain of
its analyticity [6]. A recurrence relation for calculating coefficients of this
so called g-expansion [6] provides an efficient method for numerical analysis
of conformal block and can be applied for testing the conformal bootstrap
equations |7, 8].

In the RCFT models where the number of conformal blocks is finite the
problem of analytic continuation is essentially equivalent to the problem of
calculating the monodromy matrices relating conformal blocks in different
channels [9-11]. A thorough analysis of the consistency conditions such
matrices have to satisfy was done by Moore and Seiberg in terms of the
braiding and fusion relations of chiral vertex operators [11].

The Moore—Seiberg formalism suitably generalized to the case of con-
tinuous spectrum was recently applied by Ponsot and Teschner to derive
a system of functional equations for the braiding and fusion matrices of the
Liouville theory. They also constructed explicit solutions to these equations
by means of the representation theory of U, (sl(2,R)) [12,13]. The exact
form of the braiding and fusion matrices can be also derived by direct cal-
culations of the exchange relation of chiral vertex operators in the free field
representation [3,4] (see also [14] for an earlier construction).

In the present note we use the results of [3,4,12, 13,15, 16| to derive the
formulae for the analytic continuation of the BPZ conformal block. To this
end a choice of cuts for the function (5) has to be made. We pick the cut
starting at the origin to run along the negative real axis, and the one starting
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at 1 to run along the positive real axis. With this choice the formulae read

, 1 .
Fa 1] @) = 5720 [dagemerianraracay
€ +iR
1
Az A
manfzalafiz](E). o
Fa. [Ag Az}(z) — (1 = 2)A1mAemAam Ay pemi(Ai Ao = Ay

Ay Aq
Az A 2
<ralma)(Z): )

Az Ao Ay Ag—Ag—Ay L emi(Aj—Ag—A
]:AS[AALAJ(Z)—Z‘I e 12—2./d04t€ (Ae—Az—42)

Q .
§+ZR

. 1
maafaalralia)(-1) o

Fa %)) = 5 [daBau[mu]FaRig]a-2, O
€ +iR

where ¢ = +1 if argz > 0, e = —1 if argz < 0, and we have used the
standard parameterizations of the central charge and the conformal weights

c = 1+6Q2,
1
:b —_
Q +5

Aj = Alaj) =04(Q —¢y), j=s,tu1,...,4

The first two equations are straightforward consequences of the braiding
relation derived in [3,4]. The next two are less obvious and their derivation
is our main objective in this paper.

The braiding matrix calculated in the free field representation from the
exchange relation of chiral vertex operators is given by [3,4]:

Qs Q| Q4 01 Q4 1

B fz] mevaa s, [ g
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Bo | 8322 (11)

_ Fb(d4 + a9 — Oéu)Fb(Cu + a9 — Oéu)Fb(@4 — Q9 + Oéu)Fb(Oé4 — Q9 + Oéu)
ay — az + ag)lp(ag — az + ay)

Fb(d4 + a3 — as)Fb(a4 + a3 — Oés)Fb(

Fb(@l + a3z — au)Fb(al + a3 — au)Fb( — a3+ au)Fb(al — Qa3+ au)
b (an )

X
Fb(@l + Qo —as)Fb(al + a9 — i)l — a2 + Qg Fb(al —Ozg—l-ozs)
% Fb(2as)Fb(2ds)
Fb(@u - au)Fb(au - du)
/ Sp( +1)Sp(or +1)Sp(u — az + g + ) Sp(oa — az + ag + t)
X — [dt
Sp(as + ag + t)Sp(as + ag + t) Sy + as + t) Sy + as +t)’

where I},(z) is the Barnes double gamma function, Sy(2) = I,(2)/14(Q—2)*,
and we have use the abbreviated notation a = @ — a. For a; € ¥ + iR,
j=s,t,u,1,...,4 corresponding to the spectrum of the Liouville theory
the integrand in (8) has simple poles on the imaginary axis. The contour of
integration is located to the left of all these poles.

The matrix Bg, a,| o> 62| is related to the fusion matrix for the nor-

malized chiral vertex operators [15] by the simple exchange oy < g of its
parameters

B a3z ag | __ F o4 02| _ F a3 a1
Qs Oy | g v | — T QsOy| gz oy | — T OsOu| aq g |

It is symmetric with respect to the exchange of column and rows, as well as
with respect to the change a; — @ — «a; in each o separately [12,13, 15,
16]. The latter property means that the matrices (10), (11) depend only on
conformal weights. An explicit derivation of these properties along the line
mentioned in [16] is presented in Appendix B.

Both the formulae (6)—(9) and the expressions (10), (11) admit an ana-
lytic continuation to generic values of a;;. We present a special example of
such continuation to a degenerate weight in Sec. 3.

Finally let us note that possible applications of the analytic continuation
formulae goes beyond the Liouville theory. They are powerful tools not only
for analyzing general properties of the conformal block like the conjectured
analytic structure but also for explicit calculations.

! Some of the properties of these special functions are collected in Appendix A.
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2. Derivation

We shall work with the matrix elements of the chiral vertex operators [11]
rather than with the operators themselves. For a given triple Ay, As, Ag of
conformal weights we define the matrix element of a single chiral vertex
operator as a trilinear map

Az As A
poo3z201 :VA3><VA2><VA1—>(C

satisfying the following conditions? [3]

P20 (Lonbs, v, &) = ps222 0 (E,v2, Ln&)

+2"(20, + (n+ 1) A2) 53220 (63,10, &1),  (12)

P2 (63, Lr6n, &) = 022220 (63, 62.61), (13)
n+1

PN (& Lna, &) = D (") (—2)" (Pvo3§2Aol(Lk—n53’£2’£1)
k=0

- poAOJQQAol (637 527 Ln—k&l)) 5

form >1, (14)

o0
PP (€ L, &) = ) (nﬁ;k) o2 Lnskés £2,6) + (-1)"
k=0

o0
C9tk) —ntl—k AgAyA
X Z <nn—5r )Z TR L 220N (€3, &2, L—1&1)
k=0

forn>1, (15)

A3 Ag Aq

Az—As—A
Pxo 2~ 0 (U37V27U1) = 278 2 !

: (16)

where v; is the highest weight state in Va, (i = 1,2, 3).
The form pfij%l is uniquely determined by the properties above. In

particular, for Lo-eingenstates Lo|&;) = A;(&)|&), i = 1,2,3, one has

poA03€2A01 (637 527 51) = ZAS(&S)_A2(£2)_A1(gl)pvog)?QAOl (637 527 51) ) (17)

2 These are just the well known conditions for the chiral vertex operator written in
terms of its matrix elements.
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and
A3 As A A
P10 s, v vn) = 7A3[Ai]l’
A3 Aa A A
p0051201(1/371/271/1,]) - /YA1|:A§:|I7 (18)

A A
pvodeO (V37V2717V1) = (_1)‘1‘7A2|:A;i|[7

for all vectors v;  of the form (2).

In order to simplify notation we introduce a graphic representation of the
form p and the matrix elements of two possible compositions of the chiral
vertex operators

2
| _ AsAxA
3 —z — 1 = p003z20 (V37V27V1)7
3 2
| | _
4 —23— 8§ —2z2— 1 —

Zpvo4§33%S V4, V3, Vs,[) [GA ]IJpOAO 322%1(1/8,]7 vy, Ul)?

t —=z232— 2

4 — 22— 1

Ay A A 1J AyAzAg
E poo4z2to V47Vt1’yl)[GAt] poot2330(yt,<]77/3’y2))

where the abbreviation z3s = z3 — 29 has been used. Let us note that
the compositions are well defined if the intermediate conformal weights are
non-degenerate.

Our basic tool in further considerations is the braiding relation obtained
in [3, 4]
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3 2
4 —z|3— s —z|2_ 1
2 3
_ 2% dow B[22 4 I 1)
2 iR
where €32 = +1 if argzz; > 0, e3p = —1 if argz3s < 0. We shall also need

the formulae for the coupling to the vacuum (4y = 0)

2 1 2
| | |
3 —2—1—0—0 = 3—2z—1 (20)
2
|
2 1 3 —zo1— 1
| | |
3 —2z2—1—21—10 = 3 —z1— 0 (21)
2 1 1 2
| | co1 | |
3 —2z2— 1 —21— 0 = “(2321 3 —21— 2 —22— 0 (22)

where
€21 _ e21mi(Az—A2—Aq)
25 =e .

The first of these relations is a direct consequence of (17). The second follows
from the fact that L_; acts as the generator of translations (13) [4]. The
third one can be derived as a special limiting case of the braiding relation
by analyzing the analytic continuation of the formula (11) from «; € % +iR
to a; =0 [3,4,15].

Following [3,4,11] we define the generalized conformal blocks in each
channel

3 2 1
s [As As _ | | |
}—AS|:A4A1](Z37Z27Z1) = 4—m—s—m—1—2—0

3
|

t —=232— 2 1

t | Az Az _
fAt [A4 Al](z3722721) = 4 — 22

1 z1— 0
2 3 1

Az Ao _ | | |
AU[A4A1](Z37Z27ZI) = 4 —m—u—zm—1—2—0
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One can easily calculate their relations to the BPZ conformal block (5) using
(17), (18) and (20)

Zs [ﬁz ﬁ?]('z?n 227Z1) = (2’3 — Zl)A4
Az A 22 — 21
x Fa, |:AZ Af] (723 . > (23)

—Eggﬂi(ﬂt—ﬂg—ﬂg)(

—A3—Ax—4y

Ag
fAt [A4 Al](23,22,z1) = e 29 — 21

FAL [gz 21](237227Z1) = (22—2,’1)

- a-a)m 4] (222). @)

The braiding relation (19) implies that the braiding matrix (10) can be
seen as the s — v monodromy matrix for generalized conformal blocks

s | Az Ao o e a « w | Az Ag
fAS |:A4 A1:|(23,22,21 = /dOéu Bagfau az af:|fAu [A4 A1:|(23,22,21),
Q—HR

or in the graphic representation

3 2 1
| | |
4 —23— s —2— 1 —21— 0
2 3 1
_ €32 a3a2 | | |
__/daUBasau a4o¢1:| 4 — 22— u —23— 1 —21— 0
Q-HIR

Using (10), (23), (25) and setting ( 23, 22, 21) = (1, 2, 0) one gets the relation (6).
In a similar way the formula (7) can be derlved from the special limiting
case of the braiding relation (22)

3 2 1
| | |
4 — 23— 8§ — 29— 1 — 21 — 0
3 1 2
| | |

€21
9321 4 — 23— 8§ — 21 — 2 — 22— 0
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by using (23) and setting ( 23, 22,21) = (1, 2,0).
The fusion matrix can be defined as the s — ¢ monodromy matrix |3, 4]

1
FA., [A4A1](z3,z2,z1) = 5 /dat asat[gigf]fAt [A4ﬁ1:|(Z3,Z2,Z1). (26)
£ iR

Using formulae (19), (21) and (22) one can find its relation to the braiding
matrix |4, 11]

3 2 1

4 — 23— s —2z2— 1 —21— 0
3 1 2

€21 | | |
- 9521 4 —23 — 8§ —21— 2 — 22— 0

1 3 2
1 | | |
_ €31 | a3 a1 £21
- 2_’L datBa at|:a4a2]9821 4 —21 — t —23— 2 —22— 0
Q .
E'HR
3
|
1 t —=z32— 2
1 | |
_ €31 | a3 a1 €21
- % dat Ba at{a4a2]9821 4 —2z21— t —22— 0
Q .
5+7,R
3
|
t —=z232— 2 1
1 | |
_ €12 PE31 | a3 a1 €21
- Z doy Q41t Bas Olt|:014 az] 9321 4 — 22 1 21— 0
Q .
5+7,R

3
|

t —=232— 2 1
_ i dos F s o | |
- 2 t Pasor| ag aq 4 — 22 1 21— 0
Q .
- +iR

If we exclude the case when arg z; lies between arg zo and arg z3 this yields
the relation mentioned in introduction

Fo, o 3252] = Baval| 853 (27)
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Setting ( 23, 22,21) = (1, 2,0) in (26) and using (23), (24), (27) one gets the
formula (8).

In order to derive the relation (9) we consider the w — ¢t monodromy
matrix defined by

FA, [ﬁi ﬁﬂ(z?nzmzl = /d% Aigfat o gf}fm [m Al](z?,,zfz,zl).
g—HR
(28)
Using formulae (19), (21) and (22) one gets
2 3 1
| | |
4 —z—u—2— 1 —21— 0
2 1 3

_ €31
- Qu321 4 — 22— u — 21 — 3 — 23— 0

1 2 3
S LR E L A S
Q iR
1 3 9
= %/dat Qgg’ Bgilat[gi gé] 92%11 . z|1 L, Z|3 L Z|2 .
9 iR
3
|
1 t —232— 2
- %/dat 0522?? B;ilat[gi g;] “Qi%ll 4 — z|1 — t — z|2 — 0
9 +iR
3

t —=232— 2 1

1 | |
_ €12 €23 €21 a2 a1 €31
=9 doy 217 2153 B2 at[a4 013] 25 4 — = 1 z21— 0

Q .
? +’LR

3
|

t —=2z32— 2 1

_ £39 013 (o) | |
- _/datAauozt a4a1] 4 — 22 1 zZ1— 0 -

Q
5 +iR
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With the same restriction for arguments of z; as in the case of the fusion
matrix this implies

Qu, i | Qg

Ac32 |:043 QQ} = 6632”i(A3+A2_At)Bau at[gi gﬂ ) (29)

Setting ( 23, 22,21) = (2,1,0) in (28) and using (24), (25), (29) one gets the
formula (9).

3. External weight A(1,2)

If one of the external conformal weights A;, i =1,...,4 corresponds to
a degenerate Virasoro representation and the intermediate weight A, sat-
isfies an appropriate fusion rule then the conformal block is a solution of
a certain ordinary differential equation and the analytic continuation formu-
lae contain only finite number of conformal blocks [1].

In the simplest case of the conformal weight

s=A(-5)=-3v-1=A(0,2),

the conformal blocks are solutions of a second order differential equation and
can be expressed in terms of hypergeometric functions [1]. For the weight §
located at z; = 0 one has

fA(ag—g) [ﬁz ?2} (Z) — ZA(az—%)—Az—&(l _ Z)A(ou;-i-%)—Az—A:; (30)

X o (b(—a4 + a3+ ag — %), b(—oy + ag + ag — %); b(2aa — b); z),

f ot BV Ay etV Ay
Fauary [R152] () = 22ttt alecthara, (31)

X oF} (b(—a4 + ag + ag — %), b(—oy + ag + ag — %), b(2ag — b); Z).

Using the relation

Riabicd) = (1-2 0 (ac-ba ) @)
Z p—
valid in the range |arg(l — z)| < 7, and taking into account our choice of
cuts one gets

—Az—Ag—§ —emi(Alagt2)—Ag—
fA(azig)[ﬁi ?Q}(Z) — (1 — 2)A4mBs— 205 —emi(A(agt §)—A2—0)

Az 6 z
XFA(O@:I:%) [Aj A2i| < — 1> 3 (33)

z
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where the conformal blocks with the weight § at the location zo = z are
given by

Faent) [

ZA(a ) A — 6(1 )A(a3 2) Az—§

X oF1 (b(—ay + as + a1 — b) b(— a4—|—a3—|—a1——) b(2a1 — b); ),

) ot DY AL .
fA(al‘i‘%)[ﬁZ 31}(»2) = ZA( 1+3)—4A1 5(1 )A( 3— ) Az—§

X oY (b(—a4 + a3+ a1 — %) b(a4 + a3 — a1 — 2) b(2a1 b) Z)

Thus in the case under consideration the formula (7) can be seen as a gen-
eralization of the formula (33) for the hypergeometric functions.

This is also true for the other formulae. As an example we consider the
s —u monodromy (6) for the blocks (30), (31). It can be easily derived from
the relation

IrMNr@-—o), - 1
Fa, B57;2) = (=2) " Flal+a—yl+a—F—
re)re - z
) Ie—=0), s ( 1
+—(—Z) FB1+B—%1+0— a5
() I'(y = B) z
valid in the range |arg(—z)| < m. One obtains
Fag |21 %](e) = etemteman? (34
e S eosaa-a 5 13 (1)
z
T==%
= AN im0 A AT AD g [A&s ﬁi] <}>’
T==% z
o ==+,
where AT = A(as + g), AF = Alag + g), and
5 I (b(205 — )T (b(a; — a3)
F(b(a4—a3—|—a2 — —))F( (044 — Q3+ ag — %)) ’

_ I'(b(2az — b)) I'(b(e3 — as))
F(b(@4 — Qa3+ ag — %))F(b(oa; — Q3+ oy — %)) ’
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I'(b(2az — b)) I'(b(as — a3))
I'b(ay —ag + ag — %))F(b(oal — a3+ s — %)) ’

I'(b(2a2 — b)) I'(b(as — a3))
I'(b(ay —asg + ag — %))F(b(oal — Qg+ as — %)) .

By =

In order to derive the s — u monodromy from the general expression (6)
one needs to analytically continue the integral

1 —ETe —As— a3 o 1
> / day, e=mi@r A At g fawes] gy [2020] <;> (35)
2 HiR

from the “physical” values as, 1 € Q/2 + iR to as = ag + %, ap = —%.
Let us note that for ag, a3, ay € @Q/2 4 iR the conformal block in the inte-
grand of (35) is regular in this limit.

For a; € /2 4+ iR the continuation s — g + % of the braiding matrix

(11) takes the form

B, 58] = eV (@), (36)
where
I’b(2a2 :Izb)Fb(ng ZFb)
Wi(on) = T 90 —a = b - N~ o b b
b(2a2 — Qa1 F 5).[’[,(20@ — o1 F 5)1—'1,(041 + 5)1—'1,(041 + 5)
« 1
Iy +as —as F L) O(au + a3 — o F 2)
1
X b (37)

Fb(@4—043—|—042:|:%)Fb(0z4—043+a2:|:5)’

Us(a1) = Ip(aa + as—a) (s + @s—ay) Iy (@s—ao + ) Ip(cu—as + o)

" Iy(an + ag— ) Iy + as— o) Ip (0 —as + o) [ (0 — s + o)
Fb(au_au)Fb(au_@u)

)

(38)

Ii(ay) = 1 d Sp(an +t)Sp(ar + ) Sp(as—as + az + t)Sp(as—az + az + 1)
ST T SQF F 05202 £ 5+ 0Su(Gu + a5 + DSy +ag +1)

(39)
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The contour C in the integral 11 (1) is deformed such that the zeroes of the
denominator are located to its right and all the poles of the numerator to
its left.

Let us assume for a moment that the integral Iy (aq) is regular in the
limit oy — —%, i.e. there exists a finite limit Ii(—%) with no poles as
a function of . In this case the only poles of the integrand in (36) which
locations depend on oy come from the factor Uy (a;). One can easily verify
that in the limit ay — —% the contour of integration can be deformed such
that the integral of Uil is finite. In this case all the integral vanish due to
the factor I,(a1 £ %)_1 in Wy (37).

It follows that the only contribution to the integral (35) comes from the
non-regular part of the integral I,. Such part can arise only if the contour C
gets “pinched” between moving poles. For ay = ay —1—3 this happens only for
one pair of poles: the pole of the factor Sy(cy +t) at ¢ = —ay, approaching
the contour C from the left, and the pole of the factor S,(Q — % +t)7 1 at

t= g, located to the right of C. Moving the contour to the right (or to the

left) of this pair (¢f. [13], Lemma (3)) one gets

Li(ar) = IS)F(OQ) +If(041),
() = Sp(ar — ) Sp(Qua + a2 — g — 1) Sp(as + a2 — a3 — 1)
+ Sp(Q — & — a1)Sy (200 + & — 1) Sy (a5 + a — 1) Sp(@s + oy — 1)

)

where () denotes the regular part.

In the case ay = ag — % there are two pairs of colliding poles with the
contour C in between and the integral /_(«;) can be written as

I_(a1) = I%(a1) + I (eq) + IE (),

Sp(@1 — 01)Sp(a + ag — ag — a1)Sp(aa + a2 — a3 — 1)

Ig (0[1) = b b — — _ )
Sp(Q + 5 —a1)Sp(202 — 5 — a1) (a3 + ay — a1)Sp(a3 + y — 1)
1 Sb(al — o1 — b)
1! = —
- (1) 2sin(mb?) Sy(Q — £ — 1) Sp(202 — & — ay — b)
Sb(@4 + oo — a3 — a1 — b)Sb(Oé4 + oo — a3 — a1 — b)
Sp(as + @y — a; — 0)Sp(as + ay —a; —b) ’
where 1Y (o) is the contribution from the pole of Sy(a +1t) at t = —ay and

the pole of Sy(Q + 5 +¢)~L at t = &, I'(ay) is the contribution from the
pole of Sy(a; +t) at t = —ay — b and the pole of Sy(Q + % +t)tatt= —%,
and I%(ay) is the regular part.
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I9(a1), I%(c1) and I1(aq) are finite in the limit oy — —2 and by
themselves do not provide a compensating factor for vanishing Wy. They
however change the structure of poles in the integrand of (35) which is now
determined by the factors U+I9r, UyI°, and U I', respectively.

In the case of UJFIS)r there are four pairs of poles “pinching” the contour
of integration. The corresponding contributions can be calculated as in
the case of t-integration in terms of residues of the poles at the locations
Qy = a3 —Qp, Oy = a3 — a1, Qy = a3 + a1, @, = ag + a1. Due to the
symmetry o, < @, the first two and the last two residues are equal. Since

. 1
lim Wi(a) ;j{ daw, Uy (1)1 ()
a1—>—§
Q=03 —Q1
_ I'(b(2ag — b)) I'(b(az — a3)) 5
- _ _ _ b _ — by P+t
F(b(a4 — Q3+ Qg — 5))1—1(1)(044 — Q3+ g — 5))

alim , W) % j{ day, U+(a1)f9r(a1)
T ay=a3+a1

B I'(b(2ae — b)) I'(b(as — a3)) 3

T (b —as+as— ) (blas—as+as L)

one recovers the formula (34) for o = +.
The same four pairs of colliding poles appear in the case of U_I°.
The corresponding residua are given by

lm W (a1) % 7{ dag U_(a1) 1% ()

Oél—>—§
Qy=a3—a1

I'(b(200 — b)) (b(ar3 — @s3))
I(b(ay — ag+ oy — B) (b — ag + az — )

F(b(@4 + a3 — ag — %)F(b(oq + a3 —ag — %))
I(b(ag + sz — ag — D) (b(ay + a3 — az — B))

_ 0
= B, |

1

lim \ W_(a1) = ¢ day, U_(a1)I°(ay)

M2 Oéuzzj“l‘al

_ I'(b(202 — b)) I'(b(a3 — a3)) _ 3
I(b(o — a3+ ag — 5))(b(oy — a3+ az — 5)) o
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In the case of U_I' there are only two pairs of colliding poles contributing
the residua at a,, = a3 — a1 and @, = ag — a;. By the ag <> a3 symmetry
they are equal and take the form

lim W (as) % 7{ do U_(an) I ()

ot
ay=a3—a]

(b +ag —ag — BY)YL(b(as + ag —az — 2)) a0
. I(b(az — a2))I'(b(2a3 — b)) =B, .

Using properties of the gamma functions and trigonometric identities one
gets

I'(b(2ae — b)) ' (b(as — @)

BY, +8Y, =
+ T (b — ag +az — )M (b(as — a3 +az — b))

:B—-i-v

what agrees with (34) for o = —.

L.H. would like to thank Rainald Flume for numerous helpful discussions
and the faculty of the Physics Institute of the Bonn University for their hos-
pitality. The work of L.H was partially supported by the DAAD scholarship
A/04/24797.

Appendix A

For Rz > 0 the Barnes double gamma function has an integral repre-
sentation

2
log I () — T dt et — e~ 3t (%—x) -z
L= [T T ema—em) 2 t
0

It satisfies functional relations of the form

mbbw—%
W Iy(z),

1 Vb T2
Fb<33+_> = ———— Di(z),
b %)

Fb(a:—i-b) =

and can be analytically continued to the whole complex x plane as a mero-
morphic function with poles located at x = —mb — n%, m,n € N.
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For x — 0

I,(Q) n

L) = 2rx

o(1).

For 0 < Rz < @ the function Sy(z) = % can be represented as

dt sinh (5 — a;) t Q— 2
log Sb(x) = r . bt - t
t | 2sinh F sinh g t
0
Sy is a meromorphic function of x with poles located at x = — mb — n%, m,

n € N, and zeroes at x = QQ + mb + n%, m,n € N. It satisfies functional
relations of the form

Sp(z +b) = 2sin (7wbx) Sp(z),

1 . /T
Sh <:13 + E) = 2sin (T) Sp(x),
and for x — 0 :

Sy(x) = % +ox), Sy (Q +2) = —2m2 4+ O (2) .

Both I},(z) and Sy(z) are invariant under b — 7.

Appendix B

Our aim is to demonstrate the symmetry properties of the matrix
B,. au[gg gﬂ (11). The conjugations a1 — @i, oy — ay, as — &g and
Qa, — a, are explicit. To see the symmetry of the braiding matrix under
the and exchange of the columns, i.e. simultaneous transformation a; < ay,
a9 <> ag one only needs to shift the integration variable t — t 4+ a3 — ao.

To find the remaining symmetries one can start from the following iden-
tity satisfied by the deformed hypergeometric function

)Sb (—z’y+ % - %ﬂﬂ)
Sy (—z’y + % + %)
X Fy(y — o,y = By y; —iy) - (40)
From its integral representation

EM /dS e2misy Sp(a+ 5)Sp(B + s)
i Sp(a)Sp(B) Sp(v + 5)S,(Q + )

Fy(a, By —iy) = e

Fy(a, B;v3y) =
iR
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it follows that the integral that appears in the expression for the braiding
matrix,
7 1 d Sb(dl + t)Sb(Oél + t)Sb(C_u — o3+ ag + t)Sb(Cu — a3+ o+ t)

i Sp(a, + ag + ) Sp(ay, + as + ) Sp(as + ag + ) Sp(as + ag +t)’
iR

can be expressed as

Sy — a3 + ) Sp(a1 — g + ) Sp(Qy — a + a) Sp(an — a3 + @)
Sb(QQQ)Sb(Qag)

I =

X /dy etmy(estas—on=02) [ (o) — ag + a5, G — Qo + Qi 202; — 1Y)
R
X Fy(0 — Qg + Gy, 01 — 3 + G 2033 1Y) -
Using in this expression the identity (40) we get

Sh (a5+a4—a3) Sp (a5+541 —Ozg) Sh (d4+042—04u) Sp (041 —|-Ot3—au)

I =
Sp (s +az—ay) Sy (s +aa—an) Sp (u+an—ay,) Sp (1 +asz—ay,)
« 1 & Sh (043 —|—t) Sp (5&3 —|—t) Sp (a4+a1 —Ozg—i—t) Sh (Oz4+0z1 — Qo +t)
i Sp (as+ayg+t) Sy (as+ag+t) Sy (ay+a1+t) Sy (ay+ag+t)’
iR
what gives

Bas au[gi g?i|
_ Ly(ae + ay — ay)p(ag + ay — ay
Iy(ae + a1 — ag)[p(ag + a1 — as

(g — ay + ay) (e — oy + )
Fb(@g — a1 + Oés)Fb(Oég — a1+ Ozs)

)
)
« Fb(ag + a1 — Oéu)Fb(C_vg + a1 — Oéu)Fb(ag —ay + Oéu)Fb(C_vg — a1+ Oéu)

Fb(ag + ayq — Oés)Fb(ag + ay — Oés)Fb(ag — Qa4 + Oés)Fb(ag — 0y + Oés)

Fb(QOéS)Fb(QQ — 20[5)
Fb(Q - 2au)Fb(2au - Q)

1 Sb(a3+t)5b(5z3+t)5b(o72—5z1+a4+t)Sb(a2—5z1+a4+t)

X — | dt
2/ Sp (ay + a1 +1) Sp (a, + 1 +1) Sp (s + g + 1) Sy (s + ayq + t)
iR

= BOCS Oéu|:g; gﬁ] . (41)

This form of the braiding matrix is explicitly invariant under the conjugations
a9 — g and ag — ag. Shifting the integration variable t—t+aq — oy we get

B Y e a4 Q1
Qs Oy | g a3 | — Qs Oy | i3 g
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and this, together with (41), finally proves the symmetry of the braiding
matrix with respect to the exchange of its rows

B a3 g | B Qg4 1
Qs Oy | a4 1 |~ Qs Oy | g g | °
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