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A simple model of 1D structure based on a Fibonacci sequence with
variable atomic spacings is proposed. The model allows for observation
of the continuous transition between periodic and non-periodic diffraction
patterns. The diffraction patterns are calculated analytically both using
“cut and project” and “average unit cell” method, taking advantage of the
physical space properties of the structure.
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1. Introduction

For nearly 100 years, the analysis of diffraction patterns of solids has
been an essential tool for studying solids, since the diffraction pattern of
a solid is essentially the (squared) Fourier transform of the set of atomic
positions. Classical crystallography considered periodic structures, whose
diffraction patterns consist entirely of sharp Bragg peaks. The Fourier trans-
form of such a periodic set can be computed from the relevant unit cell. The
discovery of quasicrystals showed that discrete diffraction patterns are as-
sociated not only with periodic structures but also with a large family of
solids that have no discrete translation symmetry – quasicrystals. This fact
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was incorporated into a new definition of “crystal” proposed in 1992 by the
Commission on Aperiodic Crystals established by the International Union
of Crystallography: a crystal is defined to be any solid with an essentially
discrete diffraction pattern.

Diffraction patterns for periodic and aperiodic crystals differ in substan-
tial ways – for instance, the diffraction patterns of quasicrystals may exhibit
“forbidden symmetry”. It is therefore illuminating to consider a model that
interpolates between periodic and aperiodic structures, and observe how the
diffraction pattern changes.

We consider such a one-parameter family of structures in this paper.
Specifically, we consider a fixed (Fibonacci) sequence of two types of “atoms”,
and vary the amount of space around each type of atom, while keeping
the overall density fixed. The control parameter κ is the ratio of the two
allowed distances between nearest neighbors. In all cases, the diffraction
pattern is discrete, and the locations of the Bragg peaks are independent
of κ. However, the intensities of the peaks are κ-dependent. When κ is
rational, the intensities form a periodic pattern, while when κ is irrational,
the diffraction pattern is aperiodic. We compute this diffraction pattern in
two independent but equivalent ways: (i) by recovering periodicity going to
higher dimension (the “cut and project method” deeply discussed in many
papers: [4, 7, 9, 12–17,19, 26]); (ii) using the concept of the reference lattice.

These results are in accordance with the ergodic theory of tiling spaces.
It is known that the Bragg peaks of a tiling T occur at eigenvalues of the
generator of translations on the hull of T (i.e., the space of all tilings in the
same local isomorphism class as T ) [8]. It is also known [24] that the hulls of
modified Fibonacci chains with the same average spacing are topologically
conjugate, hence that their generators of translations have the same spectral
decomposition. The question of when and how such a modification affects
the dynamical spectrum was addressed for one dimensional patterns in [5],
and for higher dimensional patterns in [6]. (It should be noted that for a
substitution tiling whose substitution matrix has two of more eigenvalues
greater than 1, a generic change in tile length will destroy the Bragg peaks
altogether, in sharp contrast to the behavior of modified Fibonacci chains,
other Pisot substitutions, and other Sturmian sequences.)

Ergodic theory says nothing, however, about the intensities of the Bragg
peaks. Although the spectrum of the generator of translations is compli-
cated, for special values of the control parameter some of the peaks may
have intensity zero, resulting in a simpler diffraction pattern. The calcula-
tions in this paper demonstrate that this does in fact happen.
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2. The modified Fibonacci chain

The properties of Fibonacci sequences have already been thoroughly
studied (see e.g., [25]). They are sequences of two elements A and B obtained
from a substitution rule:

A −→ AB; B −→ A. (1)

Let ~pm = (pA
m, pB

m) be the population vector, where pX
m tells how many

elements of type X are among the first m terms of the sequence. Of course,
pA

m + pB
m = m. There are an uncountably infinite number of Fibonacci

sequences, but all have the same local properties and the same diffraction
pattern. It is easy to see that every Fibonacci sequence has

lim
m→∞

pA
m

pB
m

= τ, where τ =
1 +

√
5

2
. (2)

For definiteness, we will work with the sequence ([25])

~pm =
(
∥

∥

∥

m

τ

∥

∥

∥
,m −

∥

∥

∥

m

τ

∥

∥

∥

)

. (3)

Here ‖·‖ is the nearest integer function: If m ∈ Z and m ≤ x < m + 1 then:

‖x‖ =

{

m if x ∈ [m,m + 1/2),
m + 1 if x ∈ [m + 1/2,m + 1).

(4)

Now pick two positive numbers (also called A and B) that determine
the space between each “A” or “B” atom and its predecessor. That is, the
atomic positions are given by

xm = ~pm · (A,B). (5)

We call the sequence {xm} a modified Fibonacci chain. If A = B, then the
atoms are equally spaced, and this is simply a periodic array. If A/B = τ ,
then the atomic positions are those obtained from the canonical “cut and
project” method. By varying the ratio A/B, we interpolate between these
two cases. Note that the average atomic spacing is τA+B

1+τ . We will keep this
average spacing fixed and consider the one-parameter family

A = τ − ǫ

τ
, B = 1 + ǫ, (6)

depending on the control parameter ǫ.
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3. 2D analysis of the modified Fibonacci chain

The modified Fibonacci chain can be obtained by a “cut and project”
method with a nonstandard projection. From this construction we can com-
pute the diffraction pattern.

Let L
ν
2 be the 2 dimensional square lattice with spacing ν. The Voronoï

cell of each lattice point is a square. Let l0 be the line y = x/τ through the
origin, making an angle β0 = cot−1(τ) with the x-axis. Let X be the subset
of L

ν
2 whose Voronoï cells are cut by l0. It is well known (see e.g., [25]) that

X = {~x | ~x = ν~pm,m ∈ Z} where ~pm are population vectors given by (3).
Let lα be the line through the origin making an angle

β = β0 + α (7)

with the x-axis, and define Πα to be the orthogonal projection onto lα.
Finally, let Λ be the projection of X onto lα:

Λ = Πα(X). (8)

The set Λ is then a modified Fibonacci chain; the procedure was presented
in the figure 1. The two distances are

A = ν cos β, B = ν sin β. (9)

Their sequence is fully determined by X and does not depend on α. The
average distance between nearest neighbors in Λ is

lim
m→∞

~pm · (A,B)

~pm · (1, 1) = ν

√
τ + 2

τ + 1
cos α. (10)

To keep this average spacing constant we take

ν =

√
τ + 2

cos α
. (11)

The angle α, the displacement parameter ǫ of (6) and the ratio κ = A/B
are related by

ǫ =
τ − κ

κ + τ − 1
= τ tan(α), (12)

κ = cot(β) =
τ − tan(α)

1 + τ tan(α)
=

τ + ǫ(1 − τ)

1 + ǫ
, (13)

tan(α) =
ǫ

τ
=

τ − κ

κτ + 1
. (14)
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Fig. 1. The 2D construction of the modified Fibonacci chain. Details in text.
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Fig. 2. Diffraction pattern of the modified Fibonacci structure is a section of the

diffraction pattern of X through direction lα. kphys = OP is the position of the

peak, KP determines the intensity.

We assume that every point of the set Λ is an atom with scattering
power equal to unity. Our aim is to calculate the diffraction pattern of such
a structure. We begin by calculating the 2-dimensional diffraction pattern
of X. The diffraction pattern of Λ is then a section of the diffraction pattern
of X along the direction lα (figure 2).

To get the diffraction pattern of X we note that X is L
ν
2 times the

characteristic function of a strip of width

hα =
τ + 1

cos α
(15)
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around l0. The Fourier transform of a product is the convolution of the
Fourier transforms, and the Fourier transform of a lattice is the reciprocal
lattice. The diffraction pattern of X in 2D has normalized intensity

I(~k) =
∑

mx

∑

my

(

sin((hα|~k − ~kmxmy
|)/2)

(hα|~k − ~kmxmy
|)/2)

)2

δ
(

(~k − ~kmxmy
) · (τ, 1)

)

, (16)

where ~kmxmy
= 2π

ν (mx,my) and mx, my ∈ Z label points of the reciprocal
lattice to L

ν
2 . Along the direction lα, the peaks can be observed at positions

kphys =
~kmxmy

· (τ, 1)
cos α

√
τ + 2

= 2π
τmx + my

τ + 2
. (17)

Note that these positions are independent of α (or ǫ or κ). Their intensities
are

Imxmy
=
(sin w

w

)2

, w =
hα

~kmxmy
· (−1 − τ tan α, τ − tan α)

2
√

τ + 2
. (18)

After simplifying and rewriting in terms of ǫ we obtain

w =
π(τ + 1)

τ + 2
(−mx(1 + ǫ) + my(τ − ǫ/τ)). (19)

4. Structure factors and average unit cells

The concept of a reference lattice has previously been proposed in [31].
Suppose we have a 1 dimensional Delone set {rn}. Its points represent atoms,
whose scattering instensities are equal to unity. With some appropriate
assumptions on the sequence {rn} we get the following expression for the
structure factor:

F (k) = lim
N→∞

1

N

N
∑

n=1

exp(ikrn) = lim
N→∞

1

N

N
∑

n=1

exp(ikun)

=

λ/2
∫

−λ/2

P (u) exp(iku)du, (20)

where P (u) is the probability distribution of distances un from the atoms to
reference lattice positions mλ, λ = 2π/k. That is,

un = rn −
∥

∥

∥

rn

λ

∥

∥

∥
λ. (21)
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We call the series un the displacements sequence of rn (induced by the
reference lattice with period λ). Any series u′

n such that

un = u′
n −

∥

∥

∥

∥

u′
n

λ

∥

∥

∥

∥

λ, (22)

will be called an unreduced displacements sequence (of rn).

Theorem 1. Let rn = αn + βn be a sum of two real series. If dn is a
displacements sequence of αn induced by a reference lattice, then

u′
n = dn + βn (23)

is an unreduced displacements sequence of rn induced by the same lattice.

Proof. Let λ be the period of the reference lattice. We have to show that

un = rn −
∥

∥

∥

rn

λ

∥

∥

∥
λ = u′

n −
∥

∥

∥

∥

u′
n

λ

∥

∥

∥

∥

λ. (24)

Note that for any real number x, y, ‖x − ‖y ‖‖ = ‖x‖− ‖y‖, since ‖y‖ is
an integer. We can write the right hand side of (24) as

βn + αn −
∥

∥

∥

αn

λ

∥

∥

∥
λ −

∥

∥

∥

∥

βn + αn − ‖αn/λ‖λ

λ

∥

∥

∥

∥

λ = rn −
∥

∥

∥

rn

λ

∥

∥

∥
λ, (25)

which is the left hand side.

The quantity P (u) may be viewed as a probability distribution for an
average unit cell. The structure factor for the scattering vector k is just the
first Fourier mode of this distribution.

Unfortunately, for each scattering vector we get, in principle, a different
average unit cell and a different distribution. However, the structure factor
for mk, m ∈ Z can be computed from the reference lattice for k; it is the
m-th Fourier mode of the distribution P (u). Thus, a single average unit cell
is sufficient to analyze structures whose scattering occurs at multiples of a
fixed scattering vector k0. This situation includes, but is not limited to, the
case where the original point pattern was periodic with period 2π/k0.

For modulated structures (including quasicrystals), there are usually two
periods, a and b, which may be incommensurate. Using two reference lat-
tices, the first one having periodicity a and the second having periodicity b,
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the structure factor for the sum of two scattering vectors k0 ≡ 2π/a and
q0 ≡ 2π/b can be expressed by:

F (k0 + q0) = lim
N→∞

1

N

N
∑

n=1

exp(i(k0 + q0)xn)

= lim
N→∞

1

N

N
∑

n=1

exp(i(k0un + q0vn))

=

a/2
∫

−a/2

b/2
∫

−b/2

P (u, v) exp(i(k0u + q0v))dvdu, (26)

where u and v are the shortest distances of the atomic position from the
appropriate points of two reference lattices and P (u, v) is the corresponding
probability distribution, which thus describes a two dimensional average unit
cell. Likewise, the structure factor for a linear combination nk0+mq0, n, m ∈
Z is given by the (n,m) Fourier mode of P (u, v). This means that the
average unit cell, calculated for the wave vectors of the main structure and
its modulation, can be used to calculate the peak intensities of any of the
main reflections and its satellites of arbitrary order. Using (26) and its
generalization, it is possible to calculate the intensities of all peaks observed
in the diffraction patterns.

5. 1D analysis of the modified Fibonacci chain

Let a = τ+2
τ+1

, the average spacing between atoms in a modified Fibonacci
chain, and let b = τa. The positions of atoms in our chain are:

xm = ~pm · (A,B)

=
∥

∥

∥

m

τ

∥

∥

∥
A + mB −

∥

∥

∥

m

τ

∥

∥

∥
B

= (A − B)
∥

∥

∥

m

τ

∥

∥

∥
+ mB = (A − B)

[m

τ
+

1

2

]

+ mB

= (A − B)
m

τ
+ mB + (A − B)

(

1

2
−
{

m

τ
+

1

2

}

)

= ma + u0M(ma), (27)

where M(x) = 1
2
− {x

b + 1
2
} is a periodic function with period b and

u0 = τ − 1 − ǫτ. (28)
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Here [x] = ‖x − 1
2
‖ is the greatest integer function and {x} = x − [x] is the

fractional part of x.
When u0 6= 0, the modified Fibonacci chain is thus an incommensurately

modulated structure. A similar derivation for ǫ = 0 can be found in [25].
We are going to construct a two dimensional average unit cell based on

the two natural periodicities for xm: a and b. For the scattering vector
k0 = 2π/a, it is obvious that the series u′

m = u0M(ma) is an unreduced
displacements sequence of xm induced by the reference lattice with period a.

Next we consider the (one dimensional) average unit cell for the scatter-
ing vector q0 = 2π/b. The series

µm = ma −
∥

∥

∥

ma

b

∥

∥

∥
b = −bM(ma) = −u′

m

b

u0

(29)

is an (unreduced) displacement sequence of ma induced by a reference lattice
with period b. Using Theorem 1 we immediately get that the series

v′m = µm + u′
m = (u0 − b)M(ma) = v0M(ma) = ξu′

m (30)

is an unreduced displacements sequence of xm induced by a lattice with
period b, where

v0 = u0 − b, ξ = v0/u0 =
−τ2(1 + ǫ)

1 − ǫτ2
. (31)

By Kronecker’s theorem (see [11]), the series u′
m is uniformly distributed

in the interval [− |u0| /2, |u0| /2]. As pointed out by Elser ([9], for a more
precise discussion see also [25]) the uniformity of this distribution is crucial
for our deliberations. Likewise, the series v′m is uniformly distributed in the
interval [− |v0| /2, |v0| /2].

The structure factor (see (26)) is

F (n1k0 + n2q0) =

a/2
∫

−a/2

b/2
∫

−b/2

P (u, v) exp(i(n1k0u + n2q0v))dvdu. (32)

The unreduced displacements sequences u′
m and v′m can be used to calculate

P (u, v). However, this cannot be done directly because their terms may lie
outside the average unit cell (i.e.: |u0| > a or |v0| > b). Such a situation is
shown in figure 3. We have to reduce the series to the interior of the cell.
The probability function P (u, v) is nonzero only along segments with slope
ξ (as a result of the strong correlation between u′

m and v′m given by (30))
and has constant value. This last fact follows from the uniformity of the
marginal distributions.
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Fig. 3. (a) shows two parameter average unit cell. The distribution P (u, v) is

non zero only along the thick lines and has constant value. Projections of it onto

directions u and v determine the probability distributions for scattering vectors k0

and q0 ((b) and (c) respectively). (d) presents set of vectors {(u′

m
, v′

m
) | m ∈ Z}.

It may happen its elements lie outside the average unit cell and have to be reduced

to its interior (like for the presented example with ǫ = −0.7). Invariance under the

substitution (33) assures that integration of functions on (a) and (d) gives the same

results. Our parameter space has discrete translational symmetry like a periodic

crystal.

The formula (32) is invariant under the changes

u → u + γ1a, v → v + γ2b, (33)

where γ1,2 are arbitrary integers. Likewise, the formula does not change if we
use P ′(u, v) = Cδ(v− ξu) instead of P (u, v) and we change the area of inte-
gration from [−a/2, a/2],[−b/2, b/2] to [− |u0| /2, |u0| /2], [− |v0| /2, |v0| /2].
That is, we are free to integrate a part of distribution in the neighboring
unit cells.

For integers n1, n2 we compute the location Kn1,n2
, the structure factor

F (Kn1,n2
) and the normalized intensity I of the corresponding peak:

Kn1n2
= (n1k0 + n2q0) =

2π(τn1 + n2)

τa
F (Kn1,n2

) =
sin(w)

w
, I = |F |2 ,

(34)
where

w = (n1k0 + n2q0ξ)u0/2 = (Kn1,n2
− n2q1)u0/2, q1 = q0(1− ξ) =

2πτ

1 − ǫτ2
.

(35)
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The integers n1 and n2 label the main reflection and its satellites, re-
spectively. Equations (34), (35) can be used to calculate the positions and
intensities of all peaks.

The correspondence with the previous 2 dimensional calculation is given
by

n1 = my, n2 = mx − my. (36)

By equations (17) and (34), the peaks are located at

Kn1,n2
= Kmy ,mx−my

= 2π
myτ + mx − my

τ

τ + 1

τ + 2
= 2π

mxτ + my

τ + 2
= kphys.

(37)
Likewise, substituting (36) into (35) and simplifying yields (19). It must
be noted that the 2D approach presented here is not new and has been
already used to describe the transformation between quasiperiodic and pe-
riodic structures. Please refer to [20] and [28].

6. Discussion of the results

It has been shown that the deformation rule in physical space changes
only the amplitude of modulation (equation (27)). Positions of peaks do
not depend on the parameter ǫ; only their intensities vary. Using equations
(34) and (35) we can easily build envelope functions, which go through the
satellite reflections of the same order (indexed by n2). The shift of the
envelope functions is q1, as given by (35).

The set of positions of Bragg peaks is always periodic, since the spec-
trum of a one-dimensional dynamical system is an Abelian group. By a
commensurate diffraction pattern we mean a pattern in which the ampli-
tudes are periodic as well. However, aside from the special case A = B, the
Bragg peaks are described by two incommensurate periods, and should not
be confused with the diffraction of a periodic crystal. For our diffraction
patterns, one period (of length q1) is connected with envelope functions,
while the second, with period k0, is associated with peaks ascribed to each
envelope function. This behavior is characteristic of modulated crystals and
was discussed in [30]. Only the first periodicity could assure equality of
intensities.

It is convenient to describe our results in terms of the ratio κ = A/B.
When κ is rational, say equal to p/q, then every atomic location xm is
a multiple of A/p = B/q. Plane waves whose frequencies are multiples
of 2πp/A have value 1 at each atomic position, and the entire diffraction
pattern is periodic with period 2πp/A.

Conversely, if the diffraction pattern is periodic, then the underlying
periods k0 and q1 must be commensurate. A simple algebraic calculation
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then shows that κ must be rational. Thus, the pattern is commensurate if
and only if κ is rational, which corresponds to projecting the set X onto a
rational direction (κ = cot β; see (9)).
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Fig. 4. Examples of diffraction patterns: (a) unmodified Fibonacci chain (κ = τ and

ǫ = 0); (b) κ ≈ 6.836 (ǫ = −0.7). Broken lines present envelope functions. Given

envelope function goes through satellite peaks of the same order. All envelopes

have the same shape; their shift is q1. As we can see analytical results are in full

compatibility with numerical calculations.

Figure 4(a) shows the diffraction pattern of an unmodified Fibonacci
chain. The pattern is clearly non-periodic, as A/B equals to τ . For ǫ = 0
our approach is identical with that presented in [32]. Figure 4(b) shows the
pattern for ǫ = −0.7 (corresponding to the average unit cell presented in
figure 3). As we can see, analytical calculations of envelope functions are in
full agreement with numerical calculations of the diffraction pattern.
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Figures 5 and 6 show diffractions patterns for κ equal to 2/3 and 3/2
respectively. The regular series of peaks are clearly visible, but the diffrac-
tion patterns are still quasicrystaline. It is significant that for any value of
ǫ except 1 − 1/τ (discussed below) the structure is not periodic in physical
space, but may have periodic diffraction patterns.
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50403020100

1

0.8

0.6

0.4
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Fig. 5. Modified Fibonacci chain for κ = 2/3 (ǫ ≈ 0.741, q1 ≈ 10.816).
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Fig. 6. Modified Fibonacci chain for κ = 3/2 (ǫ ≈ 0.056, q1 ≈ 11.913).

For ǫ = 1 − 1/τ one gets fully periodic structure with κ = 1, hence
A = B. Our deformed Fibonacci chain is then simply a lattice, and its
diffraction pattern is the reciprocal lattice, with period k0. At this special
value of κ, all the other Bragg peaks have intensity zero.

It must be also noted that the amplitude of each peak is a continuous
function of κ. In fact, it is infinitely differentiable. As κ is varied, there is
no phase transition between commensurate and incommensurate diffraction
patterns; the evolution is smooth. As such, with measurement apparatus
of fixed accuracy, it is impossible to determine whether a given pattern is
precisely periodic.
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Finally is may be noted that our analysis of the transition quasiperiodic-
periodic (commensurate-incommensurate) is based on the explicit knowledge
of the structure factor. It has been already shown ([18]) that the method
advertised (average unit cell) can give the factor for higher dimensional
structures and therefore there are (in general) no obstacles to repeat similar
analysis in the latter case. Such calculations have not been undertaken so
far but it seems that they might be based on analytical expressions for the
coordinates of quasiperiodic lattices, derived from periodic or quasiperiodic
grids (as given for example in [23]).
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