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The wobbling mode of the collective angular momentum expressed as
a phonon excitation with a phonon quantum number, nw, and wobbling
frequency, ~ωw, is unique to the rotational motion of a triaxial nucleus.
The presence of quasiparticle alignment introduces characteristic trends in
the electromagnetic decay properties for transitions between bands with
different wobbling quantum number. Evidence for the wobbling mode, and
thereby triaxiality, has been obtained in several even-N Lu isotopes, 163Lu
being the best studied case with the strongest population of the wobbling
excitations. As an important support for the wobbling interpretation, re-
cent lifetime measurements in 163Lu have shown that the quadrupole mo-
ments of the bands with nw = 0 and nw = 1 are very similar. Triaxial
strongly deformed shapes are expected also for neighbouring Hf nuclei, but
efforts to identify wobbling in the Hf isotopes where many bands are es-
tablished, resembling those found in the Lu isotopes, has so far failed. To
date the even-N Lu isotopes, 161,163,165,167Lu, are the only nuclei in which
wobbling excitations are identified.

PACS numbers: 27.70.+q, 23.20.–g, 21.10.Re

1. Introduction

Although most nuclei are spherical in their ground state divergence from
both spherical and axial symmetry may be a rather common phenomenon
for nuclei throughout the entire available mass region when excited states
at higher angular momentum are considered. A direct determination of the
shape parameters for the nuclear mass- and charge distribution is not in gen-
eral attainable for excited states. Other less direct means must be invoked.
The loss of spherical and axial symmetry will influence many spectroscopic
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observables, and an interplay of such measured quantities has often been
used as evidence for triaxiality in nuclei. For well deformed nuclei triaxi-
ality will have an effect on important quantities like (i) excitation energy
of quasiparticles, (ii) the relation between signature partner bands and (iii)
electromagnetic decay strength between bands. Yet such effects may arise
from other structural changes than nuclear triaxiality, and stable static tri-
axiality is difficult to prove.

In recent years two different features both uniquely related to triaxiality
have been at focus.

One such feature is breaking of chiral symmetry, i.e. a pair of chiral twin
bands with identical structure and very close excitation energies may be
expected under certain conditions: Coupling of the angular momenta of the
individual valence particles and the collective rotation may bring the total
spin out from any of the principal planes. This can give rise to both left-
and right-handed orientation of the angular momentum vectors [1] and is
discussed in particular in odd-odd nuclei in the A ∼ 130 region [2]. A
beautiful selection rule for electromagnetic transitions is recently obtained
theoretically for idealistic chiral pair bands [3].

A triaxial nucleus may rotate collectively about any axis, and another
unique effect of triaxiality has to do with the extra degree of freedom from
transferring some collective angular momentum from the axis with the largest
moment of inertia to the two other axes. This transferred angular momen-
tum is quantized, and a family of rotational bands with increasing number
of wobbling phonon excitations is expected. Wobbling has been identified in
a number of even-N Lu-isotopes, including even a second phonon wobbling
excitation in a couple of cases [4–8].

2. Wobbling

The quantized wobbling motion of a triaxial nucleus, of which the clas-
sical analog is the motion of an asymmetric top, has been treated in details
in Ref. [9]. In the high-spin limit, and neglecting the intrinsic structure, the
excitation energy can be separated into the rotation about the principal axis
with the largest moment of inertia and the wobbling motion:

E(I, nw) = I(I + 1)
~

2

2ℑx
+ ~ωw

(

nw + 1
2

)

,

where nw is the wobbling phonon number and ωw the wobbling frequency
which depends on the three moments of inertia with respect to the principal
axes,

~ωw = ~ωrot

√

(ℑx −ℑy)(ℑx −ℑz)/(ℑyℑz) .
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The rotational frequency, ~ωrot, is expressed as I/ℑx. The formulation of
the rotational degree of freedom of a triaxial nucleus as wobbling excitations
corresponds to a 1-dimensional harmonic oscillator, as can be seen from the
expressions given above.

Fig. 1. Schematic illustration of a family of wobbling bands.

The presence of aligned particles will favour a specific (triaxial) shape
depending on the degree of shell filling in the high-j sub-shell, and states
with high-j aligned particles may appear close to the yrast line since the
rotational energy required to build up a certain total angular momentum is
relatively small.
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Fig. 2. Coupling scheme for an aligned particle (~j) and a rotor (~R) to the total

angular momentum ~I, where ~I = ~R + ~j. In (a) the cranking-like and (b) the

wobbling scenario, respectively, are schematically illustrated [10, 11].
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In this case, following the work of Ref. [11], in which a high-j particle is
coupled to a triaxial rotor, the energy can be written as

E(I, nw, j) = I(I + 1)
~

2

2ℑx
+ ~ωw

(

nw + 1
2

)

+
~

2

2ℑx
(−2Ixjx + j2

x) .

The energy difference between bands with ∆nw = 1,

∆E(I, j) = ~ωw + 2jx
~

2

2ℑx

is larger than in the case of no aligned angular momentum. As shown in
Ref. [10] the wobbling excitation may compete with the familiar cranking-

like excitation which will have ~j tilted away from the x-axis. These two
alternative coupling schemes are illustrated in Fig. 2.

In the particle-rotor calculations the moments of inertia have been re-
leased from hydrodynamical constraint, and values close to rigid have been
determined such that the experimental energies of the bands with nw = 0
and nw = 1 (in 163Lu) are reproduced on the average. This is justified
since with an appreciable divergence from axial symmetry rigid moments of
inertia are not in conflict with the required symmetry.

In Refs. [10, 11] matrix elements are calculated for in-band and out-of-
band transitions for the wobbling excitations in 163Lu which has an aligned
proton in the i13/2 orbital. A triaxial shape (ǫ, γ) ∼ (0.4, 20◦) is assumed in
agreement with expectations from potential energy surface calculations with
the cranking code, Ultimate Cranker (UC) [12], and the measured in-band
transition quadrupole moments. The calculated M1 transition strength is
quite small, in agreement with the wobbling picture, whereas the ∆nw = 1
E2 transition matrix elements are sizable and the phonon rules almost born
out, in accordance with the 1-dim harmonic vibrational description.

B(E2, nw = 2, I → nw = 1, I − 1) ∼ 2 ·B(E2, nw = 1, I − 1 → nw = 0, I − 2)

B(E2, nw = 2, I → nw = 0, I − 2) ∼ 0

In addition, the out-of-band to in-band ratios are for large triaxiality with
γ > 15◦ found to be independent of ǫ but strongly dependent on γ, while
keeping the nw/I dependence inherent in the wobbling phonon description.
These ratios are more easily compared to the experimental data

B(E2,∆nw = 1)

B(E2, ∆nw = 0)
∝

nw

I
·

sin2(γ + 30◦)

cos2(γ + 30◦)
.

The reduced I → I − 2 transition probabilities within a band with fully
aligned spin and the rotation axis as quantization axis (K = I) can be
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written [9, 13] as

B(E2, nw = 0) =
5

16π
(eQ̂2)

2〈II2 − 2|I − 2I − 2〉2 =
5

16π
(eQ̂2)

2 2I − 3

2I + 1
,

where Q̂2 is the quadrupole transition operator quantized along the rotation
axis. For the wobbling bands with the collective angular momentum titled
away from the rotation axis one has K = I − nw. For the one-phonon band
this results for I → I − 2 in

B(E2, nw = 1) =
5

16π
(eQ̂2)

2〈II − 12 − 2|I − 2I − 3〉2

=
5

16π
(eQ̂2)

2 (2I − 3)(2I − 4)

(2I + 1)2I
.

This effect causes the expected in-band B(E2) values for the one-phonon
wobbling band to be ∼ 7 % lower than the values for the fully aligned band
at I ∼ 30~, with identical intrinsic structures for the two bands [13].

3. Experimental evidence for wobbling

The signatures in the experimental data which may identify wobbling
phonon excitations are a ‘family of bands’ with similar properties. In par-
ticular, these bands should have similar dynamical moments of inertia and
alignments. More important are the electromagnetic properties of the decay
between bands. For the ∆I = 1(∆nw = 1) transitions the decomposition
in E2 and M1 amplitudes must be determined. This requires angular corre-
lation, angular distribution ratio and linear polarization measurements, for
decay branches out of weakly populated bands, a challenge that demands
the large state-of-the-art detector arrays to be utilized.

Wobbling has been identified in the even-N Lu-isotopes 161,163,165,167Lu
(cf. Fig. 3) with the data for 163Lu providing the best studied case so far.
163Lu has the strongest populated πi13/2 band with a two-phonon wobbling
excitation identified. The data for the neighbouring isotopes are less com-
plete, and for 161Lu the connection to the normal deformed structures is not
completely firm at present.

3.1. The best wobbler, 163Lu

For 163Lu a partial level scheme is shown in Fig. 4, including a compar-
ison of band properties (Fig. 4b) documenting that TSD1,TSD2 and TSD3
do indeed form a family. When compared to calculations we note that the
model of Ref. [11] is not able to reproduce the obvious anharmonicity re-
vealed in the excitation energy of TSD3 relative to TSD2, being considerably
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Fig. 3. Wobbling excitations in 161,163,165,167Lu [4–8]. A rigid rotor reference is

subtracted from the excitation energies. Identified interband transitions are marked

by arrows.

smaller than the excitation of TSD2 above TSD1 cf. Fig. 3. Furthermore, it
is not possible to reproduce the measured spin dependence of the wobbling
frequency with spin-independent moments of inertia.

The most important comparison though deals with the electromagnetic
transition rates (Fig. 4c), from which the agreement between experiment
and calculations appear very satisfactory, bearing out the phonon picture.
Note that the B(E2) ratios for the nw = 2 → nw = 1 transition from
TSD3 to TSD2 is even slightly higher than expected although the error is
large. Possible anharmonicity in the second phonon excitation revealed in
the smaller separation in energy between TSD3 and TSD2 relative to the
separation between TSD2 and TSD1, seems not to affect the transition rate.
Most likely, one may find excitations in the neighbourhood of TSD3, which
influence the excitation energies, whereas transition rates corresponding to
possible admixed amplitudes are likely to be small and therefore do not sig-
nificantly perturb the transition rates expected for the wobbling excitations.
The measured B(M1) values from TSD2 to TSD1 are quite small, consistent
with the wobbling excitation.
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Fig. 4. (a) Partial level scheme for 163Lu [4,5] showing the two excited TSD bands

and their decay mutually and to TSD1. (b) Relative differences in dynamic mo-

ments of inertia (top) and alignment (bottom) between TSD1 and the excited TSD

bands. (c) Experimental and calculated [11] ratios of B(E2) values for out-of band

transitions, nw = 1 → nw = 0, nw = 2 → nw = 1 and nw = 2 → nw = 0 to the

corresponding in-band B(E2) values with ∆nw = 0. For the lowest and 2 highest

experimental points with nw = 1 → nw = 0 the mixing ratios are not measured

but assumed to be identical to the average of values measured for 17.5 ≤ I ≤ 25.5.

3.2. The triaxial shape of 163Lu

New measurements of lifetimes in 163Lu for states in TSD1 and TSD2
covering a region in spin of 20.5 ≤ I ≤ 34.5 have been performed, allowing an
additional and important test of the identicality of the intrinsic structure of
the one-phonon wobbler band and its basis (nw = 0) [13,14]. With transition
quadrupole moments extracted as described in the preceeding section the
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Fig. 5. Comparison of experimental values of transition quadrupole moments

Qt(=
√

3/8Q̂2) for TSD1 and TSD2 in 163Lu [13,14] The values for TSD1 may be

compared to cranking calculations shown by the solid line.

in-band Q̂2-values are identical within errors. The values for TSD1 may
be compared to predictions from cranking calculations. The decrease in the
experimental values of Qt(=

√

8/3·Q̂2) with spin is qualitatively reproduced
by the calculation, in which the decrease stems mainly from an increase in
γ from ∼ 19.5◦ to ∼ 21.5◦ over the spin-range shown in Fig. 5. A slightly
larger increase in γ would comply with the experimental Qt-values.

Since the B(E2,out)/B(E2,in) ratios are approximately independent of ǫ
but strongly influenced by γ we show these for the nw = 1 → nw = 0 transi-
tions compared to the particle-rotor calculations of Ref. [11] for γ = 15◦, 20◦

as in Fig. 5, and 30◦. It appears that the flat behaviour rather than a 1/I-
dependence in the data can be explained if γ increases from ∼ 16◦ to ∼ 22◦

over the exposed spin-range. Therefore, a slightly stronger spin-dependence
in the triaxiality γ than expected from cranking calculations explains si-
multaneously the decrease in transition quadrupole moments. The 1/I-
dependence inherent in the B(E2,out)/B(E2,in) values for decay between
wobbling phonon excitations is thereby restored.

4. The Lu-Hf region

In addition to the wobbling excitations shown in Fig. 3 for the even-N
Lu isotopes quasiparticle excitations of negative parity with suggested con-
figuration assignments are found in the triaxial strongly deformed minima of
163Lu [15] and 167Lu [16,17]. Furthermore, two connected TSD bands with
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assigned quantun numbers and configurations are established in 164Lu [18].
In a ll these cases the odd proton is occupying the i13/2 orbital, and quasineu-
tron excitations include the i13/2 and h9/2 orbitals. The role of the j15/2

orbital at high spin is also discussed.

Triaxial strongly deformed minima are expected also in the neighbouring
Hf nuclei, and extensive searches in the presumably most favourable region,
164−166Hf, have not given any evidence for such structures. In the heavier
Hf isotopes 168−174Hf ∼ 15 bands which may be of TSD-type have been
identified. None of these bands have been connected to known structures,
and they have therefore no firm determination of excitation energy, spin or
parity. As an important exception, one band in 175Hf, which is found to
be nearly isospectral with the strongest populated TSD band in 174Hf, has
been connected to known normal deformed bands [19].

The large deformation has been verified for the strongest populated band
in 168Hf [20]. Very recently even larger transition quadrupole moments Qt ∼
13 b have been determined for several of the 8 bands in 174Hf [21, 22], and
the same value is found for the connected band, Band 2, shown in the level
scheme of 175Hf [19] (cf. Fig. 7). This band has unambigous spin, parity and
excitation energy determined, and the surprising fact is that Band 2 covers
a spin region, I = 79/2 − 127/2, which is 12–15 units higher than the spins
observed in the TSD bands of the Lu isotopes (cf. Figs. 3 and 4) whereas
the latter are similar to those observed for Band 1 in 175Hf. The relative
alignment is 10–12 units larger for Band 2 than for Band 1 [19]. Except for
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Band 1 in 175Hf, the dynamical moments of inertia, J (2) for the — possibly
triaxial — strongly deformed bands in the Hf nuclei, show a decrease with
spin, whereas the values of J (2) for all the TSD bands in the Lu isotopes are
increasing or constant as a function of spin.

The Hf-isotopes with suggested TSD structures are more neutron rich
than the Lu-isotopes for which the triaxiality has been verified by the wob-
bling excitations. Therefore one expects the strongly shape-driving j15/2

neutron orbital to come into play in the triaxial local minimum, and accord-
ing to cranking calculations the expected triaxiality for the heaviest 174,175Hf
is as large as ∼ 30◦. The measured values of Qt for the four strongest popu-
lated bands in 174Hf and the one band in 175Hf are considerably larger than
calculated [19, 22].
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With these new experimental results concerning (triaxial) strongly de-
formed bands in Hf-isotopes becoming available there seems to be an im-
portant qualitative difference to the neighbouring Lu nuclei. Of particu-
lar importance is the spin-range covered, but also much larger transition
quadrupole moments have been found. Therefore, the intrinsic structure
in these bands in the Hf-isotopes is most likely of more complex multi-
quasiparticle structure. Whether they correspond to triaxial mimima is an
open question. So far any proof for triaxiality by the identification of wob-
bling excitations has failed.

5. Summary and outlook

Triaxiality is documented in even-N Lu isotopes through the identifica-
tion of of wobbling phonon excitations. The degree of freedom exploited
in the wobbling excitation mode offers the possibility for determining three
different moments of inertia for the rotational motion of a triaxial nucleus, a
new challenge to theory. The region of stable triaxiality around Lu provides
a testing ground for models to describe the interplay of shells driving the
nuclear shape towards triaxiality.

Experiments have shown that large deformation exists in the heavier Hf
isotopes, but the excitations found here have much higher spin than the TSD
bands in Lu. The structures are most likely more complex, and no wobbling
excitations have been identified.
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