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Collective rotation of tetrahedral nuclei is analyzed within a three-
dimensional cranking model. The favored orientation of the rotational fre-
quency vector with respect to the turning nucleus as function of angular
momentum is obtained from the total energy calculations. A new quantum
number, resulting from the particular symmetry of the cranking Hamilto-
nian of the nuclei with tetrahedral nuclei is discussed. Some consequences
for the structure of the rotational bands are presented.

PACS numbers: 21.10.-k, 21.60.—n, 21.60.Fw

1. Introduction: motivations and calculation technique

Low-lying energy minima associated with high-rank symmetries of the
nuclear surface, such as the tetrahedral and octahedral ones, have been
predicted to exist in several neutron- and proton-rich nuclei by both phe-
nomenological and self-consistent mean-field calculations [1,2]|. In this pa-
per, we present for the first time the main features of rotating nuclei of
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tetrahedral symmetry following the microscopic three-dimensional cranking
calculations. Our study focuses on "'°Zr which is predicted to be one of the
best candidates for the tetrahedral symmetry in the medium-mass range.

In our analysis, the shape of the nucleus is described by the standard
expansion of the nuclear surface onto the basis of spherical harmonics, with
the deformation parameters a ;. In a 3-dimensional cranking approach, the
rotation is described by a set of three Lagrange parameters often referred to
as a rotational frequency vector &, whose orientation is specified by the two
spherical (also called ‘tilt’) angles 6 and . The single-particle Hamiltonian
in the rotating frame reads:

he=ho—3-j, (1)

where flo is the Hamiltonian at & = 0, and j represents the three compo-
nents {j’x,iy,jz} of the nucleonic angular-momentum operator. We use the
Woods—Saxon mean-field Hamiltonian with the parameterization of [3]. In a
no-pairing approach, the total energy in the rotating-frame (total Routhian)
is the sum of the liquid drop- and the shell-energies:

R(‘Da 97 90) = Rmacro(u_j; 97 90) + Rshell(u_j; ‘97 SO) . (2)

We use the LSD parametrization of [4] for the macroscopic energy. The
expectation values of the components of the angular momentum j are:

(@) =Y (@l1ule) (3)

v

where p# are the single-particle wave-functions in the rotating frame. The
total angular momentum is obtained from the expectation values of

73@) = (@) + iy (@) +j2(@) < I(I+1). (4)

The total energy in the laboratory frame can then be obtained from the
canonical transformation:

E(&; 0,0) = R(&; 0,0) +& - j(@). (5)

The total energy as function of spin, E(I; 6, ¢), is calculated by interpolation
of the E(w; 6,¢p). We used a mesh of N = 11 frequencies with a step
Aw = 0.05 MeV.
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2. Results: new conserved quantum number

In the following we select the O, axis of the reference frame to coincide
with one of the C'y and one of the Sy rotation-inversion symmetry axes of the
tetrahedron. Figure 1 shows the variation of the total energy as a function
of the two tilt angles # and ¢ at low angular momenta. There appear
to exist two favoured axes of rotation, characterized by the set of angles
(0,0) = (0,¢) and (0,¢) = (7/2,7/4). These two orientations correspond
to the C5 symmetry axis and another S4 rotation-inversion symmetry-axis
of the tetrahedral point group Ty, respectively.
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Fig.1. Total energy in [MeV] as a function of the two tilt angles 6 and ¢ for spins
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As long as the stable axis of rotation coincides with the O,-axis of the
coordinate system, the yrast energies can be calculated from (1) assuming
wz = 0 and wy = 0 and (2) the nucleus is invariant under C5 which implies
the conservation of the signature. The related eigenvalues are r = e¢~'™¢
with @ = 0,1. Moreover, there are three equivalent S, rotation-inversion
axes, one of them coinciding with the z-axis of the Cartesian body-fixed
reference frame. The operator performing the 90° rotation-inversion about
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the z-axis is:

Si. 9, = Pea)r (6)
where & stands for the parity. For the stable O,-axis rotation the yrast
states are obtained by setting & = {0, 0,w, }, and the so-constrained operator
(1) commutes with (6) thus leading to another conserved quantum number.
Since the quantum number associated with S = Pe i s traditionally
called simplez, the former will be referred to as doublez. We have: 92 = %, .
For an even system of fermions: 92;1 = 1 wherefrom it follows that the
eigenvalues d of 9 verify: d = e~ with § = 0, %, 1, % The relation between
the signature and the doublex also implies that: § = § or § = § + 1; with
a = 0,1, we have indeed four different doublex eigenvalues. Consequently,
using the signature is in fact redundant and we can work with the doublex
only.

It is well-known that, for ellipsoidal even-even nuclei, the rotational
bands built on top of an intrinsic configuration with a given signature can
only contain either states of even spin (a = 0) or odd spin (a = 1) [5]. The
conservation of the doublex specifies the projection of the total angular mo-
mentum and puts additional constraints on the parity of the states. Let us
denote by | ¥) the mean-field wave-function of the nucleus. In a tetrahedral
system, | ¥) is not an eigenvector of the operators I 2, I, and P. However, it
can be expanded onto a basis of such states with good angular momentum,
parity and K quantum number. We have

10) = > crkqlCrra) — 2a\0) = crnme 2K | O ). (7)
IKm IKm
However, since the doublex symmetry is conserved, |¥) must also be an

eigenstate of @Z, with the eigenvalue e~*™. This leads to: e~ ™ = e iz K
for all I > |K| and 7. Given the fact that o = 0 is associated with § = 0,1
while v = 1 with § = 1,2, the above phase relation leads to the following

2792
solutions:

§=0 m=+41: K= ..—8-40,4+4,48, ... [even,  (8)
T=-1: K= ...-6,—-2, 42,46, ... I even, (9)

1
525 T=41: K= ...-7,-3 41,45, ... I odd, (10)
r=-1: K= ...-5-1, 43,47, ... I odd, (11)
=1 n=+1: K= ...—-6,-2, 42,46, ... I even, (12)
m=—-1: K= ...-8,-4,0,+4,48, ... [ even, (13)

3
525 T=41: K= ...-5-1, 43,47, ... I odd, (14)
r=-1: K= ..-7-3 41,45, ... T odd. (15)
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3. Summary

We show by a microscopic 3-dimensional cranking analysis that at low
spins, the favoured axes of rotation for tetrahedral nuclei are the rotation-
inversion symmetry axes of the Ty point group of symmetry. This leads to 8
characteristic families of rotational bands, ¢f. Egs. (8)—(15), that conserve
the doublex- simultaneously with signature-symmetry.
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