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Collective rotation of tetrahedral nuclei is analyzed within a three-
dimensional cranking model. The favored orientation of the rotational fre-
quency vector with respect to the turning nucleus as function of angular
momentum is obtained from the total energy calculations. A new quantum
number, resulting from the particular symmetry of the cranking Hamilto-
nian of the nuclei with tetrahedral nuclei is discussed. Some consequences
for the structure of the rotational bands are presented.

PACS numbers: 21.10.–k, 21.60.–n, 21.60.Fw

1. Introduction: motivations and calculation technique

Low-lying energy minima associated with high-rank symmetries of the
nuclear surface, such as the tetrahedral and octahedral ones, have been
predicted to exist in several neutron- and proton-rich nuclei by both phe-
nomenological and self-consistent mean-field calculations [1, 2]. In this pa-
per, we present for the first time the main features of rotating nuclei of
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tetrahedral symmetry following the microscopic three-dimensional cranking
calculations. Our study focuses on 110Zr which is predicted to be one of the
best candidates for the tetrahedral symmetry in the medium-mass range.

In our analysis, the shape of the nucleus is described by the standard
expansion of the nuclear surface onto the basis of spherical harmonics, with
the deformation parameters αλ,µ. In a 3-dimensional cranking approach, the
rotation is described by a set of three Lagrange parameters often referred to
as a rotational frequency vector ~ω, whose orientation is specified by the two
spherical (also called ‘tilt’) angles θ and ϕ. The single-particle Hamiltonian
in the rotating frame reads:

ĥ~ω = ĥ0 − ~ω · ĵ , (1)

where ĥ0 is the Hamiltonian at ~ω = ~0, and ĵ represents the three compo-
nents {ĵx, ĵy, ĵz} of the nucleonic angular-momentum operator. We use the
Woods–Saxon mean-field Hamiltonian with the parameterization of [3]. In a
no-pairing approach, the total energy in the rotating-frame (total Routhian)
is the sum of the liquid drop- and the shell-energies:

R(~ω; θ, ϕ) = Rmacro(~ω; θ, ϕ) + Rshell(~ω; θ, ϕ) . (2)

We use the LSD parametrization of [4] for the macroscopic energy. The

expectation values of the components of the angular momentum ĵ are:

jµ( ~ω) =
∑

ν

〈ϕ ~ω
ν |̂µ|ϕ

~ω
ν 〉 , (3)

where ϕ ~ω
ν are the single-particle wave-functions in the rotating frame. The

total angular momentum is obtained from the expectation values of

j 2(~ω) = j 2

x (~ω) + j 2

y (~ω) + j 2

z (~ω) ↔ I(I + 1) . (4)

The total energy in the laboratory frame can then be obtained from the
canonical transformation:

E(~ω; θ, ϕ) = R(~ω; θ, ϕ) + ~ω · ĵ(~ω) . (5)

The total energy as function of spin, E(I; θ, ϕ), is calculated by interpolation
of the E(ω; θ, ϕ). We used a mesh of N = 11 frequencies with a step
∆ω = 0.05 MeV.
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2. Results: new conserved quantum number

In the following we select the Oz axis of the reference frame to coincide
with one of the C2 and one of the S4 rotation-inversion symmetry axes of the
tetrahedron. Figure 1 shows the variation of the total energy as a function
of the two tilt angles θ and ϕ at low angular momenta. There appear
to exist two favoured axes of rotation, characterized by the set of angles
(θ, ϕ) ≡ (0, ϕ) and (θ, ϕ) ≡ (π/2, π/4). These two orientations correspond
to the Cz

2
symmetry axis and another S4 rotation-inversion symmetry-axis

of the tetrahedral point group Td, respectively.

Fig. 1. Total energy in [MeV] as a function of the two tilt angles θ and ϕ for spins

2~ to 8~ in 110Zr. The deformation of the nucleus is fixed and set to α32 = 0.15,

which corresponds to the value in the tetrahedral minimum [2].

As long as the stable axis of rotation coincides with the Oz-axis of the
coordinate system, the yrast energies can be calculated from (1) assuming
ωx = 0 and ωy = 0 and (2) the nucleus is invariant under Cz

2
which implies

the conservation of the signature. The related eigenvalues are r = e−iπα

with α = 0, 1. Moreover, there are three equivalent S4 rotation-inversion
axes, one of them coinciding with the z-axis of the Cartesian body-fixed
reference frame. The operator performing the 90◦ rotation-inversion about
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the z-axis is:
Sz

4 : D̂z = P̂e−i π

2
̂z , (6)

where P̂ stands for the parity. For the stable Oz-axis rotation the yrast
states are obtained by setting ~ω = {0, 0, ωz}, and the so-constrained operator
(1) commutes with (6) thus leading to another conserved quantum number.

Since the quantum number associated with Ŝz = P̂e−iπ̂z is traditionally
called simplex, the former will be referred to as doublex. We have: D̂2

z = R̂z .

For an even system of fermions: D̂4
z = 1 wherefrom it follows that the

eigenvalues d of D̂ verify: d = e−iπδ with δ = 0, 1

2
, 1, 3

2
. The relation between

the signature and the doublex also implies that: δ = α
2

or δ = α
2

+ 1; with
α = 0, 1, we have indeed four different doublex eigenvalues. Consequently,
using the signature is in fact redundant and we can work with the doublex
only.

It is well-known that, for ellipsoidal even-even nuclei, the rotational
bands built on top of an intrinsic configuration with a given signature can
only contain either states of even spin (α = 0) or odd spin (α = 1) [5]. The
conservation of the doublex specifies the projection of the total angular mo-
mentum and puts additional constraints on the parity of the states. Let us
denote by |Ψ〉 the mean-field wave-function of the nucleus. In a tetrahedral

system, |Ψ〉 is not an eigenvector of the operators Î2, Îz and P̂ . However, it
can be expanded onto a basis of such states with good angular momentum,
parity and K quantum number. We have

|Ψ〉 =
∑

IK,π

cIK,π|ΦIK,π〉 → D̂z |Ψ〉 =
∑

IK,π

cIK,π πe−i π

2
K |ΦIK,π〉 . (7)

However, since the doublex symmetry is conserved, |Ψ〉 must also be an

eigenstate of D̂z , with the eigenvalue e−iπδ. This leads to: e−iπδ = πe−i π

2
K

for all I ≥ |K| and π. Given the fact that α = 0 is associated with δ = 0, 1
while α = 1 with δ = 1

2
, 3

2
, the above phase relation leads to the following

solutions:

δ = 0 π = +1 : K = . . . − 8,−4, 0,+4,+8, . . . I even , (8)

π = −1 : K = . . . − 6,−2, +2,+6, . . . I even , (9)

δ =
1

2
π = +1 : K = . . . − 7,−3, +1,+5, . . . I odd , (10)

π = −1 : K = . . . − 5,−1, +3,+7, . . . I odd , (11)

δ = 1 π = +1 : K = . . . − 6,−2, +2,+6, . . . I even , (12)

π = −1 : K = . . . − 8,−4, 0,+4,+8, . . . I even , (13)

δ =
3

2
π = +1 : K = . . . − 5,−1, +3,+7, . . . I odd , (14)

π = −1 : K = . . . − 7,−3, +1,+5, . . . I odd . (15)
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3. Summary

We show by a microscopic 3-dimensional cranking analysis that at low
spins, the favoured axes of rotation for tetrahedral nuclei are the rotation-
inversion symmetry axes of the Td point group of symmetry. This leads to 8
characteristic families of rotational bands, cf. Eqs. (8)–(15), that conserve
the doublex- simultaneously with signature-symmetry.
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