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We calculate the probability distribution describing the thermal fluc-
tuations of the nuclear shape, using Lublin–Strasbourg Drop (LSD) model
for the macroscopic nuclear energies and deformed Woods-Saxon model for
the single-nucleonic level densities. Examples of applications are presented
in the form of the GDR spectra of hot 46Ti and 216Rn nuclei.
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1. Introduction

In the following we are going to present the new calculation results of
the statistical shape-fluctuations in hot, spinning nuclei. The total nuclear
energy at temperatures T ∼ 1 MeV will be approximated using the recent
macroscopic approach, the Lublin–Strasbourg Drop (LSD) model [1,2]. We
will also calculate the single-nucleonic level-densities using the microscopic
deformed Woods–Saxon mean-field with the universal parameters of Ref. [3].
As an example of this approach, we will then present the modeling of the
Giant Dipole Resonance (GDR) spectra in hot, rotating nuclei, using a rather
well known formalism based on the cranked Harmonic Oscillator [4].
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There have been several studies in the past employing the concept of
the thermal fluctuations in the hot, rotating nuclei, while aiming at the
description of the Giant Dipole Resonances (e.g. Ref. [5–8] and references
therein). In the present approach some refinements were undertaken. Firstly,
the temperature is calculated locally at each deformation point assuming
the fixed total excitation energy of the nucleus. This is done by using the
realistic single-particle spectra as well as the newest, realistic model for
the macroscopic nuclear energy. The nuclear rotation-coupling to the GDR-
vibrations is modeled with the help of the (simple but microscopic) approach
involving the rotating harmonic oscillator.

2. Thermal fluctuations of the nuclear shapes

Let us consider a nucleus at an excitation energy E∗. In a simplified
approach followed here, a part of this energy can be associated with the
deformation of the system while the other part with the thermal excitation of
the individual-nucleonic degrees of freedom. This thermal excitation allows
to introduce the notion of the entropy and free energy in accordance with
the standards of statistical physics. At fixed excitation energy the latter
quantities, in general, depend on the deformation. Since the probability of a
given configuration, and thus of an associated shape, in turn depends on the
free-energy, there should be a whole ensemble of such configurations (thus
shapes) in the description. Each shape will appear with a certain statistical
probability, therefore one may speak of the shape probability distributions
and, less precisely, of shape fluctuations.

Let us introduce the probability for the nucleus to be in a given state of
deformation ‘def’, P (def, E∗), defined as usual in statistical physics by

P (def, E∗) ∼ exp

{

−
F (def, E∗)

kT (def, E∗)

}

, (1)

where E∗ is the excitation energy, F (def, E∗) is the nuclear free energy,
T (def, E∗) is the nuclear temperature, and k is the Boltzmann constant.
One can show that the nuclear partition function that will be needed below
has the following expression (see Ref. [9], p. 281–289, for details):

ln Z(αn, αp, β) =

∞
∫

−∞

gn(ǫ) ln [1 + exp(αn − βǫ)]dǫ

+

∞
∫

−∞

gp(ǫ) ln [1 + exp(αp − βǫ)]dǫ . (2)



Statistical Description of the Thermal Shape Fluctuations . . . 1163

Above, the level densities gp(ǫ) and gn(ǫ) that depend explicitly on the
single-nucleonic spectra will be computed using a realistic-cranking deformed
Woods–Saxon single-particle potential. The values of αp, αn and β originate
from the Fermi gas model:

β = T−1 and ακ = λF
κ T with κ ∈ {p, n}, (3)

where λF
κ are the Fermi energies for neutrons (κ = n) and for protons

(κ = p). One can demonstrate that the nuclear entropy and the free en-
ergy have the following expressions1:

S(αn, αp, β) = −αnN − αpZ + βE + ln Z(αn, αp, β) , (4)

F (αn, αp, β) = E − TS(αn, αp, β) , (5)

where E is the actual deformation energy of the nucleus, here approximated
by the LSD expression. The nuclear temperature T is obtained from the
energy conservation:

E∗ = Ep(T ) + En(T ) − Ep(T = 0) − En(T = 0) , (6)

where

Eκ(T ) =

∞
∫

−∞

gκ(ǫ)
[

1 + exp [(ǫ − λF
κ)/T ]

]

−1

ǫdǫ (7)

and

Eκ(T = 0) =

λF
κ

∫

−∞

gκ(ǫ)ǫdǫ . (8)

Fermi energies λF
κ are calculated from the particle-number conservation.

Below, the nuclear quadrupole deformation will be represented using the
usual (β, γ)-plane; for convenience we will use the Cartesian coordinates

x = β cos(γ + 30◦)

and

y = β sin(γ + 30◦) . (9)

In order to calculate the deformation-averaged value of a nuclear observable,
say f(def), we integrate it with the normalized probabilities after replacing
‘def’ ↔ {x, y}:

1 These can be found in [9], p. 288.
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〈f(E∗)〉def =

∫∫

x,y

P (x, y;E∗)f(x, y) dV . (10)

The volume element dV can be represented by dxdy or β4| sin(3γ)|dβdγ,
depending on the metric used (see discussion in [8, 9]).

The upper-left panel of Fig. 1 shows the macroscopic nuclear energy cal-
culated with the help of the LSD model [1,2] in the (β2, γ) plane. Using this
energy and the Woods–Saxon single-particle spectra, the individual level
densities and then the free energy, deformation-dependence of the temper-
ature, and the probabilities to find the nucleus in any (x, y)-deformation
point can be calculated. The results are shown also in Fig. 1.

Fig. 1. The macroscopic LSD potential energy and free energy maps (top). The
macroscopic energy is normalized in such a way that the corresponding energy of
the spherical nucleus is, by definition, zero. The free energy corresponds then to
Eq. (5). The deformation-dependent temperature and the deformation probability
distributions in the (β2, γ) plane for the 46Ti nucleus at spin I = 30~ and E∗ =

60 MeV are given in the bottom.
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3. Application for the GDR spectrum of a hot nucleus

In the following, we summarize an approach of Ref. [4], based on the

deformed harmonic oscillator (HO) Hamiltonian, Ĥω, with a cranking term.
It allows to model a GDR spectrum for a nucleus in a given state of deforma-
tion. In this approach, the rotation gives rise to a Coriolis splitting of the two
GDR frequencies for the oscillation perpendicular to the axis of rotation and
thus the GDR strength function consists, in general, of 5 components. In the
case of rotation about the ‘1’-axis, the cranking-model harmonic-oscillator
Hamiltonian reads:

Ĥω =

3
∑

α=1

( p̂ 2
α

2m
+

m

2
ω2

α x̂2
α

)

− ω (x̂2 p̂3 − x̂3 p̂2) . (11)

This Hamiltonian can be diagonalized analytically, Ref. [4], and we obtain:

Ĥω =

3
∑

α=1

Ωα(a+
α aα + 1

2
) , (12)

where a
+
α and aα are the usual creation and annihilation operators, and

Ω1 = ω1; Ω
2
2 =

1

2
(ω2

2 + ω2
3) + ω2 + ∆; Ω

2
3 =

1

2
(ω2

2 + ω2
3) + ω2 − ∆(13)

with

∆ =
√

1

4
(ω2

2 − ω2
3)

2 + 2ω2(ω2
2 + ω2

3) . (14)

It turns out that the final radiation probability, Γ (Eγ), corresponding to the
radiation energy Eγ from a nucleus turning about the ’1’-axis is:

Γ (def;Eγ) ∼
1

2mnΩ1

[

1 + e−Ω1/T
]

−1

L(Eγ ,Ω1)

+
1

2
(α + β)2

[

1 + e−Ω2/T
]

−1

L(Eγ ,Ω2 − ω)

+
1

2
(γ + δ)2

[

1 + e−Ω3/T
]

−1

L(Eγ ,Ω3 − ω)

+
1

2
(α − β)2

[

1 + e−Ω2/T
]

−1

L(Eγ ,Ω2 + ω)

+
1

2
(γ − δ)2

[

1 + e−Ω3/T
]

−1

L(Eγ ,Ω3 + ω) , (15)

where mn is the nucleonic mass and the symbol L represents the Lorentz
function

L(Eγ , Ei) =
WiE

2
γ

(E2
γ − E2

i )2 + (EiWi)2
. (16)
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Above, Wi = W0(Ei/E0)
ρ, contains a phenomenological scaling factor (here

we use ρ = 1.9), W0 and E0 are the GDR intrinsic width and centroid for the
ground state of spherical nucleus, while Wi and Ei correspond to the width
and centroid of the given GDR component, respectively (see e.g. [10,11] for
more details). The quantities α, β, γ and δ are functions of the three HO
frequencies ωi and the cranking frequency ω:

α2 =
1

2mnΩ2

Ω
2
2 − ω2

3 + ω2

2∆
, (17)

β2 =
1

2mnΩ2

Ω
2
2 − ω2

2 + ω2

2∆
, (18)

γ2 =
1

2mnΩ3

Ω
2
3 − ω2

2 + ω2

2∆
, (19)

and

δ2 =
1

2mnΩ3

Ω
2
3 − ω2

3 + ω2

2∆
, (20)

(the reader is referred to Refs. [4,13] for details). According to Eq. (10), the
average total radiation probability corresponding to GDR built on a nucleus
with excitation energy E∗ is:

Γtotal(Eγ ;E∗) =

∫∫

x,y

P (x, y;E∗)Γ (x, y;Eγ)dV . (21)

4. Example of computed GDR spectra

Figure 2 shows the calculated GDR spectra obtained by applying the
technique presented in the preceding Sections for two cases: 46Ti and 216Rn.
To visualize the role of the rotation (i.e. of the Coriolis splitting of the
GDR components), for the 46Ti case, the spectra with ω = 0 value are also
computed (for the Rn case, in the experimental range of interest here the
ω remains anyway small). For comparison, the experimentally extracted
GDR strength functions for 46Ti [12,14] and 216Rn [15] are displayed in the
same figure. The results show clearly that introducing the effect of rotation
one improves the comparison with experiment considerably in the case of
light nuclei. It should also be emphasized that the use of the presented
here thermal shape fluctuation approach based on LSD model, results in an
overall good quality of the reproduction of the GDR spectra both for 46Ti
and 216Rn nuclei.
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Fig. 2. Computed spectra (lines) and the experimental data (points) for the 46Ti
and the 216Rn nuclei. The dashed curves correspond to ω = 0 condition. The
computed spectra in the top panels are for the equilibrium deformation predicted
by LSD model at a given spin, while those in the bottom ones are the results of
thermal shape fluctuations for a spin range corresponding to the experimental one.
In all calculations the intrinsic GDR width W0 equals to 6 MeV.

5. Conclusion

The statistical approach presented here uses the recent LSD macroscopic
model as well as the single particle spectra from the deformed Woods–Saxon
mean-field approximation with the universal parameters. It seems that the
approach provides a powerful tool permitting to extend the use of models
designed for cold nuclei to nuclei with thermal excitations. As shown in
the example, the statistical description of GDR spectra gives a very good
agreement with experimental data, both for light and heavy nuclei, despite
of the simplicity of the model used for the GDR strength function (cranked
Harmonic Oscillator). This makes us confident that statistical approach
of the kind described here for the theoretical description of the properties
of hot and rotating nuclei, especially in function of spin and very large
deformations, where the LSD approximation works very satisfactorily, will
be very useful also in the future.
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