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NUCLEAR SHELL ENERGY OBTAINED

BY AVERAGING IN PARTICLE-NUMBER SPACE∗ ∗∗
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A revised version of the shell-correction method, based on a new way of
evaluating the smooth part of the total single-particle energy, is proposed.
The folding of the sum of nucleon energies is performed in the particle-
number space, not in the energies of individual nucleons, as was done in
the old Strutinsky method.

PACS numbers: 21.10.Dr, 21.10.Ma, 21.60.Cs, 21.60.Jz

The macroscopic–microscopic method of evaluating the binding energy
of nuclei was proposed by Myers and Świa̧tecki [1] and Strutinsky [2] and
despite of tremendous progress of the self-consistent models it still remains
one of the most important tools. In this approach the microscopic energy
corrections consisting of shell and pairing parts are added to the binding
energy described by the liquid drop (see e.g. [3]) or other macroscopic model.

The prescription for the evaluation of the shell energy by smoothing the
single-particle energy spectra was first given in Ref. [2] and then improved
in Refs. [4,5]. This Strutinsky method is still widely used up to now, in spite
of its known problems arising for nuclei close to the proton and neutron drip
lines, but also more generally for any finite-depth (selfconsistent or model)
nuclear mean-field potential.

By definition the shell energy Eshell is the sum of the proton and neutron
contributions, which for one kind of particles are equal to the difference:

Eshell =
N
∑

i=1

ei − Ẽ(N ) . (1)
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Here N is the number of particles in the system and Ẽ the smooth part of
the total single-particle energy.

In the Strutinsky approach one evaluates first the smooth single-particle
level density g̃(e) by folding the discrete spectrum of the eigenstates ei and
then the smoothed energy Ẽ is obtained by the integral

ẼStr =

λ
∫

−∞

e g̃(e) de , (2)

where λ is the Fermi energy of the system without the shell structure. It is
worthwhile to notice that the above definition of the smoothed energy ẼStr

does not necessarily correspond to the average sum of single-particle energies
and that it conserves the number of nucleons on the average only.

Another method free from the above mentioned deficiencies was recently
proposed in Ref. [6]. The new prescription is similar to the one of Strutinsky
but smoothing is performed in the particle number space, not over the single-
particle energies. The new prescription for Ẽ is the following:

• one defines a discrete sample Sn of data by summing the single particles
energies up to a given number n of nucleons

Sn =
n
∑

i=1

ei , (3)

• then one performs the Gauss–Hermite folding in the n1/3-space and
one obtains the smoothed energy in the form [6]

Ẽ(N ) =
1

γ

Nmax
∑

n=2,4

2

3n2/3
Sn jk

(

N 1/3 − n1/3

γ

)

, (4)

which corresponds to the average of Sn when the folding width γ is
comparable with the distance between the major shells in the n1/3

coordinates1.

The proton shell-correction energy for 208Pb evaluated using a Saxon–
Woods central potential [7] and Eqs. (1) and (4) for different order of the
correction polynomial in the folding function jk [4]:

1 In order to increase the accuracy of the method for finite depth potentials, it is
recommended (see Ref. [6]) to subtract from the Sn, Eq. (3), before folding the
average energy Ē(n) given by the harmonic-oscillator sum rule.
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j2(x) =
1√
π

e−x2
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2
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)

,

j4(x) =
1√
π

e−x2

(
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8
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2
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1

2
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)

,

j6(x) =
1√
π

e−x2

(
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8
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7

4
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6
x6

)

,

j8(x) =
1√
π

e−x2

(
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− 105
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x2 +
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16
x4 − 3

4
x6 +

1

24
x8

)

, (5)

is plotted in Fig. 1 as function of the smearing width γ. It is seen that for
k = 6 and γ ≈ 0.75 one obtains already a very good plateau of the function
Eshell(γ). The next order k = 8 does not change much, what proves the
accuracy of the new method. The quality of this plateau is better than that
usually obtained using the traditional Strutinsky method [6].
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Fig. 1. Proton shell-correction energy of 208Pb evaluated for different orders of the
correction polynomial as function of the folding width γ.

It is seen in Fig. 2 that for spherical nuclei the new shell energy is sys-
tematically pushed down by a few MeV with respect to the old one, while for
deformed systems the both energies are close to each other as demonstrated
in Fig. 3. The deformation parameter c used in Figs. 1 and 3 is the relative
elongation of the nucleus as defined in Ref. [5].

One could be concerned about the systematic difference between Eshell

evaluated using both method which one observes for spherical nuclei. This
difference has an important physical meaning as was pointed by Werner et al.

in Ref. [8], who have shown that the particle–phonon coupling reduces the
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shell corrections for spherical nuclei by several MeV and keeps it almost un-
changed in the case of deformed shapes. This effect is ignored in a majority
of papers in which the traditional Strutinsky shell correction method is used.
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Fig. 2. Proton (l.h.s.) and neutron (r.h.s.) shell-correction energies (Eshell, Eq. (1))
obtained with the Saxon–Woods spectrum of spherical 208Pb as function of the
nucleon number. The smooth part of the energy is evaluated by folding in the
N -space (new, Eq. (4)) as well as using the traditional Strutinsky e-averaging
method (old, Eq. (2)). The arrows indicate the positions of the Fermi level and the
vertical lines mark the end of the bound spectra.
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Fig. 3. Deformation dependence of the proton (l.h.s.) and neutron (r.h.s.) shell
energy of 208Pb obtained with the traditional (old) and modified in Ref. [6] (new)
Strutinsky method as function of the elongation parameter c.

The new method of folding in the N -space is more consistent than the
old one with the definition of the macroscopic energy which represents the
average dependence on Z and A of the nuclear binding energy. In addition
it corresponds to a well defined number of nucleons what it is not the case
in the traditional Strutinsky approach in which the number of particles was
only conserved on the average.
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