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The near-yrast states of 101
42Mo59 and 103,4

44 Ru59,60 have been studied
following their population via heavy-ion multinucleon transfer reactions
between a 136Xe beam and a thin, self-supporting 100Mo target. The
ground state sequence in 104Ru can be understood as demonstrating a sim-
ple evolution from a quasi-vibrational structure at lower spins to statically
deformed, quasi-rotational excitation involving the population of a pair
of low-Ω h11/2 neutron orbitals. The effect of the decoupled h11/2 orbital
on this vibration-to-rotational evolution is demonstrated by an extension of
the “E-GOS” prescription to include odd-A nuclei. The experimental results
are also compared with self-consistent Total Routhian Surface calculations
which also highlight the polarising role of the highly aligned neutron h11/2

orbital in these nuclei.
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1. Introduction

The study of near-stable and neutron-rich nuclei with medium to heavy
mass has been revolutionised by the advent of high-efficiency gamma-ray
spectrometer arrays which allow gates to be set on multi-dimensional gamma-
ray energy arrays, thereby selecting rather weakly populated reaction chan-
nels. The initial proponents of this method, led by Broda and collaborators
utilised the thick or backed target technique when studying such binary re-
actions [1–3]. This has the great advantage of minimising the degradation of
the spectral lineshape due to Doppler effects. However, this method restricts
the angular momenta which can be studied discretely in such reactions to
states with effective decay half-lives which are longer than the slowing-down
time of the reaction products in the target and/or backing, typically the
order of a few picoseconds.

This paper describes recent work to study the structure of near-stable
and slightly neutron-rich nuclei around A ∼ 100 with multinucleon transfer
reactions using a thin, self-supporting target and making event-by-event
Doppler corrections on the individual reaction products. Further details of
this work can be found in references [4–6].

2. Experimental details, data analysis and results

The nuclei of interest were populated using heavy-ion binary reactions
between a self-supporting, (420µ g/cm2) 100Mo target and a 136Xe beam at
a laboratory energy of 700MeV. The beam was provided by the 88" cyclotron
at the Lawrence Berkeley National Laboratory and had a natural pulsing
of approximately 2 → 3ns width, separated by 64 ns with typical, on-target
beam currents of 1 → 2p nA. Reaction γ rays were detected using the GAM-
MASPHERE array [7], which in this experiment consisted of 102 Compton-
suppressed hyperpure germanium detectors. The binary fragments were
detected using the position-sensitive gas-filled detector, CHICO [8,9], which
enabled an event-by-event Doppler correction to be applied to the raw γ-ray
data. The detection of co-planar events in CHICO allowed the separation of
both beam-like (BLF) and target-like fragments (TLF) by the measurement
of their position relative to the beam direction. The angle-dependent veloc-
ity of the target-like fragments was calculated assuming 2-body kinematics
to vary between 3% and 11% of the speed of light.

The acquisition master trigger required that at least three prompt,
Compton-suppressed γ rays were detected in GAMMASPHERE within ap-
proximately 50 ns of each other, together with two co-planar binary frag-
ments in CHICO. The hevimet collimators were removed from the GAM-
MASPHERE Compton-suppression shields, thereby allowing a measure of
the total reaction γ-ray fold associated with each event to be made [4–6].
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Fig. 1. Examples of partial statistics total projections of the time-of-flight difference

and azimuthal angle of the binary fragments following the 100Mo+136Xe reaction

as discussed in the text.

The data were sorted into standard γ-ray energy coincidence matrices and
cubes which were subsequently analysed using the RADWARE package [10].
A total of 9×108 suppressed germanium triples and higher fold events were
detected in coincidence with two, co-planar binary fragments during the
course of a four day experiment.

Fig. 1 shows the total projections of the time of flight difference and the
azimuthal angle of the binary fragments as measured with this mastergate
condition. Using the temporal separation between prompt Doppler-shifted
transitions which feed isomeric states and those transitions which depopulate
such isomers and decays from fragments stopped in the CHICO detector,
time-correlated spectroscopy could be performed (see references [5, 11, 12]
for details). In this way delayed gates were set on transitions depopulating
the Iπ = (11/2)− isomeric state in 101Mo [13] and the prompt transitions
above the isomer could be clearly identified (see Fig. 2).
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Fig. 2. Isomer gating identifying the states built on the Iπ = (11/2)− isomer in
101Mo. (a) shows the sum of double gates between the prompt transitions identified

in coincidence with the delayed (i.e., 50 → 200 ns after the prompt master trigger)

180 keV transition in 101Mo. The delayed gamma-ray at 180 keV corresponds to

the (5/2)+ → (1/2)+ transition decaying from the level at 239 keV in 101Mo [13].

Its delayed projection, in coincidence with prompt transitions at 429, 616, 772 and

891 keV is shown in part (b), together with the summed time-difference spectra

between the prompt 429, 616, 772 and 891 keV decays and the delayed 180 keV

transition, which yields a half-life for this isomer of 95±15 ns. The spectra in parts

(c) and (d) show the γ-ray total projections gated on prompt and delayed time

regions, respectively.

Examples of spectra generated from this analysis which show the de-
coupled neutron h11/2 bands in the N = 59 isotones 101Mo and 103Ru [14],

together with the yrast sequence in 104Ru [3] are shown in Figs. 2 and 3
with the relevant partial decay schemes for these nuclei given in Fig. 4.
The energies of the transitions and their mutually coincident “in-band” na-
ture are consistent with similar E2 cascades observed built on the yrast and
decoupled bands (assigned as being built on the [550] 1/2− Nilsson orbital)
in the neighboring isotones and isotopes [15, 16].
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Fig. 3. Figure particle gated, summed double-gated gamma-ray spectra showing

the yrast sequence in 104Ru and the decoupled νh11/2 band structures in 101Mo

and 103Ru. The gamma-ray energy uncertainties in these spectra are approxi-

mately ±2 keV.
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The identification of the negative-parity decoupled band in 101Mo com-
pletes the systematics for this region, which are shown in Fig. 5. These
suggest a systematically low (β ∼ 0.15 → 0.2) value for the quadrupole de-
formation for these structures. Note that the recent studies by Hua et al.,
[9] of the N = 61 isotones in this region suggest a large increase in the
quadrupole deformation of these nuclei compared to the N = 59 isotopes
studied in the present work.

Fig. 5. Excitation energy and energy ratio systematics for the even Z, N = 58

and 60 isotones and the decoupled h11/2 neutron structures in the N = 59 isotonic

chain from strontium (Z = 38) to cadmium (Z = 48) including the new data point

for 101Mo.

2.1. Rotational and vibrational competition around A ∼ 100

The concept of the E-Gamma Over Spin orE-GOS prescription has been
applied to a number of even–even nuclei around the A∼100 region [17, 18]
with the conclusion that many of these nuclei exhibit a decay sequence con-
sistent with quasi-vibrational excitations at lower spins, which gives way to
more statically (albeit weakly) deformed sequences above spins of 10~. This
change in structure is generally interpreted [18] as being associated with the
population of h11/2 neutron orbitals (which reside low in the shell) and their
prolate-shape-polarising effect or “stiffening” of the nuclear mean field.
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The question of how to deal with odd-A systems in the E-GOS prescrip-
tions can be addressed by substituting the spin (I) by a normalised spin
minus the bandhead spin projection on the axis of symmetry, K, such that
I → (I − K). For good rotors, the E-GOS prescription for odd-A systems
then becomes [6]

R(I) =
Eγ

I
→

~
2

2J

(4I − 2)

I
→

~
2

2I

[4(I − K)] − 2

(I − K)
, (1)

R(I − K) =
Eγ −

(

4K ~
2

2J

)

I − K
=

Eγ − KRK+2

I − K
. (2)

Fig. 6 shows the E-GOS plots for the N = 57 and 59 isotones 99,101Mo
and 101,103Ru [15] and compares these with the yrast sequences in 100,2Mo
and 102,4Ru. The E-GOS plots imply an evolution from vibrational to ro-
tational excitations in the positive-parity structures in the N = 57 isotone
101Ru [15], which mirrors the yrast sequences in the nearby even–even nu-
clei 100Mo and 104Ru. By contrast, the E-GOS plots for the decoupled
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Fig. 6. (Upper) E-GOS plots for the yrast, ground-state sequences in 100,2Mo and
102,4Ru. (Lower) E-GOS plots for the decoupled h11/2 bands in 99,101Mo and
101,103Ru (assuming K = 1/2 in all cases.) The two signatures of the K = (5/2)+

band in 101Ru [15] are also shown for comparison.
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h11/2 sequences for 99,101Mo and 101,103Ru demonstrate loci consistent with
a rotational-like behaviour directly from the bandhead.

The recent report on the structure of the heavier Mo istones [9] suggests
a significant increase in the core quadrupole deformation for these nuclei
compared to the N = 59 isotones, consisent with the considerable differ-
ence in behaviour in the yrast sequence for 102Mo compared to 100Mo. The
increase in core deformation observed in going from neutron number 58 to
neutron number 60 is well documented in this region [19–21]. Since the
current work highlights both the rotational nature and the rather weakly
deformed status of the odd-parity structure in 101Mo, our data suggest that
this jump is indeed due to the effect of the N = 60 deformed shell gap and
a change in core deformation, rather than the intrinsic deformation driving
properties of the neutron h11/2 orbitals as has been suggested elsewhere in
the literature [20].

2.2. Comparison with TRS calculations

In order to compare the experimental data with theoretical predictions
in the bandcrossing region, the effect of collective rotation on the micro-
scopic structures in 101Mo and 103Ru were investigated in the framework of
the Cranked–Woods–Saxon–Strutinsky model by means of Total-Routhian-
Surface (TRS) calculations in a three-dimensional deformation (β2, β4, γ)
space (see reference [15] and references therein for details).
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Fig. 7. Comparison between the experimentally derived total aligned angular mo-

mentum in the h11/2 decoupled bands in 101Mo and 103Ru with self-consistent Total

Routhian Surface calculations for the lowest energy negative parity, α = −1/2 con-

figurations in these nuclei. In each case the calculations show both the proton (π)

and neutron (ν) contributions to the predicted total aligned angular momentum

(Ix). A K-value of 1/2 has been assumed for these structures. The yrast sequence

in the neighboring even–even core of 104Ru has also been shown for comparison.

In all cases, the experimental data are the large black triangles.



Vibrational and Rotational Sequences 101Mo and 103,4Ru Studied via . . . 1321

Fig. 7 shows the results of these calculations, which in general show
good agreement, with the majority of the aligned angular momentum in
each case being predicted to be generated by (h11/2) neutron configurations.

The dramatic effect of the (νh11/2)
2 crossing on the yrast structure in 104Ru

is well known in the region [3]. The fact that this crossing is blocked in the
decoupled sequences in 101Mo and 103Mo can be taken as ample evidence for
the h11/2 character of their intrinsic structure.

3. Summary and conclusions

In summary, thin-target multinucleon transfer reactions have been ut-
lised to identify and extend the yrast sequences in 101Mo and 103,4Ru.
A decoupled structure, based on the neutron h11/2 orbital has been identified

in 101Mo for the first time, completing the systematics of such excitations for
the N = 59 isotones between Sr (Z = 38) and Cd (Z = 48). The results are
compared with TRS calculations and interpreted using the E-GOS prescrip-
tion, modified for use with odd-A nuclei. Both of these analyses highlight
the role of the low-Ω h11/2 intruder orbital in stabilising the quadruople
deformation in this region.
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