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The N -averaging Strutinsky shell-correction method is used to obtain
the change with temperature of shell effects as well as of the macroscopic
part of nuclear energy in a relativistic mean-field approach with the NL3
parameter set for even–even spherical nuclei.

PACS numbers: 21.10.Ma, 24.10.Jv, 24.10.Ra

Selfconsistent calculations were performed within the relativistic mean-
field theory (RMFT) with the NL3 parameters set [1] which reproduced the
ground-state properties of nuclei with a good accuracy. Our RMFT approach
is based on the Dirac equation for neutrons and protons, the Klein–Gordon
equations for mesons and Maxwell equations for photons.

The temperature dependent macroscopic part of the nuclear energy can
be obtained as [2]

Emacr(Z,A;T ) = ERMFT(Z,A;T ) − δE
(n)
shell(A − Z;T ) − δE

(p)
shell(Z;T ) , (1)

where ERMFT is the selfconsistent RMFT energy evaluated without tak-

ing into account the pairing correlations and δE
(q)
shell are the shell-correction

energies of protons (q = p) and neutrons (q = n). At T = 0 the shell en-

ergy is a difference between the sum of single-particle energies e
(q)
ν and the

∗ Presented at the XXXIX Zakopane School of Physics — International Symposium
“Atomic Nuclei at Extreme Values of Temperature, Spin and Isospin”, Zakopane,
Poland, August 31–September 5, 2004.

(1377)



1378 B. Nerlo-Pomorska, J. Sykut, J. Bartel

corresponding energy in which the shell structure is washed out:

δE
(q)
shell(N ; 0) = 2

N/2∑

ν>0

e(q)
ν − Ẽ(q)(N ; 0) . (2)

We have used two methods to evaluate the energy Ẽ(q). The traditional
Strutinsky approach in which one performs the smoothing in the single-
particle energy space (e-averaging) and a new prescription, [4], in which

Ẽ(q) is obtained by averaging in the particle number space (N -averaging).
In the both above cases the smoothed energy is subtracted from the

RMFT mean-field single particle energies sum in order to obtain the shell
correction.

The absolute value of shell-correction energy is known to decrease with
increasing temperature. The temperature dependence of the shell energy is
often approximated by the phenomenological function [6]

E
(q)
shell(N ;T ) = δE

(q)
shell(N ; 0)

τ

sinh τ
, (3)

where τ = 2π2T
~ω0

and ~ω0 = 41MeV/A1/3 represents the average spacing be-
tween the two harmonic oscillator shells.

Here the above prescription serves only as the reference for two new
effects: the N -averaging shell correction method used to evaluate the shell
energy and once more to smooth it’s dependence on temperature. In the
new shell-correction method of Ref. [4] one replaces this phenomenological
function by the shell correction obtained by the N -averaging [4] at given
temperature.

The new prescription for the temperature dependence is then following:
For each nucleon-number N in the interval Nmin≤N ≤Nmax one calculates
the energies of N particles assuming single-particle occupation numbers in
the form of Fermi functions

E(N ;T ) =

∞∑

i=1

ei

1 + exp [(ei − λ)/kT ]
, (4)

where the Fermi energy λ is estimated from the particle-number condition.
Then using the values of E(N ;T ) for Nmin ≤ N ≤Nmax one evaluates the

smooth energy Ẽ(N ;T ) by performing the averaging in the particle-number

Ẽ(N ;T ) =

Nmax∑

N=Nmin

2

3N2/3
E(N ;T ) j

(
N 1/3 − N1/3

γ

)
, (5)
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where

j(u) =
1

γ
√

π
e−u2

(
35

16
− 35

8
u2 +

7

4
u4 − 1

6
u6

)
(6)

is the normalized Strutinsky weight function of the 6th order and γ = 0.78

is the smearing width. The limits in the sum (5) are taken as
(
N 1/3 ± 3γ

)3
.

These limits were tested in order to include the sufficient part of single
particle level scheme and evaluate the shell energy with the accuracy of
the order 0.01 MeV. The temperature dependent shell correction for the N
nucleon system is then given by the difference of (4) and (5)

Eshell(N ;T ) = E(N ;T ) − Ẽ(N ;T ) . (7)

The variation of the macroscopic energy, (Eq. (1)), with temperature can
be approximated by a parabola

Emacr(Z,A;T ) ≈ Emacr(Z,A; 0) + a T 2 , (8)

where a is an average level-density parameter which is very important in
several fields of nuclear physics e.g. in the analysis of fission dynamics and
decay of compound nuclei [5]. The other applications can be found in the
textbooks e.g. in Ref. [6]. Frequently a is assumed to be proportional to the
mass number a≈A/10 MeV−1 which is of course a very crude approximation.
It can be much better approximated by a liquid-drop like formula where, for
the newest approach, one obtains (I = (N − Z)/A)

aLD/MeV = 0.356A2/3 + 1.47A2/3 I2 + 0.0031
Z2

A1/3
. (9)

In Fig. 1 the comparison of the total shell corrections (left) as well as the
macroscopic energy (right) obtained for 216Th in the traditional Strutinsky’s
procedure (old) and its improved version (new) is shown. These calculations
are performed either (old, new) with a temperature smoothing using the
phenomenological function in Eq. (3) or (newT ) with the N -averaging pro-
cedure, adopted once more to smooth the shell energy with temperature as
described in Eq. (7). It clearly appears that the shell corrections obtained
with the phenomenological function (3) practically vanish at T = 2 MeV
whereas those (newT ) produced by the exact temperature smoothing seem
to survive, for this nucleus, up to T ≃ 4MeV. The right part of Fig. 1 illus-
trates the parabolic dependence on temperature of the macroscopic energy
of 216Th obtained in the newest method. It is similar in all the three cases.



1380 B. Nerlo-Pomorska, J. Sykut, J. Bartel

-14
-12
-10
-8
-6
-4
-2
 0
 2
 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

E
sh

el
l

to
t    

[M
eV

]

T[MeV]

216Th

newT
new
old

-1700

-1650

-1600

-1550

-1500

-1450

-1400

-1350

 0  0.5  1  1.5  2  2.5  3  3.5  4

E
m

ac
r [

M
eV

]

T[MeV]

216Th

newT

Fig. 1. Total shell corrections (left) for 216Th estimated with the new approach

with the two methods: Eqs. (3) (new) and (7) (newT ) compared to the traditional

Strutinsky method (old). The macroscopic energy in the newest case (newT ) is

shown in the right panel.

We have performed our calculations for 171 spherical (or nearly spherical)
even–even nuclei from 16O to 224Cf at temperatures from T=0 to T=4 MeV.
The dependence of the level density parameter a estimatd from Eq. (8) on
temperature, isospin and mass number for most of nuclei is shown in Fig. 2.
The results were obtained with the N -averaging shell-correction method
also in smoothing the single-particle energies with temperature, i.e. through
Eq. (7) (newT ) for several isotopic and isotonic chains.
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Fig. 2. Level-density parameters a(T ) at T=2 to 4 MeV estimated from Eq. (8)

a = (E
macr

(Z, A; T ) − E
macr

(Z, A; 0))/T 2 with the new temperature smooth-

ing method (newT ). As a reference the commonly used rough approximation

A/(10 MeV) is also given.

The following conclusions can be drawn from our investigation: (a) the
traditional Strutinsky method predicts shell-correction energies a couple
MeV larger for spherical nuclei than the new procedure, (b) the phenomeno-
logical formula (3) of Ref. [6] predicts a faster decrease of the absolute
value of shell energy with temperature than the one estimated with the full
N -averaging method for even–even spherical nuclei, (c) the shell structure in
the level-density parameters a is visible up to a temperature of T ≃ 2 MeV.
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