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HARMONIC MIXING IN A BISTABLE DEVICE∗
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A Brownian particle hopping in a symmetric double-well potential can
be statistically confined into either well by the action of two periodic input
signals that rock the potential simultaneously. The underlying harmonic
mixing mechanism exhibits resonant behavior responsible for asymmetry
inversion. Asymmetric confinement through harmonic mixing can be con-
veniently controlled by tuning the input signal parameters (frequencies,
relative phase, and amplitudes).
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1. Introduction

A charged particle spatially confined on a periodic substrate is capable
of mixing two alternating input electric fields of angular frequencies Ω1 and
Ω2, its response containing all possible higher harmonics of Ω1 and Ω2. For
commensurate input frequencies, i.e., mΩ1 = nΩ2, the output contains a
dc component, too [1,2]; harmonic mixing (HM) thus induces a rectification
effect of the (n+m)-th order in the dynamical parameters of the system [3].
At variance with common ratchet devices [4], such an effect takes place also
on a reflection-symmetric substrate, as it is an intrinsically nonlinear effect.
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Then the question rises naturally as how HM affects the Brownian dynamics
in a symmetric bistable potential.

A Brownian particle bound by a bistable potential diffuses symmetri-
cally between two potential minima; this is the case of Kramers’ dynam-
ics [5], where the particle is activated solely by thermal fluctuations, as well
as of stochastic resonance (SR) [6], where the particle escape over the po-
tential barrier is controlled by the interplay of noise and external periodic
drive(s). In both cases the time-averaged particle distribution densities peak
symmetrically in correspondence with the potential minima; particle local-
ization into one well is customarily achieved by applying an external static
bias that breaches the symmetry of the system [7].

For practical purposes experimenters are interested in confining the dif-
fusing particle around one stable configuration and then manipulating it by
means of various techniques from magnetic flux microscopy [8] to chemical
reaction control [9]. However, in most circumstances adding an external bias
to the system under study is inconvenient; hence, the need for an alternate
approach to the confinement problem.

In a recent paper we proved that confinement in a noisy bistable device
may be achieved without apparent symmetry breaking [10]. A Brownian
particle driven by a white, zero-mean Gaussian noise (mimicking thermal
fluctuations) and, possibly, by an additive sinusoidal force with angular fre-
quency Ω1 [11, 12], can be localized into one state by modulating the po-
tential barrier separating the two degenerate states. To this purpose one
can either input a sinusoidal control signal with frequency Ω2 or recycle the
additive noise back through a noisy transmission line with time delay τd and
residual correlation λ. In both schemes the corresponding steady distribu-
tion densities develop one prominent peak, whose relative magnitude hits a
resonance maximum (of over 95%) for optimal values of the input parameters
(Ω1 and Ω2, or τd and λ, respectively) which degenerate state the particle
gets trapped into, depends on the switch-on phase of the modulating signal.

In the present article we prove that HM in symmetrically confined sys-
tems causes a static effect in the form of a dynamical symmetry breaking of
the relevant average probability distributions.

The present article is organized as follows. In Sec. 2 we introduce a sim-
ple model of bi-harmonically rocked double-well. In Sec. 3 we show that the
overdamped stochastic dynamics which takes place over the rocked barrier
tends to be confined into one preferred well, depending on the frequency of
the applied drive components. Note that this phenomenon has been over-
looked even in the earlier SR literature [6, 13, 14]. In Sec. 4 we interpret
the resonant nature of asymmetric confinement as a synchronization phe-
nomenon; our analysis is based on the notion of residence time distribution
developed in Refs. [15–18].
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2. Model

The key mechanism underlying the phenomenon of asymmetric confine-
ment is apparent in the study model, illustrated in Fig. 1, of an overdamped
Brownian particle of coordinate x(t) diffusing in a quartic double-well po-
tential V (x) = −ax2/2 + bx4/4, with a, b > 0, subjected to a zero-mean
Gaussian noise ξ(t) and a bi-harmonic, zero-mean valued drive F (t) with
harmonic components of period Ti = 2π/Ωi, i = 1, 2, i.e.

ẋ = ax − bx3 + ax0F (t) + ξ(t) , (1)

where
F (t) = A1 cos(Ω1t + φ1) + A2 cos(Ω2t + φ2) (2)

and 〈ξ(t)ξ(0)〉 = 2Dδ(t). Here, the additive signal F (t) tilts the poten-
tial sidewise between the two configurations sketched in figure 1(lower).
In the absence of a drive, the barrier separating the degenerate minima
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Fig. 1. Top panel: Bi-harmonic drive (2) with φ1 = φ2 = 0 and Ω2 = 2Ω1. Bottom

panel: Rocked quartic double-well potential (1): a = b = 1, A1 = A2 = 0.1.
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±x0 = ±
√

a/b is symmetric with ∆V0 = a2/4b; being the waveform (2)
plotted in Fig. 1(upper) asymmetric, the barrier to overcome during a left-
to-right (right-to-left) jump, oscillates between the two different extremal
values ∆V +

±
(∆V −

±
).

The steady (time-averaged) distribution densities P (x) of the stochastic
process (1) have been computed by standard numerical simulation. In or-
der to quantify the asymmetry of the dynamics (1), we introduced [10] the
subtracted asymmetry factor σ ≡ P−/P+ − 1, with P± ≡

〈∫

∞

0
P (±x, t)dx

〉

t

and 〈. . .〉t denoting the stationary time average

〈. . .〉t ≡ lim
τ→∞

τ
∫

0

(. . .)dt .

For periodic drives in the stationary regime τ can coincide with the forcing
cycle.

3. Simulation results

An asymmetry in the time averaged probabilities P (x) of a modulated
bistable system can always be traced back to some inherent asymmetry of
the driving mechanism. By inspecting Fig. 1(upper), it is apparent that
F (t) is not perfectly symmetric. Here, “perfectly symmetric” means that
all force moments are invariant under sign reversal F → −F ; a vanish-
ing dc component, limt→∞

1

t

∫

t

0
F (s)ds = 0, would not be sufficient! The

two-frequency signal (2), although zero-mean valued, is not perfectly sym-
metric for commensurate frequencies (with the exception of special values
of φ1 − φ2); therefore, the dynamics (1) is symmetric under signal reversal
F → −F only for irrational Ω1/Ω2, see Fig. 2(b).

It is not surprising that the time averaged probability densities of the
process (1) develop a certain degree of asymmetry for commensurate drive
frequencies — signaled by a non-zero factor σ (Fig. 2). However, determining
the sign of σ is not a straightforward task.

In the adiabatic limit of Fig. 2, Ω1,Ω2 → 0 with Ω2/Ω1 = 2 and φ1 = φ2,
the zero-mean periodic drive F (t) is negative during a larger fraction of its
period T1 than it is positive. As a consequence, one predicts an accumulation
of the particle distributions into the negative well, that is σ > 0. This is
confirmed by the adiabatic estimate

P (x) = 〈P (x, t)〉
t
, (3)

with P (x, t) = N(t) exp[−V (x, t)/D], V (x, t) = V (x) − ax0xF (t), and
∫

∞

−∞
P (x, t)dx ≡ 1; the resulting asymmetry factor attains a positive maxi-

mum for vanishingly low commensurate frequencies, in agreement with our
numerical simulation, see Fig. 2(b).
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Fig. 2. Bi-harmonically rocked double-well potential (1)–(2): (a) Time-averaged

probability densities P (x) of the process (1) for ∆V0/D = 4, and Ω1 = 0.005

and Ω2 = 0.01 (curve 1), Ω1 = 0.1 and Ω2 = 0.2 (curve 2), and Ω1 = 0.1 and

Ω2 = 0.1 ×
√

5 (curve 3). (b) Subtracted asymmetry σ versus Ω1; empty squares:

Ω2 = 2Ω1 and ∆V0/D = 4; solid squares: Ω2 = 2Ω1 and ∆V0/D = 6; crosses:

Ω2 =
√

5Ω1 and ∆V0/D = 4. Horizontal arrows point to the analytic estimate

(3) for Ω2 = 2Ω1 → 0. Inset: Distribution of the simulation forcing signal (2)

sampled with time step 0.001: curve 1: Ω2 = 2Ω1 (asymmetric, commensurate

case); curve 2: Ω2 =
√

5Ω1 (symmetric, incommensurate case). Other simulation

parameters: a = b = 1, A2 = A1 = 0.1, φ1 = φ2 and integration time step 0.001.

Furthermore, numerical simulation shows that on increasing Ω1 with
Ω2/Ω1 = 2, σ decreases and eventually changes sign. This is an instance
of the phenomenon known as resonant activation [17, 19]. Due to the tilt-
ing action of F (t), the bistable potential oscillates between the two con-



1426 M. Borromeo, F. Marchesoni

figurations sketched in Fig. 1(lower), that is, when jumping to the right
(left), the particle overcomes different tilted barriers with heights ∆V +

±

(∆V −

± ), respectively; here, these four barrier heights obey the inequalities

∆V +
+ < ∆V −

− < ∆V +
− < ∆V −

+ . Consequently, for low noise intensities the

direct left-to-right escape time T+
+ is much shorter than the reverse escape

time T−

− . For φ1 = φ2 the forcing waveform (2) develops large amplitude
crests of relatively short time duration: as long as the forcing period T1 is
larger than T+

+ , but shorter than T−

− , the particle flow from left to right is
favored and σ stays negative.

However, when the forcing period T1 grows much longer than T−

− , prob-
ability leakage through direct escape over both barrier configurations starts
degrading asymmetric confining, so that P−/P+ decays back close to unity.
For extremely fast oscillations of F (t) the Brownian particle sees an average
potential 〈V (x, t)〉t = V (x), i.e. no asymmetry effects are detectable. This
is the behavior displayed by the curves σ versus Ω1 in Fig. 2(b).

The process (1) exhibits asymmetric confinement as a result of the non-
linear combination of the two harmonic components of F (t). Such a mecha-
nism, experimentally established as harmonic mixing, was not much explored
in the context of transport theory until very recently [11,20]. Note that the
HM induced probability asymmetry changes sign with Ω1 (for Ω1/Ω2 a con-
stant rational number), thus making this effect less robust and predictable
than the gating effect of Refs. [10, 21].

4. Discussion

The dynamics of confinement under the conditions of Fig. 2 is further
illustrated in Fig. 3, where the distributions of the escape times T from
left to right, N+(T ), and vice versa, N−(T ), are plotted for three choices
of the modulation frequency Ω1 corresponding to σ close to its maximum
(zero-frequency limit), minimum (resonant confinement), and zero asymp-
totic value (high frequency limit). As expected [15, 16], all plotted escape
time distributions can be regarded as the superposition of an exponential
background accounting for totally random switches, and a regular structure
of relatively sharp peaks clocked by the external signal F (t). In panel 3(c)
the peak structure merges into the background as Ω1 is too large to synchro-
nize the dynamics (1) appreciably; N±(T ) tend to overlap and their decay
time approaches the Kramers rate over the unperturbed activation barrier
∆V0. This is consistent with a vanishingly small asymmetry factor, σ → 0.

In panel 3(b) the peak structure is dominant and spans over dozens of
forcing cycles T1; this implies that the dynamical locking of the hopping
particle to the external drive is not very efficient [15, 16]. The envelope of
both peak structures decays exponentially, but faster for N+(T ) than for
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Fig. 3. Distributions of the left-to-right, N+(T ), and the right-to-left escape times,

N
−

(T ), for the process (1)-(2) for ∆V0/D = 6, A1 = A2 = 0.1, φ1 = φ2 and

Ω2 = 2Ω1. In panels (a) and (b) the curves N
−

(T ) are shaded; in panel (c) N+(T )

and N
−

(T ) are statistically indistinguishable. The exponential envelopes of the

peak structures in panel (b) are drawn as a guide to the eye.

N−(T ); as a consequence, the particle distribution tends to accumulate into
the positive potential well rather than into the negative one and σ turns
negative.

Finally, in panel 3(a), as we enter the adiabatic regime, T1 is larger
than, or comparable with all escape times T±

± , so that the random switch
background grows noticeable, again; moreover, the hopping dynamics gets
synchronized more closely to the drive swings, as proved by the few de-
tectable N±(T ) peaks shown. As anticipated in Sec. 3, the particle tends
to relax into the tilted potential configurations of Fig. 1(lower) and then
spends more time in the negative well than in the positive one, i.e. σ > 0.
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As a clearcut evidence of the strong input-output synchronization in
the adiabatic regime, we remark that in panel 3(a) the peak structure of
N−(T ) exhibits only one visible peak per forcing period T1, at variance with
N+(T ) which shows two peaks per cycle. The interpretation of this feature
is simple: The left-tilted configuration of the potential V (x) (Fig. 1(lower),
top) occurs only once per period, while the right-tilted configuration (Fig. 1,
bottom) repeats itself twice in correspondence with the symmetric negative
minima b, d of F (t) in Fig. 1(upper); it follows that the right-to-left jumps
are activated along the a → b branches of the drive waveform, while the left-
to-right jumps take place preferably along either the shorter d → e or the
longer b → e branches of F (t), as at the midpoints c the tilt F vanishes. On
the contrary, in the intermediate frequency regime of panel 3(b) both pairs
of external tilt extrema a, c and b, d are capable of inducing left-to-right and
right-to-left jumps, respectively, with comparable likelihood.

5. Conclusions

In conclusion, the nonlinear mixing of two periodic additive zero-mean
signals is capable of localizing a Brownian particle into one well of a sym-
metric bistable potential through a resonant mechanism of stochastic sym-
metry breaking, a mechanism that went unnoticed in previous work. Cor-
respondingly, preliminary evidence suggests that the Brownian motion on a
symmetric substrate under appropriate modulation conditions may exhibit
resonant rectification [11, 20]. Direct applications of the confinement tech-
niques proposed in this article are within the reach of existing experimental
technologies [22].
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