
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 5

ANALYSIS OF PHASE SPACE STRUCTURE

OF A 1-D DISCRETE SYSTEM

USING GLOBAL AND LOCAL SYMBOLIC DYNAMICS∗

Jakub Bryła, Teodor Buchner and Jan J. Żebrowski

Faculty of Physics, Warsaw University of Technology
Koszykowa 75, 00-662 Warszawa, Poland

e-mail: buchner@if.pw.edu.pl

(Received January 3, 2005)

Dedicated to Professor Andrzej Fuliński on the occasion of his 70th birthday

Symbolic dynamics, in which the system trajectory is represented as
a string of symbols, appears as a convenient method for the analysis of
properties of chaotic attractors. In this paper, we show that, using a non-
canonical coding scheme based on a moving partition point, we are able
to access such properties of the phase space of a dynamical system as the
localisation of unstable periodic orbits and of their stable invariant man-
ifolds. Applying different coding schemes enables us to extract different
information about the phase space structure from the chaotic trajectory.
A judicial choice of the method of symbolic coding allows to obtain infor-
mation which may be missing in the symbolic dynamics from the generating
partition. We present results for the 1-D case taking the logistic map as
a numerical example. The extension to higher dimension is also discussed.
The theoretical background of the methods used is also given.

PACS numbers: 05.45.–a

1. Introduction

Poincaré noted that: the apparent complexity of chaotic dynamics is such

that it makes little sense to follow individual orbits. What is relevant is how

regions of the state space are mapped between each other (after [1]). This idea
is expressed in a mathematical form as the symbolic dynamics theory. The
theory states that the phase space should be divided into large partitions
that are mapped one onto the other(s) under the action of the dynamical
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system equations. In one dimensional maps the partition is defined by setting
the position of decision point (or points) that mark the boundaries between
neighbouring partitions. All the partitions are labelled with symbols, the
trajectory in phase space starting from an arbitrary initial condition may
be represented as semi-infinite symbolic string, and the system equations
are represented by the shift operator acting on this string [1, 4]. In the
process of symbolic coding, however, one stringent condition must be met
— the partition used must be so-called generating partition (GP).

The GP structure depends entirely on the topology of the central man-
ifold of the studied dynamical system [1]. A defining property of the GP
is such that it constitutes a one to one representation between each point
in phase space and the unique symbolic string. This string is equivalent to
the unique chaotic trajectory starting from this point. Finding the GP is
a nontrivial task (apart from simple one-dimensional maps) and must be
done for each studied system separately — in fact experimentally no gen-
eral theoretical method for determination of GP from the equations of the
system exists1.

Using an arbitrary partition (i.e. non-GP) leads to severe diminishing
of such complexity measures as metric entropy. The mechanism responsible
for that effect is such that due to misplacement of the partition some admis-
sible symbolic words appearing in a studied trajectory are falsely labelled as
forbidden [2, 3].

There exists, however, a completely different approach to symbolic dy-
namics which is expressed also in this paper — regardless from the ac-
tual method of symbolic coding used, the complexity of the resulting sym-
bolic “time series” may be evaluated using complexity measures of symbolic
dynamics. This approach is sometimes called “a threshold-crossing tech-
nique” [3] — to stress the distinction from the “real” symbolic dynamics —
and has been successfully applied in number of experimental conditions [5,6].
In fact, as we show in this paper, different methods of symbolic coding give
different context to the complexity measures of symbolic dynamics.

In current paper we would like to show how, using different coding schemes,
we may analyse the phase space structure of the generic 1-D discrete system.
In this context a favourite example, the logistic map, was used [7]. Part of the
material was already published as master thesis of one of the authors [16].
We also show how using syntactic analysis the two-dimensional system
(Henon map) may be analysed.

1 For all one-dimensional maps the decision points defining the GP must coincide with
critical points of the map. In this way all different pre-images of an arbitrary point
are labelled uniquely.
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2. Chaotic attractor as structure in phase space

The chaotic attractor is typically a highly nonuniform structure. It con-
sists of a set of unstable periodic orbits (UPO) together with their stable
manifolds (SM) and unstable manifolds (UM). One of the formal definitions
states that the attractor is the closure of the complete set of UPOs [8]. In
chaotic states the UPO are attracting the chaotic trajectory along their sta-
ble directions (directions with negative Lyapunov exponents — all together
spanning the stable manifold) and repelling toward unstable directions (with
positive Lyapunov exponents) [8]. Neither the orbits nor the manifolds may
be visited by the chaotic trajectory, as this would mean that the periodic
orbit either is or was or will be visited. Different parts of the chaotic tra-
jectory carry information about localisation of different UPO that may be
extracted using many different methods [9–11].

If the studied system is irreversible, which is quite often among dynamical
systems, each single point belonging to UPO is, in general, an image of
multiple points. Only one of its preimages may belong to the UPO and all
other belong to its SM2. This SM point may be back-iterated generating the
cascade of other points that also belong to SM. The rate of growth of the
number of these points depends on the system — for systems with known
GP it is related with the number of unique symbols with which the different
back-iteration points must be labelled3. Thus for a given system the set of
the SM of all the UPO, together with the UPO themselves, forms a structure
in the phase space of the system that is considered to be “a special part of
the attractor” [8]. The invariant measure on this set is zero in chaotic states,
so in fact they do not belong to the chaotic attractor as this would lead to
a periodic evolution preceded by a chaotic transient4. As for hyperbolic
systems UPO (and consequently the SM) are dense in the phase space so
in ε-neighbourhood of any initial condition there are infinitely many points
belonging to UPO and SM. For discrete time systems both SM and UM
are in general non-compact objects of a fractional dimension, as the strange
attractor itself.

3. Shifted partition method

In this paper a shifted partition method is used [13]. The principle of
this method is such that a given chaotic trajectory is encoded many times
using different positions of the decision point and some chosen complexity

2 Formally the UPO is neither part of the stable nor the unstable manifold as for flows
the Lyapunov exponent in the direction of UPO is always zero.

3 As the system is noninvertible, the inverse map is a set of functions — one for each
monotonous branch of the original map. As in the GP the branches are labelled
uniquely, the inverse functions may use the same labels.

4 This discussion shows that the definition of the attractor as the closure of the set of
UPO is questionable as the UPO themselves are not a part of the chaotic attractor.
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measure is calculated as function of the spatial position of the decision point.
In practice a finite grid of decision points is used. For each of resultant sym-
bolic strings metric or block entropy is then calculated, which for symbolic
dynamics may be done easily using the following formulae. The equation

H(n) = −

(n)
∑

p (si) ln p (si) , (1)

is a definition of the block entropy. Here summing is over all unique words si

of length n and the probability of finding a word si in the symbolic trajectory
is denoted p (si). Metric entropy h may be calculated as the limit of the local
slopes h(n) of the block entropies H(n) [12]:

h = lim
n→∞

h(n) = lim
n→∞

[H(n) − H(n − 1)] . (2)

For purpose of this work block entropies for a given value of n are used as
the complexity measure. All the entropy plots are in arbitrary units as we
were interested only in relative values. The logarithm used in calculation
had base 10 instead of the commonly used cardinality of the alphabet (i.e. 2)
or e, which for the same reason does not significantly affect the results.

The shifted partition method shows how the symbolic dynamics depend
on the location of the decision point. Thus it is sensitive to local properties
of the phase space of the system in the vicinity of the decision point.

Entropy plots of the type described above were first mentioned in [12] in
a different context. In [2, 3] non-monotonicity of entropy plots was noticed,
explained formally and reproduced analytically on a set of dyadic points [3].
In [13], however, they were used for the first time as a measurement method,
with special interest in localisation and interpretation of the minima (see
next chapter).

4. Global entropy

The impact of UPO and their SM on chaotic trajectory may be visualised
using a shifted partition method with global coding scheme. The scheme is
such that a single decision point d is selected and the chaotic trajectory is
coded using two symbols:

si =

{
0 for xi < d ,

1 for xi > d .
(3)

Using coded trajectory the block entropy for word length n = 10 may be
calculated as function of the position of the decision point d. The entropy
calculated using the global coding scheme will be further denoted as global
entropy. The result of calculations is shown in Fig. 1.
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Fig. 1. Global entropy as the function of d for word length n = 10. The grid
consists of 10000 equally spaced points. The minima of entropy marked with arrows
are preimages of x∗. After few iterations they land on x∗, as shown by the dotted
lines. The horizontal line shows the value of entropy when the partition is the GP
(i.e. log 2).

It may be seen that all the minima visible in this scale of the plot are
located at preimages of the unstable fixed point x∗. This fixed point has
relatively small positive Lyapunov exponent (as compared to other orbits).
Therefore, it strongly influences the dynamics of the chaotic trajectory for
nearly all values of control parameter5. The preimages of the UPO are
located all over the attractor, constituting a fractal stable invariant manifold
of x∗. For the calculation parameters used here (the density of the grid and
the length of the trajectory), the eminent features of the plot seem to be
all related with x∗ due to its lowest instability. Increasing these parameters
and/or taking every m-th point of the trajectory reveals the other minima
related with UPO of higher order m and their SM [16].

It is possible to modify the above method by placing one decision point
in one of the points belonging to some specific orbit and scan the phase
space using second decision point. This enables us to expose the influence
of this orbit on the chaotic trajectory [16].

5 The only exceptions to this rule are the regions soon after the periodic windows
where the large number of orbits created in a period-doubling cascade has instability
comparable to that of x

∗ (in terms of Lyapunov exponent). Being of period higher
than 1 they, however, loose stability much faster than x

∗, which regains its dominating
role. See also [13].
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The series of minima of global entropy belonging to the SM are gener-
ated through an imaging mechanism. The principle of it will be described as
following. Lets assume that d1 is a decision point d1 ∈ [0, 1] and d2 is any of
its preimages: d2 = f−1(d1). As the Lyapunov exponent is positive, the
ε-neighbourhood of d2 will be mapped onto the ε exp(λ)-neighbourhood
of d1. Therefore, the shape of the entropy curve in the vicinity of d1 re-
sembles the rescaled curve from the vicinity of d2. The imaging mechanism
causes the structure of minima of global entropy to be self-similar. Under-
standing the reason for existence of the minimum of entropy at UPO requires
introduction of the masking functions.

5. Masking functions

The values of entropy calculated using symbolic dynamics approach de-
pend on a set of words that are forbidden or admissible. This set, in turn,
depends on the position of the decision point and on the control parameter,
as will be shown below.

The probabilities of words are equivalent to the integral over invariant
measure taken in limits of the n-cylinder of the word. The n-cylinder of the
word Σn [4] is a set of such points x that, taken as initial condition for the
map, produce such trajectory that, after symbolic encoding, begins with Σn

(Fig. 2). This equivalence will be denoted as x ⇒ Σn.
The admissibility of words for a given position of the decision point may

be determined analytically using masking functions. The position of the
decision point will be denoted as p to maintain consistence with the original
theory [3]. For the same reason, the symbols 0 and 1 will be denoted A

and B. For the map on interval I = [0, 1], with parameter p ∈ P = [0, 1]
we define a masking function sj(x, p, i) : I × P × N → {0, 1} which has
value 1 for such {x, p} pairs for which the symbol sj is admissible on the
position i in a word. Such masking function may be defined for each symbol
sj, thus j = 1 . . . C, where C is the cardinality of the alphabet. The set of
{x, p} for which sj(x, p, i) = 1 (for some constant i) is called admissibility
region Γ (sj). For i = 0 the masking functions describe the admissibility
regions for symbols A and B, that are shown in Fig. 3(a). The space I ×P
may be expressed as a sum of Γ (A) and Γ (B)6. The admissibility regions
are separated by a boundary line x = p. This is a simple consequence of
a coding scheme that assigns B to x > p and A to x < p. For i = 1 the
boundary line separates the admissibility region of words ∗A and ∗B (having,
respectively, A or B as a second symbol (* denotes any symbol). The shape

6 Not that the line p = x is excluded according to a silent assumption typical to the
symbolic dynamics that the trajectory will never visit the decision point. The set of
p = x has measure zero.
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Fig. 2. The n-cylinder structure for a logistic map at r = 3.7 and the invariant
measure. The n-cylinders that are outside the attractor are marked gray — they
are related with the forbidden words for r = 3.7. As the attractor grows with
rising r they will disappear one by one. The words in rectangles are minimal
(irreducible) forbidden words (explanation in text).

of the boundary line x = p for i = 1 may be obtained by substituting x by
f(x). This gives f(x) = p which is equivalent to the shape of the map itself
(Fig. 3(b)). Accordingly for the higher iterates the boundary line is given

Fig. 3. Masking functions for i = 0 (a) and i = 1 (b). The lines with arrows in
(b) show typical iterates that begin from ∗A and end in A for some value of p

(horizontal and vertical line).
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Fig. 4. The space I × P partitioned into admissibility regions for i = 2 (a) and
i = 3 (b). Nodal points are marked with lines.

by higher orders of the map fn(x) = f ◦ . . . ◦ f
︸ ︷︷ ︸

n

= p. It may be seen that

for a given p (horizontal line in Fig. 3(b)) all the x belonging to ∗A iterated
once fall into A (below the horizontal line in Fig. 3(b) — few such iterates
are shown with arrows).

The Γ (BB) may be expressed using masking functions: it consists of such
{x, p} pairs for which B(x, p, 0) · B(x, p, 1) = 1. All the Γ (Σn) may be
expressed accordingly. For any length of the word n the space I ×P may be
partitioned into disjoint Γ (Σn) of all possible words Σn, as Fig. 4 for i = 2
and 3.

For any value of p we may obtain all the admissible words and their
admissibility regions. It may be seen from Fig. 4 that the limits of Γ (Σn)
are given by: x = p, x = f(p), . . . , x = f l(p). For some values of p the limits
of Γ (Σn) coincide with the intersection points of such lines. Positions of
such points are defined by:

f l(x) = p = fm(x) , (4)

(denoting x as f0(x)). They may be called nodal points of order l,m:
N(l,m).

Now we will show that the nodal points are either the UPO or their
preimages. The condition (4) may be rewritten as:

x = f−l(fm(x)) . (5)

Then, due to the fact that the map is non-invertible — f−1(x) is not unique
— each point has two preimages. Thus the condition 5 defines a set of 2l
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points. Only m of them belong to an UPO of order m, the other must belong
to its stable invariant manifold as after l iterations they fulfil the condition
x = fm(x). The nodal points being the UPO are the nodal points N(∗, 0)

Therefore, we see in Fig. 4 that the limits of Γ (Σn) are related with the
values of p related to either UPO or their SM. The entropy H(n) (for the
word length n) depends on probabilities of words (see Eq. (1)). When H(n)
is calculated as a function of p it has minima for p∗ = N(l,m) as for p > p∗

one word is forbidden (see e.g. Fig. 4(a) at nodal point N(1, 0) — the word
BB). At p = p∗ this word becomes forbidden which significantly diminishes
the entropy. When a new word appears (as a function of p) its admissibility
region increases from width 0, therefore, the shape of the entropy is smooth
around p∗. Note from the construction of Γ (Σn) that H(n) is sensitive to
all UPO of orders m < n. If we calculate the borders of admissible regions
analytically, the probabilities of words and the entropy as a function of p

may be calculated using the natural measure. The results obtained are in
concordance with those obtained from the numerical experiment [17].

6. Syntactic analysis

Besides entropy, there exist also other complexity measures that may be
used to characterise the dynamics of the system, such as the Riemann ζ

function [4]. One of such measures is the number of irreducible forbidden

words IFW [15]. If we analyse the structure of forbidden words, we will
see that they are built upon the skeleton of the IFW: i.e. such forbidden
words that do not contain any other forbidden words. Such words may
appear when the chaotic attractor does not cover the whole structure of all
possible n-cylinders, i.e. does not fill all the phase space (see e.g. Fig. 2).
The analysis of the IFW may be called syntactic analysis as, in fact, the
IFW determine the syntax of the symbolic trajectory. The structure of
IFW may be analysed using the shifted partition method. The regions in P
space, in which certain words are irreducible forbidden, are related to the
structure of characteristic points of the chaotic attractor (e.g. the critical
point, the UPO, the boundaries of chaotic bands or similar). This is also
a clear conclusion from the previous chapter: i.e. the word BB is a IFW
for p > x∗ (Fig. 4).

7. Local entropy

Main drawback of the global entropy method is such that we are unable
to distinguish between the minima related to the UPO and those related
to the SM. The minima related to SM are “preimages” of those related to
UPO, created by the imaging mechanism described in Section 4. Therefore,
it would be valuable to have a method sensitive only to the minima related
with the UPO. This may be done by a suitable redefinition of the symbolic
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string: applying a different coding scheme enables us to obtain different
results from the same method of entropy calculation. Note here that the
different coding scheme puts the same data vector {x} in a different context.
The global entropy is sensitive to such chaotic trajectories which start from
the vicinity of SM and fall into the vicinity of UPO: they cannot be easily
distinguished from those related only with UPO as their symbolic future is
the same — they differ only by the first symbol. Such orbits may be excluded
by applying a local coding scheme: to limit the domain of the coding function
to a small 2d-neighbourhood of the decision point. Therefore, the coding
function would be the following:

si =







0 for xi ∈ (p − d, p) ,

1 for xi ∈ (p, p + d) ,

∅ otherwise.
(6)

The empty symbol means that no symbol will be put into the symbolic
string. The half-width of the window d is a parameter of the method.

Due to the presence of the empty symbol a symbolic string does not
give the complete symbolic representation of the system dynamics. The
neighbouring symbols are not necessarily related with the neighbouring (in
time) points of the trajectory. They, however, remain neighbours in space
as the domain of the coding function is narrow. Therefore, this symbolic
string describes the properties of the dynamics locally in phase space which
legitimises the name “local entropy”.

The results obtained using this method are shown in Fig. 5.

Fig. 5. Local entropy as the function of p. The window half-width d = 0.1. The
minima of entropy marked with arrows are related only with the UPO. Other nodal
points are not detected.
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Apart from two deep artificial minima near d and 1 − d (for which the
window boundary exceeds the edge of the attractor) all the other minima are
related with the UPO of smallest periods. Free parameters of the method
are the number of points required to fill the window and the window width.
By increasing the number of points and decreasing the width we are able
to improve the resolution of these calculations, this however, requires a long
chaotic trajectory. For smaller window half-width the minima related with
UPO become significantly steeper and thus easy to identify.

For the results presented in Fig. 5 the 105 points falling within the coding
window were used. The length of the whole trajectory cannot be estimated
as the invariant measure is non uniform and the probability to find the
trajectory point in the coding window may differ from point to point. Thus
it is easier to find UPO located in the regions of large invariant measure.
This, however, is a property common to all the methods for UPO detection
that use the trajectory of the system. For a constant length of the trajectory
the resolution of the measurement depends on the fraction of the invariant
measure contained within the coding window.

8. Syntactic analysis of a two-dimensional system

The issue whether the method of symbolic dynamics may be applied
successfully to a multi-dimensional system is an open question. To par-
tially address this problem we used the Henon map as an example of a two-
dimensional, discrete-time system

xi+1 = 1 − ax2
i + byi ,

yx+1 = xi .

Next, the sequence of iterations of the x variable was analysed using the
shifted partition method. As the shape of the entropy did not show any
evident minima which could be easily interpreted, we decided to use a more
subtle technique, that is, the analysis of irreducible forbidden words (IFW).
The results obtained are shown in Fig. 6.

From the IFW, that appear for the Henon system as function of the po-
sition of the decision point, two families may be discerned. It is typical that
when some irreducible forbidden word ΣIFW becomes admissible, some other
forbidden word(s) of the structure ΣIFWΣ become an IFW. The words 00
and 000 may be taken as example. At some point (the beginning of a chaotic
branch of the attractor) the word 00 is no longer forbidden. Therefore, at
the same point, 000 becomes an IFW. Thus the whole family of words may
be discerned, as it is shown in the left of the two bars in Fig. 6. The majority
of points, where the IFW change are related with the chaotic branches of
the attractor, are denoted with the dashed lines. The asymptotic limit of



1468 J. Bryła, T. Buchner, J.J. Żebrowski

-1.5 -1 -0.5 0 0.5 1 1.5
x(n)

-1.5

-1

-0.5

0

0.5

1

1.5

x(
n

+
1

),
 p

00
00

0
00

00
00

00
0 .

..
11

01
0

00
10

00
10

0
10

10
1

Fig. 6. The attractor of the Henon map in the (xn, xn+1) projection together with
the regions of appearance of two families of IFW: (00, 000, 0000, 00000 ..., 11) and
(010, 0010, 00100, ... 10101). The address of each word is shown within its region
of appearance. The dashed lines show the positions of the “skeleton” points of the
attractor: the beginnings and the ends of some of the branches. The thick solid
line marks the position of the period-1 UPO. Two thin solid lines mark the points
belonging to a period-2 UPO.

regions of appearance of this family of IFW is located at the point where
the word 11 becomes an IFW i.e. at the UPO of order 1 (thick solid line).
The second family is related with the other chaotic branches of the attractor
and with the two points belonging to period-2 orbits (thin solid lines).

If the symbolic dynamics of the system is not known a priori it seems im-
possible to discern between the points marking the limits of chaotic branches
and those related with UPO. On the other hand, nearly all the points where
the IFW appear or disappear have a special meaning in the structure of the
chaotic attractor.

Note that the set of UPOs of the Henon map consists of a single period-1,
a single period-2 and two period-6 orbits [18], thus the lack of orbits of
a higher period (e.g. 3, 4, 5 . . . ) is not a limitation of the method but the
property of the system studied here.

9. Discussion

Once the symbolic string is obtained symbolic dynamics provides a num-
ber of measures and techniques to access various dynamical properties of
the system represented by this string. What remains a general yet unsolved,
problem is how to construct a reliable representation of the system dynam-
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ics. This paper, as well as some other cited herein [5, 6, 13] do not give
a solution to this problem. Instead they attempt to show that applying
a non-generating coding scheme, without knowledge of the generating par-
tition, it is possible to use symbolic dynamics methods to study various
aspects of the system dynamics. In this paper we show that application
of the proper coding scheme lets us obtain the information we need. The
coding scheme may be seen as a context in which the chaotic trajectory is
put prior to application of tools of nonlinear dynamics. Depending on the
question asked, the proper coding method may be helpful in giving an exact
answer. We show this on example of localisation of phase space structures:
such as UPO and their SM, but this list is by no means closed.

Such an approach extends the possible usage of symbolic dynamics. One
must keep in mind, however, that the symbolic description is not unique in
this case and e.g. the absolute values of entropy cannot be directly inter-
preted as a measure of complexity of the studied system but only taken as
a crude approximation. This was studied in [3] and [13] from the points
of view of pure versus applied symbolic dynamics, respectively. The other
thing that must be taken into account is that the structure of generating par-
tition changes with the control parameter, thus the values of entropy based
on an arbitrary partition cannot be calculated as a function of the control
parameter [13]. Note that the line of reasoning presented in Section 5 holds
also for higher dimensions. E.g. for the 2-D systems the x–p space becomes
4-dimensional and two moving decision lines must be used instead of one
point. The admissibility regions are then 4-D objects. The entropy plots
for 2-D become the 2-D surfaces and the deepest minima appear when both
decision lines are placed appropriately, therefore, we may predict that the
extension of the method towards higher dimensions is in general possible.
Alternatively a single, suitably chosen variable of the multi-dimensional sys-
tems may be analysed.

In Section 8 we showed that it is, in principle, possible to analyse a single
variable of a multi-dimensional system using the shifted partition method.
It is not surprising that a single variable may carry information about the
topology of the attractor. In fact, for the Henon map, the curve defining
the generating partition is nearly a straight line, that may be found at
least numerically [1]. Thus, if we analyse a single variable perpendicular
to this line, we obtain very good results. Problems appear for positions of
the decision points that are close to the generating partition line. There
may appear such point locations, at which a single variable is not enough to
assign the proper symbol. We have observed the existence of the IFW whose
inadmissibility region begins and ends at the points that are close to a UPO.
Thus, probably, if the full symbolic dynamics was taken into account, they
would be found to be related to this UPO.
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A possible solution in many dimensions is to find either such affine trans-
formation of variables for which the partition line would be moved parallel
to the generating one, or to apply a nonlinear transformation to make the
generating partition curve a straight line, but this has yet to be done.

10. Conclusions

Two methods for the examination of the phase space of one-dimensional
systems were proposed. Both apply the symbolic dynamics approach but
place the standard complexity measure (block entropy) in a different con-
text by using two different coding schemes. The global entropy method
enables one to find the UPO and their stable manifolds, whereas the local
entropy method is sensitive only to the occurrence of the UPO. A theoretical
background for the global entropy method was also given.

The tools discussed represent a new approach to the standard symbol-
ics dynamics analysis of trajectories of chaotic systems. The choice of the
method of symbolic coding has a strong effect on the information content of
the symbolic dynamics obtained. It appears that, besides coding by means
of the generating partition, the true trajectory of the system in phase space
may be encoded in different ways. The different symbolic dynamics obtained
in this way each carry different information about the system. A judicial
choice of the method of symbolic coding (in 1-dimension, the choice of the
location of the decision point) allows to obtain information which may be
missing in the symbolic dynamics from the generating partition. In this
paper, we discussed the detection of UPO in this way.

The methods were presented taking the logistic map as a numerical ex-
ample but they may be applied to any 1-D map such as one given analytically
or a return map of either a set of ordinary differential equations or any exper-
imental signal. The possibility to extend the methods to higher dimensions
was also discussed. A single variable from the Henon map was analysed and
the UPO of lowest orders were found by the method developed here.

The authors would like to thank dr A. Krawiecki for a friendly atmo-
sphere. This work was partially published as the M.Sc thesis of one of us
(J.B).
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