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In this paper we introduce a generalization of the De Vylder approx-
imation of the ruin probability. Here the risk process is described in the
language of a continuous time random walk. Our idea of approximation is
to replace the risk process with the one with gamma claims, matching first
four moments. We compare the two approximations studying mixture of
exponentials and lognormal claims. We show that the proposed 4-moment
gamma approximation works better than the original one.
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1. Introduction

Empirical evidence has been mounting that supports the possibility that
a number of systems arising in disciplines as diverse as physics, biology,
ecology and economics may have certain quantitative features that are in-
triguingly similar. For example, the continuous time random walk (CTRW)
model, formerly introduced in statistical physics by Montroll and Weiss [1],
see also for the recent development [2, 3], can provide a phenomenological
description of tick-by-tick dynamics in financial markets [4]. Consequently,
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the survival probability for certain bond futures traded at LIFFE, London
can be analysed via the Mittag–Leffler function [5]. The Merton option pric-
ing formula [6], which is an extension of the Black–Scholes one, is based on
the jump-diffusion model for the price process St and the jump part of St

is just given by the CTRW. Here we will discuss a practical application of
the CTRW model in the context of the ruin probability for the risk process
describing the capital of an insurance company.

The recent increasing interplay between actuarial and financial mathe-
matics has led to a surge of risk theoretic modeling. Especially actuarial
ruin models under fairly general conditions on the underlying risk process
have become focus of attention [6, 7]. Ruin theory is concerned with the
excess of the income (with respect to a portfolio of business) over the outgo,
or claims paid. This quantity, referred to as insurer’s surplus, varies in time.
Specifically, ruin is said to occur if the insurer’s surplus reaches a specified
lower bound, e.g. minus of the initial capital. One measure of risk is the
probability of such an event, clearly reflecting the volatility inherent in the
business. In addition, it can serve as a useful tool in long range planning for
the use of insurer’s funds.

Unfortunately, the ruin probabilities in infinite and finite time can only
be calculated for a few special cases of the claim amount distribution. Thus,
finding a reliable approximation, especially in the ultimate case when the
straightforward Monte Carlo approach can not be utilized, is really impor-
tant from a practical point of view.

Grandell [8] demonstrates that between possible simple approximations
of ruin probabilities in infinite time the most successful is the De Vylder
approximation, which is based on the idea to replace the risk process with
the one with exponentially distributed claims and ensuring that the first
three moments coincide.

We introduce a modification to the De Vylder approximation by chang-
ing the exponential distribution to the gamma and making the first four
moments match. This modification is promising and works in many cases
better than the original approximation. Observe that for empirical data
there are no serious problems since no estimation of higher empirical mo-
ments is involved. We only use analytical form of the distribution which is
fitted by the non-parametric procedure [9]. In order to compare De Vylder
and 4-moment gamma (4MG) approximations we consider mixture of two ex-
ponentials and lognormal claims. We compute relative errors of the methods
with respect to the exact values of the ruin probability. The ruin probability
in the lognormal case is calculated via the Pollaczek–Khinchin formula using
Monte Carlo simulations [10].

Let us now recall a standard model (called the risk process) for the
capital of an insurance company. The initial capital is u, the Poisson process
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Nt with intensity λ describes the number of claims in (0, t] interval and
claim severities are given by sequence of independent positive identically
distributed random variables {Xk}

∞
k=1 with mean µ and (if existing) raw

moments µ(2), µ(3), . . .. Furthermore, we assume that {Xk} and {Nt} are
independent. To cover its liability, the company receives premium at a
constant rate c, per unit time. Thus, the risk process {Rt}t≥0 is given by

Rt = u+ ct−

Nt
∑

i=1

Xi . (1)

Observe that the last term in Eq. (1) describing the insurance company’s
aggregate losses is modelled by the CTRW. If we add to the right side the
diffusion term σWt, where Wt stands for the Brownian motion, then the risk
process Rt has a full jump-diffusion form. For the insurance company we
have σ = 0.

The premium c is often written as c = (1 + θ)λµ and θ > 0 is called the
relative safety loading. The loading has to be positive, otherwise c would be
less than λµ and thus with probability one the risk business would become
negative in infinite time.

It is sometimes more convenient to work with the aggregate surplus pro-
cess {St}t≥0, namely St = u − Rt =

∑Nt

i=1Xi − ct. Now, we are going to
recall the definition of ruin probability, i.e. the probability that the capital
drops below zero. The time to ruin is defined as

τ(u) = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : St > u} .

Let M = sup0≤t<∞{St}. The ruin probability in infinite time is defined as

ψ(u) = P(τ(u) <∞) = P(M > u) . (2)

2. Light- and heavy-tailed distributions

We distinguish here between light- and heavy-tailed distributions [11].
Distribution FX(x) is said to be light-tailed, if there exist constants a > 0,
b > 0 such that F̄X(x) = 1 − FX(x) ≤ ae−bx or, equivalently, if there exist
z > 0, such that MX(z) < ∞, where MX(z) is the moment generating
function. Distribution FX(x) is said to be heavy-tailed, if for all a > 0,
b > 0 F̄X(x) > ae−bx, or, equivalently, if ∀z > 0 MX(z) = ∞.

The most important distributions, often describing light- and heavy-
tailed losses are presented in Table I. In this paper we focus on the mixture
of exponentials and lognormal cases.
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TABLE I

Densities of typical claim size distributions. In the loggamma case x ≥ 1.

Light-tailed distributions

Name Parameters pdf

Exponential β > 0 fX(x) = β exp(−βx)

Gamma α > 0, β > 0 fX(x) = βα

Γ(α)x
α−1 exp(−βx)

Weibull β > 0, τ ≥ 1 fX(x) = βτxτ−1 exp(−βxτ )

Mix. exp’s βi > 0,
n
∑

i=1

ai = 1 fX(x) =
n
∑

i=1

{aiβi exp(−βix)}

Heavy-tailed distributions

Name Parameters pdf

Weibull β > 0, 0 < τ < 1 fX(x) = βτxτ−1 exp(−βxτ )

Lognormal µ ∈ R, σ > 0 fX(x) = 1
√

2πσx
exp

{

− (ln x−µ)2

2σ2

}

Loggamma α > 0, β > 0 fX(x) = βα(ln x)α−1

xβ+1Γ(α)

Pareto α > 0, λ > 0 fX(x) = α
λ+x

(

λ
λ+x

)α

Burr α > 0, λ > 0, τ > 0 fX(x) = ατλαxτ−1

(λ+xτ )α+1

In the case of light-tailed claims the adjustment coefficient (called also
the Lundberg exponent) plays a key role in calculating the ruin probability.
Let γ = supz {MX(z)} <∞ and let R be a positive solution of the equation:

1 + (1 + θ)µR = MX(R) , R < γ . (3)

If there exists a non-zero solution R to the above equation, we call it an
adjustment coefficient. Clearly, R = 0 satisfies Eq. (3), but there may exist
a positive solution as well (this requires that X has a moment generating
function, thus excluding distributions such as Pareto and the lognormal).

An analytical solution to Eq. (3) exists only for few claim distributions.
However, it is possible to obtain a numerical solution. The coefficient R
satisfies the inequality:

R <
2θµ

µ(2)
, (4)

where µ(2) = E(X2
i ) [10]. Let D(z) = 1 + (1 + θ)µz −MX(z). Thus, the

adjustment coefficient R > 0 satisfies the equation D(R) = 0. In order to
get the solution one may use the Newton–Raphson formula:

Rj+1 = Rj −
D(Rj)

D′(Rj)
, (5)

with the initial condition R0 = 2θµ/µ(2), where D′(z) = (1 + θ)µ−M ′
X(z).
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Moreover, if it is possible to calculate the third raw moment µ(3), we can
obtain a sharper bound than (4), [12]:

R <
12µθ

3µ(2) +
√

9(µ(2))2 + 24µµ(3)θ
,

and use it as the initial condition in (5).

3. De Vylder and 4MG approximations

The idea of the De Vylder approximation is to replace the risk process
with the one with θ = θ̄, λ = λ̄ and exponential claims with parameter β̄,
fitting first three moments [13]. Let

β̄ =
3µ(2)

µ(3)
, λ̄ =

9λµ(2)3

2µ(3)2
, and θ̄ =

2µµ(3)

3µ(2)2
θ .

Then De Vylder’s approximation is given by

ψDV(u) =
1

1 + θ̄
e−θ̄β̄u/(1+θ̄) . (6)

Obviously, in the exponential case the method gives the exact result.
For other claim distributions, in order to apply the approximation, the first
three moments have to exist.

We now introduce a new 4-moment gamma approximation based on the
De Vylder’s idea to replace the risk process with another one for which
the expression for ψ(u) is explicit. We fit the four moments in order to
calculate the parameters of the new process with gamma distributed claims
and apply the exact formula for the ruin probability in this case which is
given in Ref. [14]. The risk process with gamma claims is determined by the
four parameters (λ̄, θ̄, µ̄, µ̄(2)). Since

E(St) = −θλµt ,

E(S2
t ) = λµ(2)t+ (θλµt)2 ,

E(S3
t ) = λµ(3)t− 3(λµ(2)t)(θλµt) − (θλµt)2 ,

E(S4
t ) = λµ(4)t− 4(λµ(3)t)(θλµt) + 3(λµ(2)t)2

+6(λµ(2)t)(θλµt)2 + (θλµt)4

and for the gamma distribution

µ̄(3) =
µ̄(2)

µ̄
(2µ̄(2) − µ̄2) , µ̄(4) =

µ̄(2)

µ̄2
(2µ̄(2) − µ̄2)(3µ̄(2) − 2µ̄2) ,
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the parameters (λ̄, θ̄, µ̄, µ̄(2)) must satisfy the equations

θλµ = θ̄λ̄µ̄ ,

λµ(2) = λ̄µ̄(2) ,

λµ(3) = λ̄
µ̄(2)

µ̄2
(2µ̄(2) − µ̄2) ,

λµ(4) = λ̄
µ̄(2)

µ̄2
(2µ̄(2) − µ̄2)(3µ̄(2) − 2µ̄2) .

Hence

λ̄ =
λ(µ(3))2(µ(2))3

(µ(2)µ(4) − 2(µ(3))2)(2µ(2)µ(4) − 3(µ(3))2)
,

θ̄ =
θµ(2(µ(3))2 − µ(2)µ(4))

(µ(2))2µ(3)
,

µ̄ =
3(µ(3))2 − 2µ(2)µ(4)

µ(2)µ(3)
,

µ̄(2) =
(µ(2)µ(4) − 2(µ(3))2)(2µ(2)µ(4) − 3(µ(3))2)

(µ(2)µ(3))2
.

We also need to assume that µ(2)µ(4) < 3
2(µ3)2 and to ensure that µ̄, µ̄(2) > 0

and µ̄(2) > µ̄2. In case this assumption can not be fulfilled, we simply set
µ̄ = µ and do not calculate the fourth moment. This case leads to

λ̄ =
2λ(µ(2))2

µ(µ(3) + µ(2)µ)
,

θ̄ =
θµ(µ(3) + µ(2)µ)

2(µ(2))2
,

µ̄ = µ , µ̄(2) =
µ(µ(3) + µ(2)µ)

2µ(2)
. (7)

All in all, we get the approximation

ψ4MG(u) =
θ̄(1 − R

ᾱ )e−(β̄R/ᾱ)u

1 + (1 + θ̄)R− (1 + θ̄)(1 − R
ᾱ )

+
ᾱθ̄ sin(ᾱπ)

π
I , (8)

where

I =

∞
∫

0

xᾱe−(x+1)β̄u dx
[

xᾱ
(

1 + ᾱ(1 + θ̄)(x+ 1)
)

− cos(ᾱπ)
]2

+ sin2(ᾱπ)
,
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R is the adjustment coefficient for the gamma distribution and (ᾱ, β̄) are

given by ᾱ = µ̄2

µ̄(2)−µ̄2 , β̄ = µ̄
µ̄(2)−µ̄2 .

In the exponential and gamma case this method gives the exact results.
For other claim distributions in order to apply the approximation, the first
four (or three) moments have to exist. In Section 5 will show that it gives
a slight correction to the De Vylder approximation, which is said in Ref. [8]
to be the best among simple approximations.

4. Pollaczek–Khinchin formula

This time we use the representation (2) of the ruin probability and the
decomposition of the maximum M as a sum of ladder heights. Let L1 be
the value that process {St} reaches for the first time above the zero level.
Next, let L2 be the value which is obtained for the first time above the level
L1; L3, L4, . . . are defined in the same way. The values Lk are called ladder
heights. Since the process {St} has stationary and independent increments,
{Lk}

∞
k=1 is the sequence of independent and identically distributed variables.

One may show that the number of ladder heights K to the moment of ruin
is given by a geometric distribution with the parameter q = θ

1+θ . Thus,
random variable M may be expressed by

M =
K

∑

i=1

Li . (9)

This implies that random variable M has a compound geometric distribution
given by the distribution function

FM (x) =
θ

1 + θ

∞
∑

n=0

G∗n(x) , (10)

where G∗n is the nth convolution of the distribution with the defective den-
sity

g(x) =
1

µ(1 + θ)
F̄X(x) =

1

1 + θ
b0(x) , (11)

and the density

b0(x) =
F̄X(x)

µ
. (12)

The above fact together with the representation (2) leads to the
Pollaczek–Khinchin formula for the ruin probability:
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ψ(u) = P(M > u) =
θ

1 + θ

∞
∑

n=0

(

1

1 + θ

)n

B̄∗n
0 (u) , (13)

where B̄0 is the tail of the distribution corresponding to the density b0 [10].
One can use it to derive explicit solutions for a variety of claim amount

distributions, particularly those whose Laplace transform is a rational func-
tion [12]. Unfortunately, the lognormal case is not included. However, in
order to calculate the ruin probability the formula can be also applied di-
rectly. Using Eqs. (9) and (13), the ruin probability ψ(u) = E(Z), where
Z = 1(M > u), may be calculated via Monte Carlo simulations.

SIMULATION ALGORITHM

1. Generate a random variable K from the geometric distribution with
the parameter q = θ

1+θ .

2. Generate random variables X1,X2, · · · ,XK from the density b0(x).

3. Calculate M = X1 +X2 + · · · +XK .

4. If M > u, let Z = 1, otherwise let Z = 0.

The main problem seems to be simulating random variables from the den-
sity b0(x). In the lognormal case the density does not have a closed form.
Consequently, in order to generate random variables Xk we use formula (12)
and controlled numerical integration.

It was shown in Ref. [15] that the computer approximation via the
Pollaczek–Khinchin formula can be chosen as the reference method for calcu-
lating the ruin probability in infinite time. Hence we will call ruin probability
values obtained by virtue of the above procedure exact.

5. De Vylder versus 4MG approximation

We now aim to compare De Vylder and 4-moment gamma approxima-
tions. To this end we consider the ruin probability as a function of the initial
capital u, with two claim amount distributions, namely mixture of two expo-
nentials representing the light-tailed case and lognormal being a prominent
example of the heavy-tailed case. In order to show the relative errors of the
methods we compare results of the approximations with the exact values.

In the case of mixture of two exponentials distribution, exact values of
the ruin probability can be computed using inversion of Laplace transform
technics [12]. Fig. 1(a) depicts the exact ruin probability values and results
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of the De Vylder and 4-moment gamma approximations. Fig. 1(b) demon-
strates that the relative error of the latter is less than 8% and proves that it
gives much better results than the original method which reaches the 50%
error.
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Fig. 1. Illustration of (a) the ruin probability ψ(u) in the logarithmic scale and

(b) the relative error of the approximations. Solid line represents exact values

of the ruin probability. Dashed and dotted lines correspond to De Vylder and

4-moment gamma approximations, respectively. The mixture of two exponentials

case with β1 = 0.04, β2 = 2, weight a = 0.002, θ = 0.1 and u ≤ 1000.
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Fig. 2. Illustration of (a) the ruin probability ψ(u) in the logarithmic scale and

(b) the relative error of the approximations. Solid line represents ruin probabil-

ity values obtained via the Pollaczek–Khinchin formula. Dashed and dotted lines

correspond to De Vylder and 4-moment gamma approximations, respectively. The

lognormal case with µ = −3, σ = 2.1, θ = 0.1 and u ≤ 1000.
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When the claim amount distribution is lognormal, the formula for the
ruin probability does not have a closed form, therefore we employ the
Pollaczek–Khinchin formula to obtain exact results. For the Monte Carlo
method purposes we generated 100 blocks of 100000 simulations. The com-
putations were realized in the Matlab package. We also note that the vari-
ance within the results derived from the blocks was always below 3 × 10−6.
Fig. 2(a) illustrates the exact ruin probability values and results of the De
Vylder and 4-moment gamma approximations. Fig. 2(b) shows that the rel-
ative error of the 4-moment gamma approximation is always significantly
less than the error of the original one.

Finally, let us note that we have conducted similar studies for other light-
and heavy-tailed claim size distributions, e.g. Weibull, Pareto, Burr and
loggamma, with different parameters. With the usage of XploRe package
they are presented in Ref. [16] and justify the thesis the 4-moment gamma
approximation works better than the De Vylder approximation.
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