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1. Introduction

As shown by Prigogine [1] in nonequilibrium thermodynamic descrip-
tion of proceeding of a simple chemical reaction the source of entropy σ is
expressed in the following bilinear form

σ = JX , (1.1)

where J is the thermodynamic flux (flow) and X is the thermodynamic
force. Additionally, if X is not too large we are restricted to a linear region
in which the flux (flow) is in a linear relation with the force

J = LX . (1.2)

In this phenomenological law (phenomenological equation) L is the phe-
nomenological coefficient. From Eqs. (1.1) and (1.2) we obtain

σ = LXX . (1.3)

In this quadratic expression, as σ > 0 also L must be positive [1, 2].
Although we will discuss different chemical reactions, in order to under-

stand the problems discussed in this paper, in this place, it is sufficient to
analyze the chemical reaction

A + B ⇄ C + D , (1.4)

where the concentrations of reactants and products are

cA = cB , cC = cD . (1.5)

More complicated reactions can be described similarly. However, we prefer to
start analysis from reaction (1.4) because of a possibility of direct comparison
with results following from the kinetic theory of gases. We can introduce
the flux (flow) J as

J = vA = −
dcA

dt
= (vA)f + (vA)r , (1.6)

where vA, (vA)f , (vA)r denote the overall, forward and reverse reaction rates,
respectively, and t is the time. The reaction rates can be written as

(vA)f = kfcAcB , (vA)r = −krcCcD , (1.7)

where kf and kr are the appropriate rate constants. Deriving Eqs. (1.1) and
(1.2) Prigogine introduced the thermodynamic force as

XP =
A

T
, (1.8)
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where T is the temperature and A is the affinity which for reaction (1.4) is
expressed as

A = µA + µB − (µC + µD) , (1.9)

where µA, µB , µC and µD are the chemical potentials.
As analyzed by Prigogine [3] if the affinity is small enough Eq. (1.8) is

not only in agreement with the formalism of linear nonequilibrium thermo-
dynamics (LNT) but also with that of the kinetic theory of gases. This is
also in agreement with the description of De Donder [4] who was the first
to treat the affinity as the driving force of chemical reaction. The force
introduced by De Donder can be written as XD

XD = A . (1.10)

In order to simplify our description we introduce the dimensionless force X

X =
A

RT
=

XP

R
=

XD

RT
, (1.11)

where R is the universal gas constant. Prigogine et al. [5] have shown that
for few reactions analyzed experimentally close to equilibrium, i.e., for very
small A/RT , the reaction rate can be written as

vA = (vA)fX . (1.12)

According to those authors if X is not very small

vA = (vA)f [1 − exp(−X)] . (1.13)

Glansdorf and Prigogine [6] have also used Eq. (1.13) in phenomenological
description of chemical reactions. Ross and Mazur [7] analyzing the nonequi-
librium effects in the kinetic theory of reacting gas have emphasized that the
following quantity (compare Eq. (1.13))

XRM = 1 − exp

(

−A

RT

)

= 1 − exp(−X) (1.14)

can be treated as the driving force of chemical reaction. We have introduced
the indices RM as the abbreviation of the names Ross and Mazur. After
analysis of the results mentioned above, De Groot and Mazur [2] have come
to the following conclusions: “Close to equilibrium or more specifically if
A ≪ RT we may expand the right hand side of equation (such as Eq. (1.14)
in this paper) in powers of A retaining only the linear term.” and “It turns
out that the linear relations of thermodynamics of irreversible processes hold
for chemical reactions when the condition A ≪ RT is satisfied. In general
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this condition is only satisfied in the very last stage of reaction”. Those au-
thors [2] also have emphasized that the linear relations of thermodynamics
are valid in the case of (gas) reactions which do not disturb significantly the
Maxwell distribution of the chemical components. However, as emphasized
by Ross and Mazur, the law of mass action is sufficient only to the extent
that the effect of the perturbed momentum distribution function on the rate
of chemical reaction is negligible. Analyzing the entropy production Ross
and Mazur [7] have taken into account terms connected with expansion of
the velocity distribution function in the perturbation method of solution
of the Boltzmann equation. Those authors have shown that it has the ex-
pected bilinear form, i.e., the product of the “flux” (the reaction rate) and
the force (see Eq. (1.1)). As long as the “flux” can be expressed as a sum of
the zero-th and first order terms such a bilinear form exists and linear laws
of thermodynamics are valid. Beyond the first order, however, the simple
bilinear form is not retained [7]. Although the role of the law of mass action
has been emphasized by those authors they have not tried to introduce in
the force, in an explicit way, any parameters connected with the chemical
equilibrium. Using the law of mass action Baranowski [8] has shown that
the linear thermodynamics laws are in agreement with formal kinetic equa-
tions if A is small. For this purpose Baranowski has emphasized that near
to chemical equilibrium the concentration ratio of products and reactants
is nearly constant and differs only slightly from such a ratio in chemical
equilibrium. It means that these concentrations are nearly constant if the
affinity A is small. In this case both the forces XRM and X coincide. How-
ever, we can see that in the limiting case, in the very beginning of chemical
reaction when the concentration of product could be negligibly small, the
affinity as well as the force X could approach to infinity but for the force
XRM we could write

lim
A→+∞

XRM = 1 . (1.15)

This means that, in this range of a very small concentration of the product,
an analysis of the force of XRM does not give information how large this force
is and, therefore, how the reaction could proceed. Reactions proceeding far
from equilibrium were discussed by many authors (see, e.g., papers presented
in [9,10]). In this paper, we would like to introduce a new force for chemical
reaction with introduction of a term directly connected with chemical equi-
librium to emphasize the role of the law of mass action (already mentioned
by Ross and Mazur). Namely, we will introduce additionally the equilibrium
constant to the expression for the driving force of chemical reaction.

In order to understand better the proposition of introduction of a new
force for chemical reaction it is worthwhile to remind the following results.
Within the formalism of statistical as well as phenomenological thermody-
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namics, in the state of chemical equilibrium, the chemical potentials for
reactants and products are equal. For example for the reaction (1.4) we can
write

µeq
A

+ µeq
B

= µeq
C

+ µeq
D

, (1.16)

where the index “eq” is introduced to describe the chemical equilibrium state.
It is interesting that in this case another quantity, namely the absolute
activity introduced and analyzed by Fowler and Guggenheim [11, 12] (see
also the analysis presented by Kittel [13]) can be defined as

λI = exp
( µI

RT

)

(I = A,B,C,D) . (1.17)

The state of chemical equilibrium can be described not only by Eq. (1.16)
but also [13] by

λAλB = λCλD . (1.18)

From Eq. (1.17) we can see that

µI = RT ln λI (I = A,B,C,D) . (1.19)

The last equation has a similar form to the very known expression

µI = µ0
I + RT ln aI (I = A,B,C,D) , (1.20)

where µ0
I

is the value of µI for aI = 1 and aI is the activity. For the ideal
gas Eq. (1.20) can be written in the simplified form

µI = µ0
I + RT ln cI (I = A,B,C,D) (1.21)

Okunev and Parmon looked for a generalization of the thermodynamic force.
Those authors [14, 15] suggested to use for the absolute activity also the
new name “thermodynamic rush”. According to Okunev and Parmon if
a chemical reaction proceeds outside the linear region of nonequilibrium
thermodynamics its rate is proportional to the difference of thermodynamic
rushes of reactants and products. We denote such a force XOP to introduce
the names of those authors in the subscript. Such a force for the reaction
(1.4) can be written as

XOP = λAλB − λCλD . (1.22)

After taking into account Eqs. (1.22), (1.17), (1.21), (1.9), (1.13) and (1.14)
we can present this force as

XOP = cAcB exp

(

µ0
A

+ µ0
B

RT

)

XRM . (1.23)
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It should be emphasized that in the definition of Okunev and Parmon the
absolute activities (see Eq. (1.17)) are used. Such activities are different
from the typical activities (see Eq. (1.20)). If we take into consideration
that for a very small values of A/RT the concentrations of reactants are
“nearly” constant we can see from Eq. (1.23) that the force XOP is “nearly”
proportional to XRM and X only. However, even in this case the force is
equal neither to the force XRM nor to the force X. Nevertheless, the force
XOP is very useful in analysis of catalytic reactions because for such an
analysis it is sufficient for a force to be proportional to A/RT if a reaction
proceeds near to the equilibrium.

Recently, continuing analysis of comparison of the forces X and XRM

(see [16] and the references cited therein) we have introduced a new defini-
tion of force (further denoted in this paper by Xnew) fulfilling the following
conditions:

I. For a very small affinity (near to chemical equilibrium) Xnew=XRM=X.

II. For a very large affinity (far from equilibrium) Xnew is not equal to 1
(compare Eq. (1.15)).

The aim of this paper is to show in a more careful way why the intro-
duction of Xnew permits to evaluate the concentration ranges of products
in which the linear laws for chemical reaction described within the formal-
ism of nonequilibrium thermodynamics are in a fairly good agreement with
the equations of chemical kinetics, as well as, to show that this force can
be expressed by (introduced by Fowler and Guggenheim) absolute activities
(after some modifications). Our paper is organized as follows: in Sections 2
and 3 we define the force Xnew for typical chemical reactions and emphasize
a role of chemical equilibrium in this definition and introduce new formu-
las following from this definition, in Sections 4–7 we present formulas and
results for the forces X, Xnew and XRM and their ratios for some typical
reactions chosen, in section 8 we discuss the results for these forces and their
ratios and present final summarizing remarks; in Appendix we analyze the
consequences following from the invariance of the entropy production.

2. Forces for chemical reactions

We think that in the analysis of proceeding of chemical reaction it is
very important to remember that the state of chemical equilibrium is a kind
of a typical very important state for each reaction. To be more precise, we
can take into consideration that the chemical potential is usually calculated
after introduction of a standard state. We think that for a chemical reaction
the state of chemical equilibrium should play a more important role than a
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standard state. That is why we could try to emphasize the role of chemical
equilibrium and to introduce few definitions. First, we define the reactive
chemical potentials for components in chemical reaction (1.4) as

µre
I = µI − µeq

I
(I = A,B,C,D) , (2.1)

where µeq
I

denotes the equilibrium value of µI . Next, we define the reactive
absolute activities of components in chemical reaction as

λre
I = exp

(

µre
I

RT

)

(I = A,B,C,D) (2.2)

and the reactive absolute activity for reactants R and products P in chemical
reaction as

λre
R = λre

Aλre
B (2.3)

λre
P = λre

Cλre
D . (2.4)

We would like to emphasize that in order to show the problem in a very
simple and clear way we restrict in this moment to the reaction (1.4). Nat-
urally, in a description of other reactions appropriate stoichiometric coeffi-
cients should be introduced. Additionally, for this purpose we restrict to
the simplest “ideal” systems only, i.e., systems composed of reactants and
products for which Eq. (1.21) can be used.

For the reaction (1.4) we define the new force Xnew as the difference of
reactive absolute activities of reactants and products.

Xnew = λre
R − λre

P . (2.5)

We introduce this definition because of two reasons: (i) Such a definition
used directly for chemical potentials would give only

µre
A − µre

B − (µre
C − µre

D) = µA − µB − (µC − µD) = A . (2.6)

Thus, it would be nothing new. (ii) The definition (2.3) looks reasonable
because using elementary kinetic equations we can get for the reaction (1.4)

vA = kfc
eq
A

ceq
B

Xnew . (2.7)

Eq. (2.7) can be also written in a form

vA = kfc
eq
A

ceq
B

cAcB

ceq
A

ceq
B

XRM (2.8)

because it can be shown that

Xnew =
cAcB

ceq
A

ceq
B

XRM . (2.9)
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Eq. (2.7) can be simply obtained from Eq. (1.13) presented by Glansdorff
and Prigogine [7]. We can also see that using Eq. (2.7) we could introduce

vA = J = L′Xnew , (2.10)

where the phenomenological coefficient L′ is a constant quantity

L′ = kfc
eq
A

ceq
B

. (2.11)

It should be emphasized that, although Eqs. (2.10) and (2.11) can be simply
derived from the chemical kinetics equations and the force Xnew is also
obtained from Eq. (2.5), these equations cannot be treated as equations
valid within the LNT formalism because Eq. (2.10) has not been derived
from the condition for the minimum entropy production. Nevertheless, in
the concentration ranges in which Xnew is nearly equal to X, Eq. (2.10) can
be treated as a linear phenomenological equation

J = LX . (2.12)

Such a phenological equation for the force Xnew could be written, after an
introduction of an appropriate “conjugate” flux (flow) Jnew, and in this case
we could also introduce

Jnew = LnewXnew , (2.13)

where Lnew denotes a phenomenological coefficient. As we are interested
only in an estimation of a range of X in which Xnew is nearly equal to X
we do not analyze Eq. (2.13) and properties of Jnew in this section. To
make this point clear, we additionally analyze the properties of Jnew , Xnew

and Lnew in the Appendix where we show that in the range of X, we are
interested in, the phenomenological coefficients L′ and L are equal.

It is also interesting that if cC = cD = 0 we can write

lim
A→+∞

Xnew =
c0
A
c0
B

ceq
A

ceq
B

= (1 +
√

K)2 , (2.14)

where c0
A

and c0
B

denote the initial concentrations of reactants A and B; K
is the thermodynamic equilibrium constant which for reaction (1.4) is

K =
ceq
C

ceq
D

ceq
A

ceq
B

=
xeq

C
xeq

D

xeq
A

xeq
B

, (2.15)

where xI(I = A,B,C,D) are the molar fractions.
Eq. (2.14) looks better than Eq. (1.15) because in this case the new force

is connected with concentration (not with 1 as in Eq. (1.15)). So, Eqs. (2.1)–
(2.5) introduced above seem to be reasonable. However, we think that the
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new force Xnew could have a practical value only if the ratio X/Xnew would
be nearer to 1 in a larger range of concentration (e.g., in a larger range of
the molar fraction of product xP) than the ratio X/XRM. We think that
comparisons of these ratios as a function of xP can be a reasonable way
of estimation of the concentration ranges in which the nonlinear force-flux
relation can be treated as a linear relation.

Eq. (2.9) can be also written in a form

Xnew =
cAcB

c0
A
c0
B

(1 +
√

K)2
[

1 − exp

(

−A

RT

)]

. (2.16)

It is worthwhile to observe that molar fractions can be expressed as
functions of K and the affinity A. After taking into account Eqs. (1.9),
(1.16), (1.21) and (2.15) we can simply derive

xA = xB =
0.5 exp(A/2RT )

√
K + exp(A/2RT )

. (2.17)

When the reaction proceeds A diminishes from infinity to 0 and for the
chemical equilibrium state Eq. (2.17) simplifies to

xeq
A

= xeq
B

=
0.5

1 +
√

K
. (2.18)

From Eqs. (1.14), (2.9), (2.15) and (2.17) we can obtain Xnew as the
following function of A and K:

Xnew = f(A,K) =
(1 +

√
K)2 exp(A/RT )[1 − exp(−A/RT )]

[
√

K + exp(A/2RT )]2
. (2.19)

From Eq. (2.19) it can be seen that in the beginning of chemical reaction

lim
A→+∞

Xnew = (1 +
√

K)2 , (2.20)

whereas for the final stages of chemical reaction, i.e., close to equilibrium

lim
A→+0

Xnew = XRM = X . (2.21)

Only in the limiting case when K = 0 Eqs. (2.20) and (1.15) give the same
result. However, if K is very large the force Xnew becomes very large too.
In the next sections we will analyze various chemical reactions for some
intermediate values of K, i.e., for 0.5 < K < 5. However, before such an
analysis, we will give definitions for a more general reaction.
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3. Description of a more general chemical reaction

In this section we show how to introduce the definitions and fundamental
formulas for the following chemical reaction

aA + bB ⇄ cC + dD (3.1)

which represents a generalization of Eq. (1.4). For this reaction we can also
use Eq. (1.6) but instead of Eq. (1.7) for this reaction we have

(vA)f = kf(cA)a(cB)b (vA)r = −kr(cC)c(cD)d . (3.2)

In this case the forces X , XRM and Xnew are (compare Eqs. (1.9), (1.11),
(1.14), (2.1)–(2.5)):

X =
aµA + bµB − (cµC + dµD)

RT
=

A

RT
, (3.3)

XRM = 1 − exp

(

−(aµA + bµB − cµC − dµD)

RT

)

, (3.4)

Xnew = (λre
A )a(λre

B)b − (λre
C )c(λre

D)d

= exp

[

a(µA − µeq
A

) + b(µB − µeq
B

)

RT

]

− exp

[

c(µC − µeq
C

) + d(µD − µeq
D

)

RT

]

. (3.5)

In the same way as for the reaction (1.4) we can show that for simple systems
in which Eq. (1.21) is used we can obtain

Xnew =

(

cA

ceq
A

)a( cB

ceq
B

)b

XRM . (3.6)

From Eq. (3.6) it follows that in the limiting case when cC = cD = 0 we can
write

lim
A→+∞

Xnew =

(

c0
A

ceq
A

)a(

c0
B

ceq
B

)b

. (3.7)

It can be simply shown that for the reaction (3.1) the phenomenological
coefficient L′ is a constant quantity

L′ = kf(c
eq
A

)a(ceq
B

)b . (3.8)

In the next sections we analyze some expressions — especially those for the
force Xnew for some simple reactions chosen.
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4. Analysis of properties of the new force for the reaction

A + B ⇄ C + D

In this section we analyze the reaction (1.4), i.e., A + B ⇄ C + D, in
a more particular way. As the concentration of product in the equilibrium
state depends on the thermodynamic equilibrium constant K we introduce
this constant into expression for Xnew. In order to do this we take into
consideration that in the chemical equilibrium state vA = 0 (see Eqs. (1.6))
and (1.7). After introducing

x = xP = xC = xD = 0.5 − xA = 0.5 − xB (4.1)

and using Eq. (2.15) we can write

K =

(

xeq

0.5 − xeq

)2

. (4.2)

After taking into account Eqs. (1.9), (1.11), (1.14), (1.21), (2.9), (2.15) and
(4.2) we can write down the following expressions for the forces for the
reaction analyzed

X =
A

RT
= ln

K(0.5 − x2)

x2
, (4.3)

XRM =
1 − x2

(0.5 − x)2K
, (4.4)

Xnew =

(

0.5 − x

0.5 − xeq

)2

XRM . (4.5)

It is worthwhile to observe that when the reaction proceeds the molar frac-
tion x can increase from 0 to xeq which as follows from Eq. (4.2) is

xeq =
0.5

√
K

1 +
√

K
. (4.6)

Only for a very large value of K this molar fraction can be near to 0.5. From
Eqs. (4.5) and (4.6) we get

Xnew

XRM

= 4

(

1 +
√

K

0.5 − x

)2

. (4.7)

From Eqs. (1.15) and (4.7) it follows

lim
x→0

Xnew = (1 +
√

K)2 . (4.8)
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It means that already in the very beginning of reaction the larger is K (which
corresponds to larger xeq) the larger Xnew is. For the phenomenological
coefficient L′ we can write

L′ = kf(c
eq
A

)2(ceq
B

)2 . (4.9)

Now, we analyze the different forces for this reaction to estimate also
their ratios. Fig. 1. shows the forces X, XRM and Xnew as a function of the
molar fraction of product x (denoted xP) for the reaction A + B ⇄ C + D
for various values of the thermodynamic constant K. Fig. 2. presents such
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Fig. 1. The forces X , XRM and Xnew for reaction A + B ⇄ C + D as a function of
the molar fraction of product x for four values of the thermodynamic equilibrium
constant K(K = 0.5, 1, 2, 5).

results for reaction CO2 + H2 ⇄ CO + H2O proceeding in temperatures 700
K and 1000 K. The values of K for this reaction are 0.534 and 0.719, re-
spectively [18]. Although in proceeding of such reactions also intermediate
reactions can appear, we concentrate on description of the total reaction
which we treat as the second order reaction because introduction of fluxes
connected with some intermediate reactions could be as tedious as the anal-
ysis of fluxes of associating components [19]. In the next three sections we
present the analysis of the other three reactions in the same way as we have
done in this section for the reaction A + B ⇄ C + D. In order to avoid
unnecessary repetitions and make this presentation in a clear way we in-
troduce the same numbers for the expressions for the same quantities, e.g.,
Eqs. (4.5), (5.5), (6.5), (7.5) are expressions for the force Xnew, whereas
Eqs. (4.7), (5.7), (6.7), (7.7) — for the ratios of forces Xnew and XRM for
the appropriate reactions.
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Fig. 2. The forces X , XRM and Xnew for reaction CO2+H2 ⇄ CO+H2O proceeding
in temperatures 700 K and 1000 K as a function of x.

5. Analysis of forces for reaction A + A ⇄ B + B

It is worthwhile to observe that numerous analysis of nonequilibrium
effects have been performed within kinetic theory of reacting gases for this
reaction [20–28]. We are interested, however, in such expressions as those
presented in Section 4 only. We write down the appropriate equations in the
same order as those in Section 4.

x = xP = xB = 1 − xA , (5.1)

K =

(

xeq

1 − xeq

)2

. (5.2)

The expressions for the forces are

X =
A

RT
= ln

K(1 − x)2

x2
, (5.3)

XRM = 1 −
x2

(1 − x)2K
, (5.4)

Xnew =

(

1 − x

1 − xeq

)2

XRM . (5.5)

It can be also simply shown that

xeq =

√
K

1 +
√

K
. (5.6)

Therefore, we have
Xnew

XRM

= [(1 +
√

K)(1 − x)]2 (5.7)
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and
lim
x→0

Xnew = (1 +
√

K)2 . (5.8)

For the phenomenological coefficient L′ we can write

L′ = kf(c
eq
A

)2 . (5.9)

Fig. 3 shows the forces X, XRM and Xnew for the reaction A + A ⇄ B + B.
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0
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5210.5
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 X

RM

 X
NEW

F
or
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Fig. 3. The forces X , XRM and Xnew for reaction A + A ⇄ B + B represented in
the same way as in Fig. 1.

6. Analysis of forces for reaction A + A ⇄ B + C

The corresponding 9 equations for this reaction are:

x = xP = xB = xC = 0.5(1 − xA) , (6.1)

K =

(

xeq

1 − 2xeq

)2

, (6.2)

X =
A

RT
= ln

K(1 − 2x)2

x2
, (6.3)

XRM = 1 −
x2

(1 − 2x)2K
, (6.4)

Xnew =

(

1 − 2x

1 − 2xeq

)2

XRM , (6.5)

xeq =

√
K

1 + 2
√

K
, (6.6)
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Xnew

XRM

= [(1 + 2
√

K)(1 − x)]2 , (6.7)

and

lim
x→0

Xnew = (1 + 2
√

K)2 , (6.8)

L′ = kf(c
eq
A

)2 . (6.9)

In Fig. 4. we present the results for reaction HI+HI ⇄ H2 +I2 discussed
by Glansdorf and Prigogine [7] in analysis of Eqs. (1.12) and (1.13). We have
introduced for this reaction proceeding in temperature 900 K the equilibrium
constant K = 0.02292 [17].

0,06 0,08 0,10 0,12
0,0

0,5

1,0

1,5

2,0

 A/RT
 X

RM

 X
NEW

F
or

ce
s

X
P

Fig. 4. The forces X , XRM and Xnew for reaction HI + HI ⇄ H2 +I2 proceeding in
temperature 900 K.

7. Analysis of forces for reaction A ⇄ B

Naturally, the corresponding expressions for this reactions are very sim-
ple. We present them below

x = xP = xB = 1 − xA , (7.1)

K =
xeq

1 − xeq
. (7.2)

For the forces we have

X =
A

RT
= ln

K(1 − x)

x
, (7.3)

XRM = 1 −
x

(1 − x)K
, (7.4)

Xnew =

(

1 − x

1 − xeq

)

XRM . (7.5)
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We can also write

xeq =
K

1 + K
. (7.6)

From Eqs. (7.5) and (7.6) it follows

Xnew

XRM

= (1 + K)(1 − x) (7.7)

and

lim
x→0

Xnew = 1 + K (7.8)

L′ = kfc
eq
A

. (7.9)

In Fig. 5. the forces for reaction A ⇄ B are presented in the same way as
in Fig. 1.
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Fig. 5. The forces X , XRM and Xnew for reaction A ⇄ B represented in the same
way as in Fig. 1.

8. Discussion

Basing on concepts presented in Section 2 we have introduced the force
Xnew for some typical reactions (see Eqs. (2.9), (2.19), (3.5), (3.6), (4.5),
(5.5), (6.5), (7.5)) and compared with the force XRM introduced by Ross
and Mazur (see Eqs. (1.14), (4.4), (5.4), (6.4), (7.4)) as well as with the
dimensionless affinity X = A/RT (see Eqs. (4.3), (5.3), (6.3), (7.3)). For
the molar fraction of product x slightly differing from its equilibrium value
xeq (i.e., in the final stages of chemical reaction) the force Xnew coincides
with the forces XRM and X = A/RT . However, for larger values of xeq − x
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we can see that with a decrease of x : (1) the force X increases very quickly
and for x → 0 the force X → ∞; (2) the force Xnew also increases but to
a finite value only; (3) the force XRM cannot exceed 1, i.e. its increase is
very limited. The increase of Xnew with decrease of x can be much more
pronounced than such an increase of XRM. As it can be seen from Eqs. (4.8),
(5.8), (6.8) and (7.8) Xnew can be larger than 1 if only K is not equal to 0,
i.e., for every chemical reaction. The force Xnew is an increasing function
of K (see, e.g., Eqs. (4.7)–(4.8)). This seems to be reasonable because the
larger is the distance from 0 to xeq the larger the force Xnew is.

Analyzing the reaction (1.4) we can see that the force Xnew has the

largest value (1 +
√

K)2 in the beginning of the chemical reaction (see, e.g.
(2.16)), i.e., for cA = c0

A
and cB = c0

B
. But when the reaction proceeds

cA < c0
A
, cB < c0

B
and also 1 − exp(−X) becomes smaller than 1. In

result Xnew diminishes step by step from (1 +
√

K)2 to 0. For cA and cB

approaching to ceq
A

and ceq
B

, respectively, the value of Xnew is nearly equal
to that of X. The less a force differs from the thermodynamic force X the
better. That is why comparisons of the ratios X/XRM and X/Xnew are
important. From figures and equations presented in this paper it can be
seen that in some ranges of x the ratio X/Xnew can differ from 1 relatively
only a little (e.g., 10%). For the ratio X/XRM such ranges of x are distinctly
smaller. The force X quickly increases with a decrease of x and this is why
X/XRM increases very quickly with the decrease of x too.

From Fig. 1 and results which can be obtained from Eqs. (4.3)–(4.5)
we see that for the reaction A + B ⇄ C + D the ranges of x in which
the forces Xnew and X differ less than 10% are: (a) 0.15 < x < 0.205 for
K = 0.5, (b) 0.12 < x < 0.25 for K = 1, (c) 0.05 < x < 0.29 for K = 2,
(d) 0.310 < x < 0.345 (in the range 0.05 < x < 0.310 the results are
worse but still not exceeding 32%) for K = 5. The values of X/XRM are
significantly larger than those of X/Xnew in the ranges of x mentioned above
(in (a), (b), (c), (d)), i.e., the corresponding maximum values of X/XRM

are: (a) 1.56 (these forces differ 56% instead of 10% mentioned above), (b)
2.56, (c) even 5.12, (d) 1.33 (for 0.05 < x < 0.310 even about 500% instead
of 32% mentioned above).

Naturally, such an advantage of introduction of the force Xnew can be
also seen in Fig. 2 for the reaction CO2 + H2 ⇄ CO + H2O proceeding in
700 K and 1000 K (represented by the equilibrium constant K = 0.534 and
K = 0.719, respectively [18] . From Fig. 3 we see that also for the reaction
A + A ⇄ B + B the forces X and Xnew differ visibly less than the forces X
and XRM. If we were interested in ranges of x in which the forces X and
Xnew differ less than 10% we would see in Fig. 3. (basing on results obtained
from Eqs. (5.3)-(5.5)) the the following ranges of x: (a) 0.307 < x < 0.414
for K = 0.5, (b) 0.25 < x < 0.5 for K = 1, (c) 0.092 < x < 0.585 for K = 2,
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(d) 0.628 < x < 0.691 for K = 5. It should be emphasized that in these
ranges of x we would have much larger differences between the forces X and
XRM. We could observe, for the ranges of x presented above (in (a), (b),
(c), (d)) the following maximum values of ratios X/XRM: (a) about 1.5,
i.e., corresponding to a difference between these forces equal to about 50%,
(b) about 2.5, (c) about 4.25, (d) about 1.3 . All these ratios correspond to
differences between the forces X and XRM visibly larger than 10%. Similar
advantages of introduction of Xnew instead of XRM can be easily seen in
Fig. 4. for the reaction HI + HI⇄ H2 + I2 and also in Fig. 5 for reaction
A ⇄ B.

It can be shown that for the reaction A ⇄ B the relation between the
phenomenological coefficient L and the forward reaction rate constant kf (see
Eq. (7.9)) is equivalent to such a relation presented by Baranowski [6] for a
very small A. To see this equivalence it is sufficient to take into consideration
that for A ≪ RT the concentrations of product cB and ceq

B
are nearly equal.

For the reaction aA + bB ⇄ cC + dD the phenomenological coefficient L is
a constant quantity related to the forward rate constant and concentrations
of reactants in equilibrium (see Eq. (3.8)). The expression for the coefficient
L (for concentrations near to those in the equilibrium) has a similar form
to that presented by De Groot and Mazur [2]. However, as we have used
the dimensionless force X (see the forces in Eqs. (1.16) and (1.19)) we have
introduced the constant 1/R not in the coefficient L but in the force.

The force XRM introduced by Ross and Mazur is the simplest and rea-
sonable generalization of the force X = A/RT to a nonlinear function of X
(see Eqs. (1.13) and (1.14)) which is in agreement with equations of chem-
ical kinetics. The introduction of such a nonlinear function of X by these
authors means that the force-flux relation for chemical reaction is nonlinear.
As XRM → X for a very small X it follows that in this case XRM can be
treated as a linear function of X and the formalism of LNT can be used for
a very small X only. As shown in this paper it is possible to introduce the
force Xnew which is a function of X and K (see (2.19)). This new function is
also in agreement with equations of chemical kinetics and is also a nonlinear
function of X. It means that the force-flux relation, after introduction of
Xnew is nonlinear too. We are interested, however, in the ranges of X in
which Xnew (introduced on the basis on simple chemical kinetics equations)
is nearly equal to the force X (derived by Prigogine within the formalism of
linear nonequilibrium thermodynamics). If only the difference between Xnew

and X is small a description of proceeding of a chemical reaction in a form
of a linear phenomenological equation can be treated as a sufficient approx-
imation. Naturally, in a very small range of x near to the equilibrium value
xeq the force Xnew coincides with the forces XRM and the thermodynamic
force X. We have introduced the new force Xnew and shown that the range
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of the molar fraction of the product x near to the chemical equilibrium state
(for which Xnew is nearly equal to X) is distinctly larger than such a range
corresponding to XRM nearly equal to X. It means that using the results
presented in this paper we can expect that the linear force-flux relation can
be treated as a sufficient approximation in a wider range of X than assumed
earlier. We see that in the results presented in Figs. 1–5. we have verified a
property for X/Xnew which we have expected.

We would like to emphasize that we have introduced the new force Xnew

basing on two concepts: (i) we looked if the difference between introduced
by Fowler and Guggenheim absolute activities, after the modification intro-
duced in this paper, can be treated as a force. As the modification we have
replaced the chemical potential in the absolute activity by the difference of
thermodynamic potential and its equilibrium value. (ii) We looked if such
a force can be derived from the equations of chemical kinetics. We have got
a positive result in both the cases. It should be emphasized that Okunev
and Parmon [14,15] also performed a kind of a joint thermodynamic-kinetic
analysis. The force XOP introduced by Okunev and Parmon is also con-
nected with absolute activities but not with the reactive absolute activities
introduced by us. That is why the force XOP even for very small values of
A/RT is not equal to XRM but “nearly” proportional only. Naturally, the
forces XOP are very convenient for analysis of few simultaneous reactions
necessary to describe catalytic processes. In an analysis of parallel catalytic
reactions such as, e.g., A ⇄ B, A ⇄ C Parmon and Okunev [29] have intro-
duced the forces λA −λB and λA −λC (see Eq. (1.17)). Those authors have
shown that in a description of cross effects for such reactions the Onsager
relations are fulfilled. We do not analyze the parallel reactions in this paper.
We have concentrated in this paper only on the range of the molar fraction
of product in which the forces Xnew and X are nearly equal. We expect that
in such a concentration range the properties of the forces X and Xnew should
be the same. Therefore, as the Onsager relations are fulfilled for the forces
X (see, e.g., Ref. [2]) they would be also fulfilled for the forces Xnew (for
parallel chemical reactions) for the concentration range enlarged similar to
that analyzed in this paper. Particular analysis of parallel reactions would
be tedious similarly as our analysis of the effect of compound formation on
diffusion and self-diffusion fluxes [19].

The most important results obtained in this paper are:

1. The force Xnew which follows from the chemical kinetics is equal to the
difference between reactive absolute activities for chemical reaction for
reactants and products.

2. The force Xnew coincides with the reduced affinity X = A/RT (i.e.,
with the force introduced by De Donder and also derived by Prigogine
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within the formalism of LNT) in a fairly large range of the molar
fraction of product x in the vicinity of the value of x = xeq in chemical
equilibrium.

3. This range is larger than such a range obtained from the force XRM =
1−exp(−A/RT ) introduced by Ross and Mazur as the driving force of
chemical reaction. In the limiting case of chemical equilibrium state,
i.e., for x near to xeq, the forces Xnew, XRM and A/RT coincide.

4. For some chemical reactions the range of x ( near to x = xeq) in which
Xnew is, in fact, nearly equal to A/RT is fairly large, i.e., limited to
not too large affinity instead of a very small affinity.

5. It means that the forces for chemical reaction suggested by de Donder
and derived by Prigogine (for small affinities, i.e., for x near to xeq) can
be used in larger ranges of concentration than expected after looking
at the force XRM = 1 − exp(−A/RT ) only. This is in agreement
with general concepts of Ross and Mazur [2, 7] based on analysis of
the source of entropy. Those authors have analyzed this problem very
thoroughly, however, have introduced a force depending only on the
affinity A without taking into consideration the equilibrium constant
K. The force Xnew introduced in this paper is a function of A and K.

6. As the force Xnew is represented by a simple analytical expression it
can be helpful in an evaluation of the possible concentration range in
which the linear phenomenological equation for a particular chemical
reaction analyzed can be valid.

7. It means that if we base on the chemical kinetics equations we see that
the formalism of linear nonequilibrium thermodynamics, also in a case
of the scalar thermodynamic force, can be used not only in limited
case in which the chemical reactions (analyzed in this article) proceed
very close to the chemical equilibrium state. So, as a conclusion we see
that similarly as in the other transport phenomena (energy relaxation,
transport of mass, transport of energy, transport of momentum, an so
on — connected with appropriate vector and tensor forces), also in the
case of some chemical reactions limitation to a very small thermody-
namic force is not necessary.

8. It should be emphasized that a relatively good agreement (for a wide
range of concentration) of the force Xnew (based on chemical kinetics
equations and equivalent to modifications of Fowler’s and Guggen-
heim’s definition of the absolute activity) with the force used by De
Donder and derived by Prigogine also confirms the conclusion pre-
sented above.
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9. It is also important that the introduction of the force Xnew permits
to see that the phenomenological coefficient L does not depend on
the molar fraction of product (see the analysis in the Appendix and
Eqs. (2.11), (3.8), (4.9), (5.9), (6.9), (7.9)). As shown in the Ap-
pendix, in the range of X in which Xnew is nearly equal to X the
phenomenological coefficients L and L′ are nearly equal; an analysis of
a complicated expression for the “conjugate” flux Jnew following from
the invariance of entropy production permits to see that Jnew is nearly
equal to J in this case. It should be emphasized that the force Xnew

has been introduced mainly to see that the linear relation J = LX
does not need to be limited to a very small X.

Just to summarize, we have defined the new force Xnew for chemical
reaction in which the role of chemical equilibrium state is emphasized. For
this purpose we have defined the reactive absolute activity for chemical re-
action in a similar way as Fowler and Guggenheim defined the absolute
activity. We have obtained kinetic equation in a form analyzed by Prigogine
and Glansdorff. For elementary chemical reactions, we have compared the
force Xnew with dimensionless affinity X = A/RT (based on De Donder’s
concept) and with the driving force of chemical reaction of Ross and Mazur
XRM = 1 − exp(−X). According to a general analysis of Ross and Mazur
the linear phenomenological equation for chemical reaction can be used in
a limited range of affinity and the new force introduced in this paper may
be helpful to estimate this range of affinity. We have shown that for some
chemical reactions not only near to chemical equilibrium the forces Xnew,
X and XRM coincide but also the ratio X/Xnew is near to 1 in a relatively
larger range of molar fraction of product than it could be expected for the
ratio X/XRM. It means that basing on equations of statistical thermody-
namics and chemical kinetics we can expect that the formalism of linear
nonequilibrium thermodynamics could be used for description of proceeding
of some chemical reactions in wider ranges of the molar fraction of product
than it was expected before the analysis of the new force introduced in this
paper.
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from Warsaw University of Technology, Faculty of Mathematics and Infor-
mation Science for a help in some final computer evaluations and editorial
preparation of the paper.
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Appendix A

For the sake of simplicity we analyze the flux–force relations for the
reaction (1.4) only because for the other chemical reaction the way of arguing
would be the same. As it follows from the invariance of entropy production
the following condition must be fulfilled

JX = JnewXnew . (A.1)

Basing on this condition and Eq. (2.17) we can obtain

Jnew =
JX

Xnew

= J
X[

√
K + exp(X/2)]2

(1 +
√

K)2 exp(X)[1 − exp(−X)]
. (A.2)

From Eqs. (2.10) and (2.12) we can get

L =
L′Xnew

X
. (A.3)

From Eqs. (2.13), (A.2), (2.12) and (A.3) we can derive

Lnew =
Jnew

Xnew

=
JX

X2
new

=
LX2

X2
new

=
L′Xnew

X
. (A.4)

If only X is small enough we can obtain from Eqs. (A.2), (A.3) and (A.4)

lim
X→0

Jnew = J , (A.5)

lim
X→0

L = L′ , (A.6)

lim
X→0

Lnew = L′ . (A.7)

The property
lim
X→0

Xnew = X (A.8)

has been widely analyzed and discussed in this paper for various reactions.
It should be emphasized that in the range of X in which Xnew is nearly equal
to X the quantities Jnew and Lnew are nearly equal to J and L , respectively.
For such a range of X the linear phenomenological equation, i.e., Eq. (2.12)
can be used. For us it is only important that the range of X in which Xnew

is nearly equal to X is larger than the range of X in which [1 − exp(−X)]
is nearly equal to X. The force Xnew is introduced for a case in which the
flux–force relation is nonlinear only as a helpful tool to analyze the range of
X for which a linear phenomenological equation is a sufficient approximation
in description of a chemical reaction.
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