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(Received December 27, 2004)

Dedicated to Professor Andrzej Fuliński on the occasion of his 70th birthday

In this study, a comprehensive view of a model crystal formation in
a complex fluctuating medium is presented. The model incorporates Gaus-
sian curvature effects at the crystal boundary as well as the possibility for
super-diffusive motion near the crystal surface. A special emphasis is put on
the finite-size effect of the building blocks (macroions, or the aggregates of
macroions) constituting the crystal. From it an integrated static–dynamic
picture of the crystal formation in terms of mesoscopic nonequilibrium ther-
modynamics (MNET), and with inclusion of the physically sound effects
mentioned, emerges. Its quantitative measure appears to be the overall dif-
fusion function of the formation which contains both finite-size curvature-
inducing effects as well as a time-dependent super-diffusive part. A quite
qualitative agreement with experiments, mostly those concerning investiga-
tions of dynamic growth layer of (poly)crystalline aggregation, exemplified
by non-Kossel crystals and biomolecular spherulites, has been achieved.

PACS numbers: 05.20.Dd, 05.40.–a, 05.60.Cd, 05.70.Ln

∗ Presented at the XVII Marian Smoluchowski Symposium on Statistical Physics,
Zakopane, Poland, September 4–9, 2004.

(1537)



1538 A. Gadomski et al.

1. Introduction

The present study is devoted to modeling a formation of a soft (ordered)
material known as the non-Kossel crystal [1], as well as to propose how to
model a polycrystalline aggregate termed the soft-matter spherulite [2]. The
approach we are exploring throughout this paper assumes that the system
of interest is a mesoscopic system [3], by its nature combining both classical
and quantum-mechanical properties, though we are offering here a descrip-
tion based on nonequilibrium statistical thermodynamics, taken suitably at
a mesoscopic (molecular cluster) level [4], i.e. a classical limit of the ap-
proach can preferentially be exploited [5].

In general, examples of soft materials include biopolymers and charged
polymer solutions, protein/membrane complexes, colloidal suspensions, gels,
nucleic acids and their assemblies, to mention but a few. Most forms of
condensed matter, except of metals and ceramics (perhaps) [6], are soft
and these substances are composed of aggregates and macromolecules, with
interactions that are too weak and complex to form crystals spontaneously;
therefore, the task of how to grow crystals in complex environments still
remains a real challenge [7].

Thus, the phrase “soft condensed matter” has been coined, also for the
clear reasons mentioned below. First, a striking feature is that slight per-
turbations in temperature, pressure or concentration, or small (piconew-
ton) external forces, can all be enough to essentially induce microstructural
changes. Second, thermal fluctuations are almost by definition pronounced
in soft materials, and in consequence, entropy is a privileged determinant of
a soft microstructure formation, so that disorder, slow dynamics and kinet-
ics, and plastic deformation are the rules [8]. Although soft materials have
attracted engineers for ages, only recently have physicists taken an inter-
est in such materials, and attempted to implement what is the essence of
physics, that is to produce, at various levels of description, simple models
that include the possible minimum information required to explain relevant
features, cf. an example concerning proteins [9].

Nowadays, especially with the advent of single molecule spectroscopies
are we managing to get quantitative data on things such as aggregation (and
folding) effects in complex biomolecular environments, motion of molecular
motors [10], electron and proton transfer rates [11], etc., that are sufficiently
reliable to formulate and test simple models. The availability of new exper-
imental tools and simulation capability are urging physicists to apply their
methods to structural biology, i.e. to allow the prediction of structure on
the basis of known microscopic forces.

A key issue is the fact that the environments in which a formation of the
soft material happens are characteristic of pronounced spatial variations in
dielectric constant, e.g. water and lipids [12]. It is of major importance to
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realize that competition between interactions of different ranges results in
different types of aggregation of molecules. The starting point should thus
be about a discussion of the relative role of the various fundamental inter-
actions in such systems (electrostatic, hydrophobic, conformational, steric,
van derWaals, etc.), and what is their real impact on the aggregation of pos-
sibly ordered (crystal formation) and/or disordered types. The next focus
could be on how these competing interactions influence the form (and, topol-
ogy) of soft and biological matter, like biopolymers and proteins, leading to
self-assembling systems of the type listed above [13].

In the underlying study, let us propose a way of modeling the soft mat-
ter objects named non-Kossel crystals [7], and in part also the biopolymeric
spheroidal polycrystals, commonly termed spherulites. The way that we
have chosen to achieve the above stated goal is based on the assumption
that the biomolecular system, generally out of equilibrium, can be best de-
scribed at a mesoscopic level, using the conception of mesoscopic nonequi-
librium thermodynamics (MNET) [14], Sec. 2. In Secs. 3 and 4, we will
offer the thermodynamic-kinetic description of the soft material formation
first by introducing its deterministic part (Sec. 3), and second, by going to
its stochastic, no doubt, more interesting part (Sec. 4). In the determinis-
tic part, we wish to place our emphasis on an unquestionable basis of each
soft material formation, namely, how does the material formation depend
upon the boundary effect, being typically curvature-dependent, and having
also, in the case of spherulites, a nonequilibrium kinetic account readily in-
volved in the overall process. In the stochastic part, in turn, we are lucky
to support our mesoscopic view by a microscopic picture of a sub-process,
essentially limiting the model material formation in the crystal boundary
layer [15]. Here, we have in mind the physical fact that the growth of the
objects that we model can thoroughly be controlled by the macroion veloc-
ity field of the crystal ambient phase nearby its interface with the growing
crystal. Since it may lead to some very interesting physical consequences,
e.g. a time-dependent viscosity effect [16] (Sec. 4), we are going to exploit
this experimentally justified observation [17] in a sufficient detail, looking at
the macroion finite-size effect (FSE)1, and its impact on the overall crystal-
lization process seen as a combination of static (curvature-oriented) and dy-
namic (constrained motion-oriented) effects in the crystal’s growth layer [15].
Concluding address, contained in Sec. 5, closes the paper.

1 In our approach FSE readily assigned to a macroion, will be emphasized twofold.
First, it enters the nonequilibrium boundary condition of modified Gibbs–Thomson
type (Sec. 3). Second, it is involved in the change of viscosity near the crystal versus

surroundings interface, the so-called size-dependent viscosity effect, cf. Sec. 4. Thus,
the FSE is proposed to be a bridge between stochastic and deterministic parts of
the approach. It will, for example enter the overall diffusion function of the complex
crystal formation, D(R, t), see Sec. 4.
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2. MNET and its application to nucleation

and growth phenomena

Mesoscopic nonequilibrium thermodynamics (MNET) provides a general
framework from which one can study the dynamics of systems defined at the
mesoscale [14,18], and has been applied to analyze different irreversible pro-
cesses taking place at those scales [4]. The formulation of the theory is based
on the fact that a reduction of the observational time and length scales of a
system usually entails an increase in the number of degrees of freedom which
have not yet equilibrated and that, therefore, exert an influence on the over-
all dynamics of the system. Those degrees of freedom γ (≡ {γi}) may for
example represent the velocity of a particle, the orientation of a spin, the
size of a macromolecule or any coordinate or order parameter whose val-
ues properly define the state of a mesoscopic system in a phase space. The
characterization of the state of the system essentially relies on the knowl-
edge of P (γ, t), the probability density of finding the system at the state
γ ∈ (γ, γ + dγ) at time t. One can then formulate the Gibbs entropy postu-
late [8, 19] in the form

S = Seq − kB

∫

P (γ, t) ln
P (γ, t)

Peq(γ)
dγ . (1)

Here Seq is the entropy of the system when the degrees of freedom γ are
at equilibrium. If they are not, the contribution to the entropy arises from
deviations of the probability density P (γ, t) from its equilibrium value Peq(γ)
given by

Peq(γ) ∼ exp

(

−∆W(γ)

kBT

)

, (2)

where ∆W ≡ ∆W(γ) is the minimum reversible work required to create
that state [20], kB is Boltzmann’s constant, and T is the temperature of the
heat bath. Variations of the minimum work for a thermodynamic system
are expressed as

∆W = ∆E − T∆S + p∆V − µ∆M + σ∆Σ + . . . , (3)

where (using a standard notation) extensive quantities refer to the system
and intensive ones to the bath. The last term represents the work performed
on the system to modify its surface Σ, whereas σ stands for the surface
tension.

To obtain the dynamics of the mesoscopic degrees of freedom one first
takes variations in Eq. (1)

δS = −kB

∫

δP (γ, t) ln
P (γ, t)

Peq(γ)
dγ (4)

focusing only on the non-equilibrated degrees of freedom.
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The probability density evolves in the γ-space according with the conti-
nuity equation

∂P (γ, t)

∂t
= −

∂J(γ, t)

∂γ
, (5)

where J(γ, t) is an unknown probability current. To obtain its value, one
proceeds to derive the expression of the entropy change, dS/dt, which follows
from the continuity equation (5) and the Gibbs equation (4). After a partial
integration, one then arrives at

dS

dt
= −

∫

∂

∂γ
JS dγ + σe , (6)

where JS = J(γ, t) ln P (γ,t)
Peq(γ) is the entropy flux and

σe = −kB

∫

J(γ, t)
∂

∂γ

(

ln
P (γ, t)

Peq(γ)

)

dγ , (7)

is the entropy production which is expressed in terms of currents and con-
jugated thermodynamic forces defined in the space of mesoscopic variables.
We will now assume a linear dependency between fluxes and forces and
establish a linear relationship between them

J(γ, t) = −kBL(γ)
∂

∂γ

(

ln
P (γ, t)

Peq(γ)

)

, (8)

where L ≡ L(γ) is an Onsager coefficient, which depends on the mesoscopic
coordinates γ; in general, it also depends on the state variable P (γ, t). To
derive this expression, locality in γ-space has also been taken into account,
for which only fluxes and forces with the same value of γ become coupled.

The resulting kinetic equation then follows by substituting Eq. (8) back
into the continuity equation (5)

∂P (γ, t)

∂t
=

∂

∂γ

(

D(γ, t)P (γ, t)
∂

∂γ
ln

P (γ, t)

Peq(γ)

)

, (9)

where we have defined the diffusion coefficient as D(γ, t) ≡ kBL(γ)/P (γ, t).
This equation, which in view of Eq. (2) can also be written as

∂P (γ, t)

∂t
=

∂

∂γ

(

D(γ, t)
∂P (γ, t)

∂γ
+

D(γ, t)

kBT

∂∆W

∂γ
P (γ, t)

)

, (10)

is the Fokker–Planck equation accounting for the evolution of the probability
density in γ-space.
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2.1. Nucleation processes

The expression of the nucleation rates can be obtained from the proposed
formalism [5]. To this purpose one has to interpret the nucleation (or in
general any activated process) as a diffusion process along the mesoscopic
coordinate describing the state of the system, the embryos, at short time
scales in between the metastable and the crystal phases. The reaction rate
or diffusion current can be written in terms of the fugacity z ≡ exp µ/kBT
as

J(γ, t) = −kBL
1

z

∂z

∂γ
. (11)

The current can also be expressed as

J(γ, t) = −D(γ, t)
∂z

∂γ
, (12)

where D(γ, t) = kBL/z represents the diffusion coefficient. As a first ap-
proximation we assume that D(γ, t) = D = const. and integrate from the
initial to the final position, obtaining

J ≡

µ2
∫

µ1

Jdγ = −D (z2 − z1) = −D

(

exp
µ2

kBT
− exp

µ1

kBT

)

. (13)

This equation can alternatively be expressed as

J = J0

(

1 − eA/kBT
)

, (14)

where J is the integrated rate, J0 = D exp(µ1/kBT ) and A = µ1 −µ2 is the
affinity. We have then shown that a mesoscopic thermodynamic analysis may
lead to the formulation of the nonlinear kinetic laws governing nucleation
processes. Nucleation processes in which the embryos are embedded in an
inhomogeneous bath can also be studied by means of the theory proposed [5].

2.2. Agglomeration and growth processes

MNET can in general be used to study kinetic processes taking place
in mesostructures such as the nanostructure arrays [21]. The size of these
structures is in between those of single particles and macroscopic objects.
They carry out assembling (clustering) and impingement (pattern forma-
tion) processes. They may also diffuse in a thermal bath, be convected by
external flow and be affected by external driving forces as those acting in
extrusion, shearing, injection processes involved in the mechanical process-
ing of a melt. The growth rate of the agglomerates can be determined by
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the formalism previously presented in which the mesoscopic variable is the
volume of the grain. One formulates the Gibbs entropy postulate in terms of
the probability density P (v, t), where now the degree of freedom γ is v the
volume of the grain or molecular cluster. Proceeding as indicated previously
one obtains the growth rate

J(v, t) =
L(v)

TP (v, t)

[

kBT
∂P (v, t)

∂v

+ P (v, t)
∂Φ

∂v

]

. (15)

Interpreting Φ as an entropic potential [22] and assuming that the volume-
dependent Onsager coefficient L(v) follows a power law of the type v

δ, where
δ = 1− 1/d, with d the dimension of the system, one obtains the expression
of the rate [18, 22]

J(v, t) = −σav
δ−1P (v, t) − Dav

δ ∂P (v, t)

∂v

, (16)

where σa and Da are reference constants [18]. This expression constitutes
the Louat–Mulheran–Harding (LMH) law [23] proposed heuristically by as-
suming that the drift is due to surface tension effects, considering only the
mean curvature. The procedure can be generalized to the case in which the
Gaussian curvature is important which occurs at small sizes of the grains [22].

In the offered modeling we would explore another degree of freedom
which is R, the radius of a molecular cluster or a crystal. It appears naturally
in the modeling being of the form of Fokker–Planck type [1].

2.3. An example: 2D modeling of a crystal growth in complex environment
and its MNET features

A multigrain growth has also been considered as a discretized process in
terms of MNET in both space and time domains [6]. The model is meso-
scopic in the sense that each cell can contain (i) a liquid unit of phase l,
(ii) a crystal unit, (iii) a small particle embedded in some melt or (iv) a solid
large particle. Initially, each cell of the lattice contains either a large particle
with some probability Pl, or a small particle embedded in some liquid l with
a probability Ps, or a liquid unit with a probability 1 − Pl − Ps. Nucle-
ation is induced by simultaneously turning a number n of cells into initial
solid units, supposed to be randomly dispersed in the initial melt. Since
the process occurs over long time scales, thermodynamic (i.e. equilibrium-
like) quantities can be mapped into multigrain growth probability rules, as
follows. At each growth step, all i cells containing some liquid phase, i.e.
l-cells and cells with a small particle, in contact with mesoscopic cells are
selected. The probability Pi to grow the phase on the cell i is given by a clas-
sical thermodynamic argument as Pi ∼ exp(−∆Gi/kBT ), where ∆Gi is the
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gain of free energy. Usually, it can be decomposed into two terms: a bulk
contribution depending on the driving force and a local surface contribution
which is proportional to a chemical bond energy Eb, cf. Eq. (3).

The algorithm on which the discrete modeling is based, combines a mech-
anism for pushing and/or trapping of particles, a chemical reaction, and
crystal growth kinetics. The model is an adapted Eden model [24]. The
change in energy enters in the Boltzmann factor, cf. Eq. (2). It is con-
sidered to be anisotropic and depending on the number of neighbors. This
leads to rugged surfaces and facets. Moreover, interaction with unreac-
tive, or reactive particles has been considered as in the theory of particle
trapping or displacement along growing interfaces, elaborated by Uhlmann
et al., and called the UCJ model [25]. The particles are trapped or pushed
by the mobile solid/liquid interface depending on (i) the surface tensions at
solid/liquid and particle/liquid interfaces, (ii) the particle (impurity) size
and (iii) the growth velocity of the solidifying front. (A similarity between
the UCJ and what we have proposed in Sec. 4 has to be noticed, cf. Fig. 3
therein.) For a fixed particle size (see, the FSE effect involved in the mod-
eling presented in Secs. 3 and 4), the particles are supposed to be trapped
by the front if the growth velocity of the interface is higher than a critical
value, a physical situation that suits perfectly our type of modeling. This
critical value is controlled by the particle size and the interfacial tension
energies [25].

Since, while growing the phase in an entropic milieu, the bulk contribu-
tion is roughly constant in the system for isothermal conditions, only the
local surface contribution is needed for measuring the probability of growth,
i.e. Pi ∼ exp(−gnnNi) where Ni is the number of nearest-neighboring (nn)
units belonging to the same grain and gnn = Eb/kBT . This expresses an
anisotropic locally preferred kinetic growth along the main directions. For
high positive values of gnn, square-like grains are growing [26]. For large gnn,
smooth grain faces are obtained.

From a kinetic point of view, it is accepted that the grains grow anisotrop-
ically with a four-fold symmetry along the a−b planes, the edges of the grains
being oriented along the (10) and (01) crystallographic directions. This has
been implemented in the choice of the parameter value gnn.

In order to simulate best the chemical reaction process, the mesoscopic
cells for which the nearest and next-nearest neighbors do not contain any
particle are excluded from the growth cell selection. Indeed, the growth of
the phase on these mesoscopic cells is assumed to be improbable because of
the local deficiency of the basic component around these cells. Taking into
account the probabilities Pi of all possible growing cells, one specific growth
site is randomly selected.
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The simulations [6,24,26] put into evidence the effect of the particle (no
matter whether a “domestic” or testing particle, or some impurity particle)
size distribution itself on the resulting microstructure, which is of special
interest of the underlying study. Even though, the MNET-based model
considers only two different particle (impurity) sizes, the model predicts
that the refining of the impurity particles leads to better samples. It should
also be underlined that a discrete MNET-oriented modeling can be thought
of as a useful working extension of many of its continuous versions [14,18,22].

Some extension from 2D to 3D is rather straightforward but not too
trivial: Just as difficult as going in any simulation of Eden-type systems
when counting sites during spreading must be done with care, see [24] and
references therein.

3. Deterministic part of the approach to a sphere growth

controlled by mass-convective fluctuations:

the role of curvatures and nonequilibrium boundary effects

In this section, we consider two physically relevant cases of the bound-
ary condition (BC) prescribed for the growing, e.g. protein (non-Kossel2),
spherical crystal. In the first case, we propose an essential modification of
the curvatures’ contribution to the BC. This includes the Gaussian curva-
ture. This condition is of equilibrium type. In the second case, we propose
“Goldenfeld-type” condition [27] which is of nonequilibrium type. In the
equilibrium case we would like to offer a more detailed analysis, whereas
in the nonequilibrium case, because the analytic solution to the problem
cannot be found, we only discuss the asymptotic limit in a brief way.

Let us assume that initially at t = 0 the growing object is an ideal sphere
of radius R0 and the density of the sphere is C. At time t > 0 the radius
of the growing sphere is equal to R = R(t). From the mass conservation
law [12] an evolution equation that gives the speed of the spheroidal crystal
formation arises, and looks as follows

dR

dt
=

cs(1/R)

C − cs(1/R)
v(R) , (17)

where cs = cs(1/R) is the curvature-dependent surface concentration, and
v(R) is the velocity of incoming macroions, both taken at distance R from the
sphere center. The concentration cs, prescribed at the boundary, is derived
under the assumption of local thermodynamic equilibrium at the boundary.

2 Non-Kossel crystals are defined as complex structures with several molecules per unit
cell in inequivalent positions [7].
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It has the form of the well-known linearized Gibbs–Thomson relation [12]

cs = c0

(

1 + 2Γ
1

R

)

, (18)

provided that Γ is the so-called Gibbs–Thomson or capillary constant, which
is usually of the order of 10 nm for lysozyme crystal [7], c0 is an equilibrium
concentration for the planar surface, practically for R ≫ R0. Based on the
knowledge of formation of droplets viz (vapor) condensation processes, one
typically defines Γ as [28]

Γ =
σm

ρdkBT
, (19)

where m is the mass of the vapor-phase atom (unit) and ρd stands for the
density of the droplet’s material, being here identified with C of Eq. (17);
σ and T have their usual meaning (see above). The above definition can
also be adopted to our case [15].

The solution of Eq. (17) with Gibbs–Thomson boundary condition,
Eq. (18), for v(R) = vmi = const. reads [12]

R − R0 − (RC + 2Γ ) ln
R + 2Γ

R0 + 2Γ
= σ0vmi t , (20)

and its large time asymptotic solution becomes

R ∼ t . (21)

Here
σ0 =

c0

C − c0
, (22)

and
Rc = 2σ0Γ (23)

is a critical nucleus’ radius. σ0 is an equivalent of the bulk supersaturation3.

As the first essential modification (equilibrium type) of the curvature
contribution to the BC we propose to include the Gaussian curvature. Sche-
matic picture of the mean (global) and Gaussian (local) curvature problem
is presented in Fig 1. This correction can be important, because of large
linear dimension of the growth units in comparison with linear dimension
of the other solution components, so the local curvature can play important

3 Except that the original Gibbs–Thomson condition involves a firm curvature-
dependent contribution, see Eq. (18), it is rather hardly applicable to crystallization
under high bulk supersaturation. This fact imposes some limits to the magnitude of
the overall chemical-potential based driving force of crystal growth as a whole [7,31].
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R

rmi

twice the mean curvature =(global)

Gaussian (local) curvature =

2

R

1

rmi

2

VB

Fig. 1. Schematic picture of the mean (global) and Gaussian (local) curvature

problem. Twice the mean curvature of the growing sphere of radius R equals 2/R

and is a global curvature measure. Upon magnifying the visualization box (VB)

a local picture appears, at a given time instant t and packing conditions η (see

caption to Fig. 2), for which the Gaussian curvature of the building block viz the

spherical molecule of radius rmi reads 1/r2

mi
. The overall curvature contribution to

the equilibrium BC of Gibbs–Thomson type, Eq. (18), reads δ2

T
/(rmiR), where δT

is Tolman parameter [29], and leads to a modified BC, Eq. (18), of importance for

crystal composed of finite-size (or non-point like) building blocks.

role, especially when we deal with macromolecular islands built up of a few
units. Now the BC takes the form

cs = c0

(

1 + 2Γ
1

R
+

δ2
T

rmi

1

R

)

= c0

(

1 + 2Γ̃
1

R

)

, (24)

where

Γ̃ = Γ +
δ2
T

2rmi
(25)

and 1/(rmiR) is a Gaussian curvature, rmi is the radius of the crystal building
unit (for lysozyme protein rmi ≈ 1.5nm) and δT is a Tolman length. δT is
defined as the difference between the radius of the surface of tension and
the radius of the equimolar dividing surface (for lysozyme protein δT ≈
3.5nm) and depends on the packing coefficient of the crystal. The Tolman
length can be related to the superficial density at the surface of tension [29].
Note that by postulating cs in the form of Eq. (24), with δT involved, we
somehow induce, for a given time instant t, elastic effects at the crystal
boundary. This is because δT is also a measure of rigidity for bending of
a curved piece of the crystal boundary, a physical fact well known to those
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studying bio-membrane formation [30]. Thus, we may, also by means of
having δT involved in the BC, arrive at elastic contribution to the crystal
growth [1]: This situation resembles a well-known fact that an improperly
placed boundary molecule, or some impurity, exerts an additional strain-
stress field in its very vicinity [31].

The solution of Eq. (17) with BC prescribed by Eq. (24), with (25) is of
the same type as the one given by Eq. (20) but now

Rc = R̃c = 2σ0Γ̃ (26)

has to be inserted, cf. Eq. (23).
The dependence of R(t) is presented in Fig. 2. The lower-right inset

to Fig. 2 shows differences in behavior of the surface concentration with
and without Gaussian curvature correction to the surface concentration,
while the upper-left inset points to early-stage differences in tempo of crystal
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)

Fig. 2. The time dependence of the crystal radius R(t) for original (18) and modified

(24) BCs of Gibbs–Thomson (and Tolman) types taken for three different crystal

structures (cubic close packing η1, hexagonal lattice η2 and cubic lattice η3). The

lower-right inset shows differences in behavior of the surface concentration with and

without Gaussian curvature (finite-size or Tolman type) correction to the surface

concentration, while the upper-left inset points to early-stage differences in tempo

of crystal formation. These differences stand also over longer time period but they

cannot be seen as separated curves for time interval chosen to fit our model to

experimental data (C =500 [arbitrary units], c0 =1 [arbitrary units], Γ =1×10−8 m,

Rc = 4 × 10−11 m, R0 = 5 × 10−8 m, vmi = 2.3 × 10−6 m/s).
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formation expressed in terms of R versus t dependence. These differences
stand also over longer time period but they cannot be seen as separated
curves for time interval (1.5 hour) chosen to fit our model to experimental
data [32]. We can see that Gaussian curvature influences (speeds up) the
growth rate just by increasing the local surface concentration, especially for
the early stage of the growth process when R/rmi is relatively small.

Our results adjust well to the experiment. Chow et al., [32] observed con-
stant growth rate of the lysozyme spherulites, what is characteristic when
the growth is controlled by surface kinetics rather than by volume diffusion.
In the experiment the crystal density is 25 times bigger than lysozyme con-
centration in the solution. In our calculation supersaturation is equal 500.
This discrepancy implies that the narrow interfacial region (double layer)
designed for our model is definitely a protein-poor region.

In the second case we propose “Goldenfeld-type” correction [27]. Now we
assume that the surface is away from local equilibrium and deviation from
this state is proportional to the growth velocity of the interface

cs = c0

(

1 + 2Γ̃
1

R
− βG

dR

dt

)

, (27)

where βG is a positive kinetic coefficient. Solving Eq. (17) with nonequi-
librium boundary condition, Eq. (27), one gets for long times the linear
solution of exactly the same type than that given by (21) which can reflect
the asymptotic temporal behavior of spherulites. It can be shown that when
βG increases the growth becomes slower. At early stage of the growth pro-
cess the influence of βG on R(t) is strongly nonlinear. For long times, the
growth is linear in time and βG influences only the growth rate (slope of the
curve, cf. Fig. 2) [2].

Looking at the Eq. (17) we can see that the growth process depends
not only on the supersaturation of the solution. It turns out to be very
important that the macroion velocity, which depends on the electrostatic
interactions of the macroion with the solution (we have to mention that the
solution is an electrolyte), also depends on the viscosity of the solution, and
moreover, on the size of the growth units. It is sometimes possible that the
growth unit will be made of few macromolecules, so that in the viscoelastic
complex environment that we actually describe, the aggregates (made up
of 2–5 macromolecules) will have different velocities, especially when com-
pared with that of the single macroion because the diffusion coefficient can
now be aggregate-size dependent [33]. This experimentally justified obser-
vation [34] has its profound impact on the so-called intrinsic properties of
the viscoelastic solution [16], making them time-sensitive, thus imposing an
intrinsic time scale, presumably powerly “correlated” with the observation
time scale [35]. It will be demonstrated in the subsequent section.
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4. Sphere growth controlled by convective fluctuations:

the role of time-dependent viscosity and finite-size effects

In accordance with the considerations of the previous section, here we will
complement the deterministic description of the kinetics of crystal growth
by incorporating thermal fluctuations of the bath through fluctuations of
the velocity of the incoming macroions (or growth units) [36], and relating
them with the finite size of the particles at the locally highly concentrated
regime. In this regime, the viscoelastic properties of the solution become
important and must also be incorporated into a consistent description.

To perform this description, we will adopt an effective medium theory
[37] in which the diffusion of a “test” macroion through a saturated solution
can be analyzed in terms of the single-particle distribution function f(~r, ~u, t),
depending on the position ~r and instantaneous velocity ~u of the macroion.
In accordance with mesoscopic nonequilibrium thermodynamics formalism,
in this case the entropy per unit volume, s(t), can be expressed in terms of
the Gibbs entropy postulate [37, 38]

s(t) = sle − kB

∫

f ln
z

zle
d~u , (28)

where sle is the entropy at local equilibrium, cf. Eq. (1), and we have
introduced the fugacity z = αf(~r, ~u, t), with α the activity coefficient char-
acterizing the interactions of the macroion. zle is the fugacity at local equi-
librium. The activity coefficient α will contain two contributions since the
test macroion interacts with both, the solution of macroions αs (mostly, in
the vicinity of the crystal boundary) and with the crystal αc, see Fig. 3. The

activity of the solution can be expressed as αs = ec−1p/kBT , with c−1p the
compressibility factor in which p is the excess of osmotic pressure [37] and
the concentration field is defined by c(~r, t) =

∫

f(~r, ~u, t)d~u . The explicit
expression of c−1p can be obtained in the context of different theories on
electrolyte solutions [39]. The crystal activity αc can, in general, contain ef-
fects related with entropic, energetic or geometrical constrains, as indicated
in Sec. 2, [1].

Following the procedure of MNET already outlined, one may show that
the Fokker–Planck equation describing the evolution of f(~r, ~u, t) is [37, 40]

∂f

∂t
+∇· (~uf)−kBT∇ [ln αc + ln αs] ·

∂f

∂~u
=

∂

∂~u
·β(t)

[

~uf +
kBT

m

∂f

∂~u

]

, (29)

where the third term on the left-hand side of the equation contains the
forces acting on the macroion. The right-hand side of this equation con-
tains the contributions of Brownian motion of the macroion in which the
time-dependent friction coefficient β(t) introduces memory effects [41, 42].
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Fig. 3. Naive picture of the vicinity of the crystal surface. Building unit (posi-

tively charged lysozyme protein), which is surrounded by neutral (water dipoles)

and oppositely charged particle (counter-ions), performs random walk (RW) with

a constant velocity in an electrostatic double layer. We can see that the crystal

surface is not smooth and the local (Gaussian) curvatures are shown (see caption

to Fig. 1). In the left top corner a triplet has already been formed.

As mentioned in the previous section, these effects are related to the vis-
coelastic properties of the solution (time-dependent viscosity), and modify
the intrinsic time scale of the particle dynamics.

Several models for the friction have been used in the literature of model
crystal growth [36]. However, since we are interested in analyzing the ef-
fects of the finite size and inertia of the macroions, then we must take into
account that in this case a general expression for the friction coefficient
is [37,40]: β−1(t) ∝ L−1 [1 + (τDω)γc ]−1, with the symbol L−1 denoting the
inverse Laplace transform, ω the frequency and τD = r2

mi/D0 a characteristic
diffusion time, with D0 = (kBT )/(6π ηid rmi) the diffusion coefficient of the
macroion at infinite dilution, rmi is the macroion radius and ηid the viscosity
of the solvent at infinite dilution. In this relation, the exponent γc may in
general be a function of the macroion concentration at the bulk [37]. In order
to make an analytical progress, for simplicity one may use the expression of
β(t) obtained in the context of the generalized Faxén theorem [40,43]

β−1(t) = β−1
0

[

√

τD

t
− exp

(

t

τD

)

Erfc

(
√

t

τD

)

]

, (30)
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where β0 = 6π ηid rmi is the Stokes friction coefficient. Notice that Eq. (30)

is the inverse Laplace transform of β−1(ω) = β−1
0

[

1 + (τDω)
1
2

]

−1
, and that

at times t ≪ τD, it reduces to β−1
0

√

τD/t.
To obtain the velocity ~v(t) of the macroions entering into the growth rule

(17) in which, however, the macroion velocity has been assumed constant,
see legend to Fig. 2, one may use Eq. (29) to obtain the hierarchy of evolution
equations for the moments of f , and from it construct the equation [37]

∂c

∂t
= −kBT∇ ·

[

β−1c∇ ln αc

]

+ ∇ · [Dc∇c] , (31)

which describes the evolution of the macroion in the diffusion regime. Here,
we have defined the collective diffusion coefficient Dc ≡ kBTβ−1

(

1 + ∂ ln αs

∂ ln c

)

.
Particular expressions for this coefficient can be modeled within the scope
of, for example, Kirwood theory of solutions. In a mean field approxi-
mation, the pressure p can be approximated by an expansion of the form
p = kBT

[

c − B(T )c2
]

, where B(T ) is a virial-type coefficient incorporating
the specificities of the pairwise interactions among macroions. In general,
B(T ) may depend on the radial distribution function, and then on spatial

correlations. Substituting this expansion into αs = ec−1p/kBT , taking the
logarithm and the corresponding derivative of the definition of Dc, one ob-
tains the time-dependent diffusion coefficient Dc = kBT (1 − B(T ))β−1(t).
It is interesting to notice that T (1 − B(T )), resembling an “effective” tem-
perature [37], implies that macroion diffusion has a nonlinear dependence
on T , which could be relevant in the crystal structure, as was already men-
tioned. From Eq. (31), it follows that in the diffusion regime the velocity of
the macroions will satisfy a Langevin equation of the form

dr(t)

dt
= v(t) = β−1(t)

[

Fd(t) + FR(t)
]

, (32)

where for simplicity we have considered the unidimensional case and FR(t)
constitutes a random force due to thermal fluctuations. Moreover, we have
defined the deterministic force Fd(t) =

∫ [

kBT d lnαc

dr

]

c(r, t)dr, due to the
interaction of the macroion with the crystal. Notice that the fluctuating part
of the velocity satisfies the usual conditions of zero mean and 〈v(t)v(t1)〉 =
β−1(t − t1) [41].

In a first approximation, one may assume that in the vicinity (double
layer) of the crystal surface, the electrostatic force (attracting macroions)
is constant, Fd = F0, [12]. This assumption implies that αc depends upon
the minimum reversible work necessary to move the macroion a certain dis-
tance ∆r, αc = eF0∆r/kBT , see Eq. (3). On taking into account the above
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assumptions, near to the crystal, the growth rule (17) can be written in the
approximated form

dR(t)

dt
= σRβ−1

0

√

τD

t

[

F0 + FR(t)
]

, (33)

where σR = cs/(C − cs). In the present approximation, σR can, for instance,
be expressed in the form

σR = σ0
1 + 2Γ̃

R

1 − 2R̃c

R

, (34)

after using Eqs. (24), (25) and (26). Note that for t ≫ 1 σR → σ0 holds.
Moreover, notice that for cs we have to take here, depending on what we wish
to model, either cs from (24) (equilibrium BC: non-Kossel crystals) or the
one from (27) (nonequilibrium BC: biopolymeric spherulites). Especially,
the latter seems to be a challenge for extensive numerical modeling, which
is, however, left for a future task. In both cases mentioned, however, the
FSE account is thoroughly manifested, cf. Figs. 1–4.

Now, in order to show the relation existing between the present approach
with that of Sec. 2, for simplicity we will consider the case in which the
deterministic part F0 can be neglected. As a consequence, Eq. (33) becomes
a stochastic equation with multiplicative noise which is equivalent to the
Fokker–Planck equation [36]

∂P (R, t)

∂t
=

∂

∂R

[

D(R, t)
∂P (R, t)

∂R
+

D(R, t)

kBT

∂Φ

∂R
P (R, t)

]

, (35)

where P (R, t) is the probability density in the R-space with R standing for
the radius of the spherical crystal. Moreover, we have defined4 the potential
Φ ≡ ln σR and the diffusion coefficient

D(R, t) ≡ DR(t)σ2
R , (36)

where

DR(t) = D0

√

t

τD
(37)

4 In another paper [1] we have defined Φ ∝ kBT ln σR, i.e. in a Boltzmann-like form.
It automatically implies that the time-dependent part of Eq. (36), DR(t), has to be
defined without kBT as a prefactor absorbed in D0. It, however, destroys an Stokes–
Einstein type form of D0, which is not the case of the present paper in which this
form is used explicitely, cf. caption to Fig. 5.
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is the time-dependent diffusion coefficient of the incoming macroions related
with β−1 through [36]

DR(t) = kBT

t
∫

0

β−1(t1)dt1 . (38)

Fig. 4, shows the time-dependent part of the reduced diffusion coefficient
as a function of the reduced time. The solid line represents the integral
of Eq. (30), whereas the short-dashed line is represented by Eq. (37), see

Eq. (36). The long-dashed line represents a t
1
4 behavior for comparison.

From the solid line it follows that at short times the crystal grows with
a super-diffusive behavior whereas at larger times, DR tends to a constant
value, implying that the crystal radius tends to a maximum value, i.e. to
a final equilibrium state. It coincides well with both the deterministic view

0 2 4 6 8
t
�������

ΤD

0

0.25

0.5

0.75

1

1.25

1.5

DR
�������

D0

Fig. 4. Reduced diffusion coefficient DR/D0 as a function of the reduced time t/τD,

for D0 ≃ 10−6 cm2s−1 and τD ≃ 10−8 s. The solid line represents the integral

of Eq. (30), whereas the short-dashed line is represented by Eq. (37). In the

deterministic case, the integration of Eq. (33) can be compared with that of Eq. (20)

with the parameters Γ̃ and R̃c, from which follows that at sufficiently large times

the left-hand side behaves as R, whereas the right hand side will be proportional

to Eq. (38). Since the solid line tends to a constant asymptotic value, then from

the figure it follows that for sufficiently long times, the radius of the crystal tends

to a maximum value. In contrast, β−1

0
=
√

τD/t implies a “pure” super-diffusive

growth. The long-dashed line, corresponding to a t
1

4 behavior, has been included

for comparison. It can be obtained form β−1(t) ∝ L−1 [1 + (τDω)
γc ]

−1
, when the

exponent γc = 1/4.
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of the process, and above all, with its experimental realizations [15, 31].
It is interesting to realize that formally both the growth speed and the
constrained motion of a “representative” macroion, feeding the crystal go
in a super-diffusive way. Thus, it seems that both sub-processes manifest
a kind of synchronous temporal behavior.

Finally, notice that from Eq. (35) it follows that the deterministic part
of the current is

J(R, t) = −
D(R, t)

kBT

1

σR

∂σR

∂R
. (39)

Comparing this expression with Eq. (12), one may conclude that σR plays
the role of a fugacity in R-space whereas Φ the role of a chemical poten-
tial containing geometric restrictions due to the boundary conditions, as
discussed in the previous section [18].
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Fig. 5. Main course of the overall diffusion-type behavior of the non-Kossel (model)

crystal growth. The curvature effect and FSE are largely pronounced for γc = 1

2

and some consecutive time steps t. The same type of temporal behavior has been

proposed in [36] for algebraic correlations with exponent γc = 1

2
. Solid lines are

plotted on the basis of Eq. (36), whereas the dashed lines on its equivalent with

R̃c = Rc and Γ̃ = Γ (for details see caption to Fig. 4).



1556 A. Gadomski et al.

5. Summary and conclusions

In this paper, we have proposed an integrated static-dynamic picture of
model (spheroidal) crystal growth in a complex milieu, preferentially of elec-
trolytic type. The complex milieu we have in mind here could, in general, be
a two-component system, containing some impurities and/or (charged) addi-
tives. The spectrum of examples can range from metallic polycrystals (LMH
model, Sec. 2.1 and 2.2) via superconductors5 (UCJ, Sec. 2.3) until the soft-
condensed matter objects that are: non-Kossel crystals and (bio)polymeric
spherulites. In fact, the latter suits best our type of modeling since it really
manifests the FSE property due to pronounced sizes of the macromolecules
constituting the (dis)ordered macromolecular cluster. The goal of readily
incorporating the FSE property into the growth rules governing spheroidal
crystal formation has been successfully achieved at both static as well as
dynamic level of description, therefore, our integrated model is called static-
and-dynamic. At the static level of description the goal has been achieved
by proposing a modification of the well-known Gibbs–Thomson (equilib-
rium) formula or by additionally including its nonequilibrium modification
that we attributed to Goldenfeld, who likely did it for the first time almost
twenty years ago but for a diffusive field feeding the growing object [27]. In
this study, however, we have concentrated on the equilibrium BC with the
Tolman-type correction proposed, emphasizing a pivotal role of the Gaussian
curvature in the realistic view of the process that we have offered. Therefore,
the nonequlibrium type BC is dealt with in a rather sketchy or qualitative
way, but nevertheless, such a possible modification is worth mentioning, at
least for some interesting future task. Some undoubtful integrity of the pic-
ture, or its quite comprehensive character, at which we have finally arrived,
can by no means be accomplished when no complementary stochastic part
had a chance to appear. This is, in our opinion, the most worth-emphasizing
part of the description, very responsible for unveiling its dynamic aspects.
It could also be worth-presenting when foreseeing a necessity to go beyond
some analytic modeling [18,22,36,37], and to propose thoroughly computer
simulations, carried out in a complementary way [6, 24, 26]. Thus, the inte-
grated static-dynamic picture of the process is offered in Sec. 4. It tells us
that: (1) the role of curvature(s) is important; (2) the role of FSE is equally
important, and anticipates the approach to be quite realistic; (3) the role
of velocity fluctuations in time appears to be crucial in setting up properly
the picture: a basic result of Sec. 4 points to the constrained motion of the
macroion to be super-diffusive, with the exponent 1/2 for an unidimensional

5 YBCO-like superconducting ceramics grown near a peritectic point i.e., when a solid
is in contact with a liquid and there is incomplete reaction [25].
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approximation offered therein. Thus, and in particular, a specific goal to
propose a firm mathematical form for algebraic correlations, somehow un-
derscored in another study [36] has been achieved too. The account of
correlations in space is not explicitely taken into account in this study. Im-
plicitly, however, it is involved in it by proposing Eq. (31) with the collective
measure, Dc, from which further a Langevin-type as well as Fokker–Planck
type descriptions for model crystal growth (within the integrated picture)
arise. What above all comes out from the proposed integrated picture, how-
ever, is a clear dynamic measure of this integrity, represented by D(R, t) of
Eq. (36). It is seen in a picturesque way in Fig. 5 which tells us that the pro-
cess goes naturally in the way that for its final (mature) growing stages the
overall diffusivity of the system, due to the above mentioned physical fac-
tors (FSE, curvature(s), fluctuations) slows down, this way likely promoting
order against disorder in the complex entropic milieu from which the object
emerges. Also, a difference between Gaussian and non-Gaussian curvature
effects on the diffusive behavior of the system clearly pronounce in the course
of time. Finally, let us underline a remarkable feasibility of the presented
type of modeling to serve for fitting to some experimental curves, or to re-
late the proposed theory to the experiment. An example of such an ability
has been offered by Fig. 2, i.e. the case of biopolymeric spherulites, for the
kinetic coefficient, βG → 0, i.e. when the nonequilibrium BC gets finally
equilibrated. Other fits can be done for non-Kossel crystals as well [15, 31].
Last but not least, let us juxtapose some features of MNET, because this
thermodynamic-kinetic formalism enabled to offer such an integrated view
of the process. These are [5, 14, 42, 43]:

• MNET provides a description of kinetic processes taking place at the
mesoscale (and involving mesostructures) in which fluctuations are im-
portant;

• The theory provides in general expressions for the rates (nucleation,
growth, reaction, etc.) which are in general nonlinear functions of the
driving forces. They are derived in very general conditions even when
mesostructures are embedded in an inhomogeneous bath;

• The theory provides kinetic equations of the Fokker–Planck type for
the evolution of the probability distribution. From them one can derive
expressions for the moments of the distribution which are related to
physical quantities which can be compared with experiments.
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