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Shannon information entropy is a natural measure of probability
(de)localization and thus (un)predictability in various procedures of data
analysis for model systems. We pay particular attention to links between
the Shannon entropy and the related Fisher information notion, which
jointly account for the shape and extension of continuous probability dis-
tributions. Classical, dynamical and random systems in general give rise
to time-dependent probability densities and associated information mea-
sures. The induced dynamics of Shannon and Fisher functionals reveals
an interplay among various characteristics of the considered diffusion-type
systems: information, uncertainty and localization while put against mean
energy and its balance.

PACS numbers: 02.50.–r, 89.70.+c, 05.40.–a

1. Introduction

We shall investigate relationships between the dynamical features of the
differential entropy (Shannon entropy of general time-dependent continu-
ous probability densities), [1,2], and so-called hydrodynamical conservation
laws (mass/probability, momentum and energy balance in the mean) of the
corresponding (ir)reversible diffusion-type process.

In part, our arguments derive from a standard trajectory interpretation
in which random transport is modeled in terms of the Markovian process
and its sample paths. The pertinent process obviously complies with the
Fokker–Planck dynamics of an initially prescribed probability density, [3,4].
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However, we would like to point out that a generic property of physically
interesting cases is their conflict with rather stringent growth and Hölder
continuity restrictions for drift and diffusion coefficient functions. Those
bounds need to be respected for a mathematically consistent definition of
the process and its transition density functions. In most of “typical” cases,
the uniqueness and non-explosiveness of the process cannot be guaranteed,
see however [5, 6], how to evade the explosiveness problem.

This formal defect of a theoretical framework is usually bypassed in
a pragmatic computer-assisted research by neglecting the unwanted (even
if annoying, interpreted as artifacts) contributions to the data. In view of
low probability for troublesome events (explosive behavior), it is often taken
for granted that a mathematical pedantry is here unnecessary and that the
Langevin equation can be employed in the study of diffusion-type processes
without any specific precautions. This attitude is omnipresent, when one
attempts to solve explicitly the “obvious” Fokker–Planck or Smoluchowski
diffusion equation, but does not inquire into an issue of transition proba-
bility density functions. Needless to say, with the latter step ignored, the
random variable and random path notions are often maintained as legitimate
elements of the analysis.

On the other hand, the previously mentioned restrictions on drift and
diffusion coefficient functions may be relaxed in a controlled way to allow
for a consistent theory. There is an obvious price to be paid, one should
admit and learn to live with non-unique and possibly explosive stochastic
processes, all of them being capable to drive accordingly a unique probability
density. Examples of such milder (than usual) restrictions can be found in
Refs. [5–7].

The previous obstacles motivate a principal peculiarity of our approach
which is rooted in the fact that we extract relevant data exclusively from
the (basically, spatial) probability density of the pertinent dynamical process
and this density gradient, with no explicit mention of random or determinis-
tic paths. Clearly, there are many distinct stochastic processes which can be
associated with the once prescribed Fokker–Planck dynamics of a concrete
probability density.

It is widely accepted in the literature to invoke relative Kullback–Leibler
entropies as “distance measures” in the set of different probability densities.
In particular, for comparison of different solutions of a given Fokker–Planck
equation, [4, 10]. One often takes for granted that the Kullback entropy
is a proper analog of Boltzmann’s H-function in the diffusion process set-
ting. The reason is that it never takes negative values, while the differential
entropy does. Its time rate is negative, hence refers to a continually decreas-
ing function in accordance with thermodynamical intuitions, which is not
necessarily the case for Shannon entropies, [1].
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There is one minor obstacle: a closer inspection shows that the Kullback
entropy is mainly explored under standard severe restrictions upon drift and
diffusion coefficients. See e.g. [4] for a verbal statement: “we assume that the
drift coefficients have no singularities and that they do not allow the solutions
to run away to infinity”. Not surprisingly, in a statistical physics lore, a tacit
assumption is that “all solutions of the Fokker–Planck equation finally agree
if we wait long enough”. Hence it is believed to be immaterial to discuss their
behavior in other regimes, than close-to-equilibrium (asymptotic invariant
density).

Another peculiarity of our approach is that we are not quite interested
in “measuring a distance” between two different probability densities. We
rather wish to make a comparison of the very same non-equilibrium density
and its differential entropy at different stages of their time evolution. In
particular, the difference of the respective entropy values at two time instants
is a legitimate “distance measure” (information gain or loss) [1], the time rate
of information entropy is also a well defined quantity. For those reasons, we
deliberately avoid the use of the Kullback entropy and insist on investigating
the role and potential utility of the Shannon-type information entropy per se.

Other motivations come from varied attempts to use information theory
concepts as natural tools for quantifying signatures of disorder and its intrin-
sic dynamics (time rate of generation/propagation of disorder, information
flow, entropy production rate). This involves an issue of non-equilibrium
steady states and the time rate (“speed”) of an asymptotic approach to
equilibrium, when time-reversible stationary processes ultimately enter the
game, [9]. Discussions [11–13] of a physical role of the probability density
gradient in classical non-equilibrium thermodynamics of irreversible pro-
cesses are worth mentioning, to place our discussion in a proper context.

An analysis of links [16,17] between dynamical systems, weak noise and
information entropy production is also useful to that end. An indepen-
dent input comes from general studies of the dynamical origin of increas-
ing entropy (“dynamical foundations of the evolution of entropy to maximal
states”), entirely carried out with respect to time-dependent probability den-
sities, [3, 17, 18] see also [4, 8].

The intertwined dynamics of the differential (information) entropy and
the probability localization properties (dynamics of uncertainty) appears
to be an intrinsic physical feature of any formalism operating with general
time-dependent (in the present paper, spatial) probability distributions.
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2. Information entropy and its dynamics

Let us consider a classical dynamical system in Rn whose evolution is
governed by equations of motion:

ẋ = f(x) , (1)

where ẋ stands for the time derivative and f is an Rn-valued function of
x ∈ Rn, x = {x1, x2, . . . , xn}. The statistical ensemble of solutions of such
dynamical equations can be described by a time-dependent probability den-
sity ρ(x, t) whose dynamics is given by the generalized Liouville (in fact,
continuity) equation

∂tρ = −∇(fρ) , (2)

where ∇ .
= {∂/∂x1, . . . , ∂/∂xn}.

With any continuous probability density ρ
.
= ρ(x, t), where x ∈ Rn

and we allow for an explicit time-dependence, we can associate a probabil-
ity density functional named Shannon entropy of a continuous probability
distribution (convergence of an integral is presumed), [1]

S(ρ) = −
∫

ρ ln ρ dx . (3)

In general, S(ρ)
.
= S(t) depends on time. Let us take for granted that

an interchange of time derivative with an indefinite integral is allowed (suit-
able precautions are necessary with respect to the convergence of integrals).
Then, we readily get an identity, [14–16]:

Ṡ =

∫

ρ (divf)dx
.
= 〈∇f〉 . (4)

Accordingly, the information entropy S(t) grows with time only if the dy-
namical system has positive mean flow divergence.

However, in general Ṡ is not positive definite. For example, dissipative
dynamical systems are characterized by the negative (mean) flow divergence.
Fairly often, the divergence of the flow is constant, [14]. Then, an “amount
of information” carried by a corresponding statistical ensemble (e.g. its
density) increases, which is paralleled by the information entropy decay (de-
crease).

An example of a system with a point attractor (sink) at origin is a one-
dimensional non-Hamiltonian system ẋ = −x. In this case divf = −1
and Ṡ = −1. A discussion of dynamical systems with strange (multifractal)
attractors, for which the Shannon information entropy decreases indefinitely
(the pertinent steady states are no longer represented by probability density
functions) can be found in [14, 16].
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We note that for Hamiltonian systems, the phase–space flow is diver-
gence-less, hence Ṡ = 0 which implies that “information is conserved” in
Hamiltonian dynamics. Take for example a two-dimensional conservative
system with ẋ = p/m and ṗ = (−∇V ), where H = p2/2m + V (x). The
classical equations of motion yield the standard Liouville equation (which is
a special case of Eq. (4)):

∂

∂t
ρ = − p

m

∂

∂x
ρ+ (∇V )

∂

∂p
ρ (5)

for the phase–space density ρ(x, p). The corresponding divergence vanishes
and the phase space volume is conserved. For non-Hamiltonian systems we
may generically expect the phase–space volume contraction, expansion or
both at different stages of time evolution, [14, 16].

In case of a general dissipative dynamical system (1), a controlled admix-
ture of noise can stabilize dynamics and yield asymptotic invariant densities.
For example, an additive modification of the right-hand side of Eq. (1) by
white noise term A(t) where 〈Ai(s)〉 = 0 and 〈Ai(s)Aj(s

′)〉 = 2qδ(s− s′)δij ,
i = 1, 2, . . . n, implies the Fokker–Planck–Kramers equation

∂tρ = −∇ (f ρ) + q∆ρ , (6)

where ∆
.
= ∇2 =

∑

i ∂
2/∂x2

i . Accordingly, the differential entropy dynamics
would take another form than this defined by Eq. (4)

Ṡ =

∫

ρ (divf)dx+ q

∫

1

ρ
(∇ρ)2 dx . (7)

Now, the dissipative term 〈∇ f〉 < 0 can be counterbalanced by a strictly
positive stabilizing contribution q

∑

i

∫

1
ρ(∂ρ/∂xi)

2 dx. This allows to ex-

pect that, under suitable circumstances dissipative systems with noise may
yield Ṡ = 0. In case of 〈∇ f〉 ≥ 0, the information entropy would grow
monotonically.

At this point, we depart from an explicit phase–space background for
further discussion and consider exclusively spatial Markov diffusion processes
with a diffusion coefficient D (constant or time-dependent, with standard
dimensions of kBT/mβ where β is a friction coefficient, or ~/2m). We admit
them to drive space–time inhomogeneous probability densities ρ = ρ(−→x , t)
with −→x ∈ R3. The density gradient is introduced in conjunction with so-
called osmotic velocity field −→u = D

−→∇ ln ρ, cf. [18]. The probability density
is to obey the continuity equation, with −→v set in correspondence with the
previous vector-valued function f ∈ Rn

∂tρ = −−→∇ · (−→v ρ) , (8)
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where a (postulated) decomposition: −→v (−→x , t) = −→v .
=

−→
b − −→u allows us to

infer the related Fokker–Planck equation

∂tρ = D∆ρ−−→∇ · (−→b ρ) , (9)

with a forward drift function
−→
b (−→x , t).

To make things simpler, we assume to have given a concrete functional
expression for the time-independent forward drift

−→
b (−→x ) (here, we do not

bother about its detailed justification on phenomenological or model con-
struction grounds) and fix initial/boundary data for the probability den-
sity ρ. We shall not demand the validity of standard mathematical restric-
tions (growth and Hölder continuity conditions), guaranteeing the existence

of non-explosive solutions
−→
X (t) of the underlying stochastic differential equa-

tion, since that would exclude a vast number of physically interesting situa-
tions, when the corresponding partial differential (Fokker–Planck) equation
nonetheless has well defined solutions of the initial/boundary value prob-
lem. Therefore, we prefer to investigate random diffusive motion in terms of
probability densities, and not directly in terms of paths (sample trajectories)

induced by random variable
−→
X (t).

With a solution ρ(−→x , t) of the Fokker–Planck equation, we associate
its differential (Shannon information) entropy S(t) = −

∫

ρ ln ρ d3x which
typically is not time-independent, [14, 16]. The evolution (dynamics of in-
formation) and rate of change in time of the entropy S directly follow.

First, let us notice that in the particular case of −→v =−−→u (i.e.
−→
b = 0),

where −→u = D
−→∇ ln ρ, we infer the standard free Brownian motion out-

come, [11]

dS
dt

= D ·
∫

(
−→∇ρ)2
ρ

d3x > 0 , (10)

to be compared with the previously introduced stabilizing term in Eq. (7).
Thus, information entropy definitely increases in the Brownian motion and
its time rate may be interpreted as the rate of information decay (uncertainty
increase) in the course of the diffusion process, in close parallel with the
casual perception of the laws of thermodynamics.

While passing from the free Brownian motion to the forced one and
more general diffusion-type processes, we shall demand the current velocity
−→v (−→x , t) to be a gradient field −→v .

=
−→
b −−→u , where the forward drift

−→
b (−→x , t)

of the process may be time-dependent.
Boundary restrictions upon ρ, −→v ρ and

−→
b ρ to vanish at spatial infinities

(or at finite spatial volume boundaries) yield the information entropy balance
equation

dS
dt

=

∫

[

ρ (
−→∇ · −→b ) +D · (

−→∇ ρ)2

ρ

]

d3x , (11)
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to be compared with the previous, vanishing
−→
b , case. We can rewrite this

equation as follows

DṠ .
= 〈−→u 2〉 +D〈−→∇ · −→b 〉 = D〈−→∇ · −→v 〉 , (12)

or equivalently
DṠ = 〈−→v 2〉 − 〈−→b · −→v 〉 = −〈−→v · −→u 〉 . (13)

Note that we have employed an identity

〈−→u 2〉 = −D〈−→∇ · −→u 〉 . (14)

The osmotic velocity field, by its very definition, always has negative mean
divergence.

The mean divergence of the current velocity field has no definite sign.
Therefore, the monotonic increase of S(t) is guaranteed only if 〈−→∇ ·−→v 〉 > 0,

or equivalently 〈−→∇·−→b 〉 > 〈−→∇·−→u 〉. Invariant probability densities are allowed
when the information entropy remains constant in time: dS/dt = 0, that is

when 〈−→∇ · −→v 〉 = 0, i.e. 〈−→∇ · −→b 〉 = 〈−→∇ · −→u 〉.
The simplest realization of the state of equilibrium is granted by

−→
b =

−→u = D
−→∇ ln ρ, when the diffusion current identically vanishes: −→v =

−→
0 .

For familiar Smoluchowski diffusion processes whose drifts have the form−→
b = −(1/mβ)

−→∇V , where V is time-independent, we immediately arrive at
the classic equilibrium identity

− 1

kBT

−→∇V =
−→∇ ln ρ , (15)

with the implicit Einstein fluctuation–dissipation formula D = kBT/mβ
(kB is the Boltzmann constant).

It is not obvious at all that the differential (Shannon information) en-
tropy needs to increase, when a given “attracting” state of equilibrium (in-
variant density) is being asymptotically approached. Entropy decay scenario
seems to be equally likely in this situation.

A hint to this end: invoking the standard Smoluchowski diffusion, fix−→
b (−→x ), i.e. external force, and fine-tune an initial density ρ0(−→x ) so that

〈−→∇ ·−→b 〉 < 〈−→∇ ·−→u 〉 and, therefore, 〈−→∇ ·−→v 〉 < 0. Realization: consider the
one-dimensional example with b(x) = −γx, γ > 0 and choose ρ0(x) =
[1/(σ

√
2π] exp[−x2/2σ2], implying 〈∇·u〉 = −D/σ2. Finally adjust σ and/or

γ to yield D/σ2 < γ.

Let us also observe that, in view of DṠ = −〈−→v ·−→u 〉, by reintroducing

the diffusion current ρ−→v and recalling that −→u = (D
−→∇ρ)/ρ, we arrive at

D
dS
dt

= −
∫

[

ρ−1/2(ρ−→v )
]

·
[

ρ−1/2(D
−→∇ρ)

]

d3x . (16)
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By means of the Schwarz inequality we infer an upper bound on the magni-
tude of the information entropy time rate:

D
∣

∣

∣

dS
dt

∣

∣

∣
≤

〈−→v 2
〉1/2 〈−→u 2

〉1/2
. (17)

As a byproduct we realize that a necessary condition for dS
dt 6= 0 is that both

〈−→v 2
〉

and
〈−→u 2

〉

are non-vanishing. A sufficient condition for dS
dt = 0 is that

any of
〈−→v 2

〉

,
〈−→u 2

〉

, or both vanish.

3. Information entropy balance in Smoluchowski diffusion process

Remembering that in the standard Brownian motion, essentially the
same mathematical formalism applies to a single particle and to a statistical
ensemble of identical noninteracting Brownian particles, we shall adopt to
our purposes basic tenets of so-called thermodynamic formalism of isother-
mal diffusion processes, [5,7,19] (see also [20] and [21]), originally introduced
in connection with nonequilibrium thermodynamics of single macromolecules
immersed in an ambient fluid at a constant temperature, and promoted in [5]
to the status of “stochastic macromolecular mechanics”.

Let us discuss in more detail Eq. (13) for the differential entropy balance
which is extremely persuasive in the special case of Smoluchowski diffusions.
Indeed, then

−→
b

.
=

−→
F /(mβ) stands for an externally acting force, capable

of performing a mechanical work which in turn may be converted into heat.
We refer to the standard phase–space conceptual background, [8, 21].

According to [5, 7, 19] (we adjust their framework and notation to our
purposes), close to equilibrium, one expects the information entropy to de-
crease in the course of the Smoluchowski diffusion process. The mean rate
of the entropy loss per unit of mass, equals

dQ
dt

.
=

1

D

∫

1

mβ

−→
F · −→j d3x =

1

D
〈−→b · −→v 〉 . (18)

That can be rewritten otherwise: kBT Q̇ =
∫ −→
F · −→j d3x, where T is the

temperature of the bath. In the formal thermodynamical lore, we deal here
with the time rate at which the mechanical work is being dissipated into
thermal environment in the form of (removed) heat. Let us point out that
this interpretation is surely true under equilibrium conditions [5]. In general,
far from equilibrium, the sign of dQ/dt remains indefinite and may refer to
heat absorption (if negative) instead of heat removal.

The nonnegative term in Eq. (13) can be consistently interpreted, cf. [5],
as the measure of the entropy gain per unit of time by the diffusion process.
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Accordingly, we have
dS
dt

=
dSgain

dt
− dQ

dt
, (19)

where dSgain/dt
.
= (1/D)

〈−→v 2
〉

. If the entropy gain is counterbalanced by
heat removal, we may have dS/dt = 0.

Let us mention that our “entropy gain” is named “entropy production”
in Ref. [5]. In the earlier literature on the subject, [30], the entropy pro-
duction name has been reserved to the accumulating entropy surplus which
is being removed from the system under consideration to the environment.
In our discussion, just to the contrary, the information entropy appears to
be pumped into the system (e.g. the diffusion process) instead of being
removed.

The relationship: −→
j
.
= ρD

−→
F th (20)

defines a thermodynamic force
−→
F th associated with the Smoluchowski dif-

fusion
kBT

−→
F th =

−→
F − kBT

−→∇ ln ρ
.
= −−→∇Ψ . (21)

Notice that
−→v = − 1

mβ

−→∇Ψ . (22)

In the absence of external force (free Brownian motion), we obviously get

D
−→
F th = −−→u , Q̇ = 0 and Ṡ = Ṡgain, hence delocalization coincides with the

“diffusion of probability”.
The mean value of the potential

Ψ = V + kBT ln ρ (23)

of the thermodynamic force defines the obvious diffusion process analogue
of the Helmholtz free energy

〈Ψ〉 = 〈V 〉 − T SG , (24)

where the dimensional version of information entropy SG
.
= kBS has been

introduced (actually, it is a direct analog of the Gibbs entropy). The expec-
tation value of the mechanical force potential 〈V 〉 plays here the role of the
mean internal energy.

By assuming that ρV−→v vanishes at integration volume boundaries
(or infinity), we easily get the time rate of Helmholtz free energy

d

dt
〈Ψ〉 = −kBT Q̇ − T ṠG , (25)
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where kBT Q̇ =
∫ −→
F · −→j d3x and T ṠG =

∫

(kBT
−→
F th −

−→
F ) · −→j d3x. In view of

Eq. (19) we get
d

dt
〈Ψ〉 = −(mβ)

〈−→v 2
〉

, (26)

which is either negative or vanishes. Therefore, the Helmholtz free energy
either remains constant in time or decreases as a function of time.

In the presence of external forces this property quantifies a possible
asymptotic approach towards a minimum corresponding to an invariant den-
sity of the process. Indeed, a particular example of an equilibrium (invariant)
density reads ρ(x) = (1/Z) exp(−V/kBT ), where Z =

∫

exp(−V/kBT ) dx.
Such ρ sets the pertinent minimum of 〈Ψ〉 at 〈Ψ〉 = Ψ = −kBT lnZ.
This corresponds to Ψ = V + kBT ln ρ = const and thus trivially implies−→∇Ψ =

−→
0 = −→v .

One should be aware that an invariant density as well may not exist: in
case of free Brownian motion there is no invariant density.

4. Localization toolbox: Shannon entropy and Fisher information

For simplicity all of our further discussion will be restricted to one space
dimension.

Let us consider the Gaussian probability density on the real line R as
a reference density function

ρ(x) =
1

σ
√

2π
exp

[

−(x− x0)
2

2σ2

]

.

Among all one-dimensional distribution functions ρ(x) with a finite mean,
subject to the constraint that the standard deviation is fixed at σ, it is the
Gauss function with half-width σ which sets a maximum of the differen-
tial entropy, [1]. For the record, let us add that if only the mean is given
for probability density functions on R, then there is no maximum entropy
distribution in their set.

The differential entropy of the Gauss density has a simple analytic form,
independent of the mean value x0 and maximizes an inequality

S(ρ) ≤ 1

2
ln

(

2πeσ2
)

. (27)

This imposes a useful bound upon the so-called entropy power, [1]

1√
2πe

exp[S(ρ)] ≤ σ , (28)

with an obvious bearing on the spatial localization of the density ρ, hence
spatial (un)certainty of position measurements. We can say that almost
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surely, with probability 0.998, the probability is concentrated within the
interval of the length 6σ which is centered about the mean value x0 of the
Gaussian density ρ.

The Shannon entropy of an arbitrary continuous probability density is
unbounded form below and from above, but in the subset of all densities
with a finite mean and a fixed variance σ2, we actually have an upper bound
set by Eq. (27). Note that not only for small, but also for relatively large
mean deviation values σ < 1/

√
2πe ≃ 0.26 the differential entropy S(ρ)

becomes negative.
Let us discuss to what extent, the Shannon entropy can be viewed as

a measure of localization in the configuration space of the dynamical system.
Let us consider a one-parameter family of probability densities ρα(x)

on R whose first (mean) and second moments (effectively, the variance)
are finite. The parameter-dependence is here not completely arbitrary and
we assume standard regularity properties that allow to differentiate vari-
ous functions of ρα with respect to the parameter α under the sign of an
(improper) integral.

Namely, let us denote
∫

xρα(x)dx = f(α) and
∫

x2ραdx < ∞. We
demand that as a function of x ∈ R, the modulus of the partial deriva-
tive ∂ρα/∂α is bounded by a function G(x) which together with xG(x) is
integrable on R. This implies, the existence of ∂f/∂α and an important
inequality

∫

(x− α)2ραdx

∫
(

∂ ln ρα

∂α

)2

ραdx ≥
(

df(α)

dα

)2

, (29)

directly resulting from

df

dα
=

∫

[

(x− α)ρ1/2
α

]

[

∂(ln ρα)

∂α
ρ1/2

α

]

dx (30)

via the standard Schwarz inequality, [22]. The equality appears if ρα(x) is
the Gauss function with mean value α.

At this point let assume that the mean value of ρα actually equals α
and we fix at σ2 the value 〈(x − α)2〉 = 〈x2〉 − α2 of the variance (in fact,
standard deviation from the mean value) of the probability density ρα. The
previous inequality now takes the familiar form

Fα
.
=

∫

1

ρα

(

∂ρα

∂α

)2

dx ≥ 1

σ2
, (31)

where an integral on the left-hand side is the so-called Fisher information
of ρα, known to appear in various problems of statistical estimation theory,
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as well as an ingredient of a number of information — theoretic inequalities.
In view of Fα ≥ 1/σ2, we realize that the Fisher information is more sensitive
indicator of the probability density localization than the entropy power,
Eq. (28).

Let us define ρα(x)
.
= ρ(x − α). Then, the Fisher information can be

readily transformed to the conspicuously quantum mechanical form (up to
a factor D2 with D = ~/2m)

1

2
Fα =

1

2

∫

1

ρ

(

∂ρ

∂x

)2

dx =

∫

ρ
u2

2
dx = −〈Q〉 , (32)

where u
.
= ∇ ln ρ (up to a factor D) represents an osmotic velocity field,

[18, 24], and an average 〈Q〉 =
∫

ρ Qdx is carried out with respect to the
function

Q = 2
∆ρ1/2

ρ1/2
. (33)

As a consequence of Eq. (31), we have −〈Q〉 ≥ 1/2σ2 for all relevant prob-
ability densities with variance σ2.

An important inequality, valid under an assumption ρα(x) = ρ(x − α),
has been proved in [31]

1

σ2
≤ (2πe) exp[−2S(ρ)] ≤ Fα . (34)

It tells us that the lower bound for the Fisher information is in fact given
a sharper form by means of the (squared) inverse entropy power. Our two
information measures appear to be correlated.

Under an additional decomposition/factorization ansatz (of the quan-
tum mechanical L2(Rn) provenance) that ρ(x)

.
= |ψ|2(x), where a real or

complex function ψ =
√
ρ exp(iφ) is a normalized element of L2(R), another

important inequality holds true, [31]

Fα = 4

∫
(

∂
√
ρ

∂x

)2

dx ≤ 16π2σ̃2 , (35)

provided the Fisher information takes finite values. Here, σ̃2 is the variance
of the “quantum mechanical momentum canonically conjugate to the posi-
tion observable”, up to (skipped) dimensional factors. In the above, we have

exploited the Fourier transform ψ̃
.
= (Fψ) of ψ to arrive at ρ̃

.
= |ψ̃|2 whose

variance the above σ̃2 actually is.
Let us point out that the Fisher information F(ρ) may blow up to in-

finity under a number of circumstances: when ρ approaches the Dirac delta
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behavior, if ρ vanishes over some interval in R or is discontinuous. We ob-
serve that F > 0 because it may vanish only when ρ is constant everywhere
on R, hence when ρ is not a probability density on R.

In view of two previous inequalities, we find out that not only the Fisher
information, but also an entropy power may be bounded from below and
above. Namely, we have

1

σ2
≤ Fα ≤ 16π2σ̃2 , (36)

which implies 1/2σ2 ≤ −〈Q〉 ≤ 8π2σ̃2 and, furthermore,

1

4πσ̃
≤ 1√

2πe
exp[S(ρ)] ≤ σ . (37)

Most important outcome of Eq. (37) is that the differential entropy S(ρ)
typically may be expected to be a well behaved quantity: with finite lower
and upper bounds. A standard statement in this regard is: Shannon entropy
of a continuous probability density is neither bounded from below nor from
above, [1, 2].

5. Dynamics of uncertainty: mean energy versus localization

When multiplied by D2, a potential-type function Q=Q(x, t), cf. (33)
notoriously appears in the hydrodynamical formalism of quantum mechanics
as the so-called de Broglie–Bohm quantum potential (D = ~/2m), [24, 26].
It appears as well in the corresponding formalism for diffusion-type pro-
cesses, including the standard Brownian motion (then, D = kBT/mβ, see
e.g. [23–25,27, 29]. We have

Q = 2D2 ∆ρ1/2

ρ1/2
=

1

2
u2 +D∇ · u , (38)

and it is instructive to notice that the gradient of Q trivially appears (i.e.
merely as a consequence of the heat equation, [23, 24, 26]) in the hydrody-
namical (momentum) conservation law appropriate for the free Brownian
motion

∂tv + (v · ∇)v = −∇Q . (39)

We assume, modulo restrictions upon drift functions [6, 7], that the
Smoluchowski dynamics can be resolved in terms of (possibly non-unique)
Markovian diffusion-type processes. Then, the following compatibility equa-
tions follow in the form of local (hydrodynamical) conservation laws for the
diffusion process, [24, 26]

∂tρ+ ∇(vρ) = 0 , (40)

(∂t + v · ∇)v = ∇(Ω −Q) , (41)
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where, not to confuse this notion with the previous force field potential V ,
we denote by Ω(x) the so-called volume potential for the process

Ω =
1

2

(

F

mβ

)2

+D∇
(

F

mβ

)

. (42)

Obviously the free Brownian law, Eq. (39), comes out as the special case.
In the above (we use a short-hand notation v

.
= v(x, t))

v
.
= b− u =

F

mβ
−D

∇ρ
ρ

(43)

defines the current velocity of Brownian particles in external force field. This
formula allows us to transform the continuity equation into the Fokker–
Planck equation and back.

By considering (−ρ)(x, t) and s(x, t), such that v = ∇s, as canonically
conjugate fields, we can invoke the variational calculus, [27, 28]. Namely,
one may derive the continuity (and thus Fokker–Planck) equation together
with the Hamilton–Jacobi type equation (whose gradient implies the hydro-
dynamical conservation law Eq. (41))

∂ts+
1

2
(∇s)2 − (Ω −Q) = 0 , (44)

by means of the extremal (least, with fixed end-point variations) action
principle involving the (mean) Lagrangian

L = −
∫

ρ

[

∂ts+
1

2
(∇s)2 −

(

u2

2
+Ω

)]

dx . (45)

The related Hamiltonian (which is the mean energy of the diffusion pro-
cess per unit of mass) reads

H .
=

∫

ρ

[

1

2
(∇s)2 −

(

u2

2
+Ω

)]

dx , (46)

i.e.

H = 1
2

(〈

v2
〉

−
〈

u2
〉)

− 〈Ω〉 .
We can evaluate an expectation value of Eq. (44) which implies an

identity H = −〈∂ts〉. By invoking the Smoluchowski diffusion and thus
Eq. (24), with the time-independent V , we arrive at

Ψ̇ =
kBT

ρ
∇(vρ) , (47)
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whose expectation value 〈Ψ̇ 〉, in view of vρ = 0 at the integration volume
boundaries, identically vanishes. Since v = −(1/mβ)∇Ψ , we define

s(x, t)
.
=

1

mβ
Ψ(x, t) =⇒ 〈∂ts〉 = 0 (48)

so that H ≡ 0 identically.
We have thus arrived at the following interplay between the mean energy,

localization and the information entropy gain

D

2

(

dS

dt

)

gain

=

∫

ρ

(−→v 2

2

)

dx =

∫

ρ

(−→u 2

2
+Ω

)

dx ≥ 0 , (49)

generally valid for Smoluchowski processes with non-vanishing diffusion cur-
rents.

By recalling the notion of the Fisher information Eq. (32) and setting
F .

= D2Fα, we can rewrite the above formula as follows:

F = 〈v2〉 − 2〈Ω〉 ≥ 0 , (50)

where F/2 = −〈Q〉 > 0 holds true for probability densities with finite mean
and variance.

We may evaluate directly the localization/uncertainty dynamics of the
Smoluchowski process, by recalling that the Fisher information F/2 is the
localization measure, which for probability densities with finite mean value
and variance σ2 is bounded from below by 1/σ2.

Namely, by exploiting the hydrodynamical conservation laws Eq. (41)
for the Smoluchowski process we get

∂t(ρv
2) = −∇

[(

ρv3
)]

− 2ρv∇(Q−Ω) . (51)

We assume to have secured conditions allowing to take a derivative under an
indefinite integral, and assume that of ρv3 vanishes at the integration volume
boundaries. This implies the following expression for the time derivative
of

〈

v2
〉

d

dt

〈

v2
〉

= 2 〈v∇(Ω −Q)〉 . (52)

Proceeding in the same vein, in view of Ω̇ = 0, we find that

d

dt
〈Ω〉 = 〈v∇Ω〉 (53)

and so the equation of motion for F follows

d

dt
F =

d

dt

[

〈v2〉 − 2〈Ω〉
]

= −2〈v∇Q〉 . (54)
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Since we have ∇Q = ∇P/ρ where P = D2ρ∆ ln ρ, the previous equation

takes the form Ḟ = −
∫

ρv∇Qdx = −
∫

v∇Pdx, which is an analog of the
familiar expression for the power release (dE/dt = F · v, with F = −∇V )
in classical mechanics.

This should be compared with our previous discussion of the “heat dissi-
pation” term. Indeed, Ḟ =

∫

j (−2∇Q)dx, while the expression for the heat

dissipation rate had the form kBT Q̇ =
∫

j (−∇V )dx.

Let us notice that Ḟ > 0 would tell us that the localization improves,
clearly at the expense of the energy supply (power injection) from the en-

vironment. Ḟ < 0 indicates a localization decay and corresponds to the
energy absorption (power release) by the environment.

We may typically expect the decrease of the localization measure F and
the continual energy/heat absorption by the Smoluchowski diffusion process.
This effect can be attributed to the active role of the thermal environment
which generally leads to a delocalization of the initially localized probability
density, unless the invariant measures enter the game. The power release
complies with the identity H ≡ 0 since “obviously” the diffusion process
proceeds in an open system. The latter property should be contrasted with
the behavior of so-called finite energy diffusions, [18, 24, 32].

The paper has been supported by the Polish Ministry of Scientific
Research and Information Technology under the grant No. PBZ-MIN-008/
P03/2003.
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