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The phenomenon of epidemic spreading in a population with a hierar-
chical structure of interpersonal interactions is described and investigated
numerically. The SIS model with temporal immunity to a disease and a time
of incubation is used. In our model spatial localization of individuals be-
longing to different social groups, effectiveness of different interpersonal
interactions and the mobility of a contemporary community are taken into
account. The structure of interpersonal connections is based on a scale-free
network. The influence of the structure of the social network on typical
relations characterizing the spreading process, like a range of epidemic and
epidemic curves, is discussed. The probability that endemic state occurs
is also calculated. Surprisingly it occurs, that less contagious diseases has
greater chance to survive. The influence of preventive vaccinations on the
spreading process is investigated and critical range of vaccinations that
is sufficient for the suppression of an epidemic is calculated. Our results
of numerical calculations are compared with the solutions of the master
equation for the spreading process, and good agreement is found.

PACS numbers: 05.40.–a, 87.10.+e, 89.75.–k

1. Introduction

The structure and the dynamics of complex networks have been exten-
sively investigated in recent years [1–11]. It was found that many real-world
networks, like the web of human sexual contacts [1], e-mail networks [2], or
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Internet [3], have similar properties. They are called scale-free networks, be-
cause the probability that the number of k links connected to a node equals
P (k) ∼ k−γ [4]. Many authors have used this type of complex network to
model a network of social contacts [9], [12–16]. In particular complex net-
works with a hierarchical structure, corresponding to the real structure of
human communities, were studied [7,17–19], e.g. an epidemic spreading in a
population with a two-level structure of interpersonal interactions was ana-
lyzed in Ref. [20]. A small average shortest path between nodes (individuals)
and a high value of the clustering coefficient [5, 6], e.g. the probability that
“a friend of my friend is my friend” in the community is high, are the most
important properties of social networks. These properties are typical for the
structure of a social network and they have a strong influence on dynamical
phenomena in the population.

The spreading of epidemics has been investigated by many authors with
different models of interpersonal interactions [21–28]. In our work we inves-
tigate an epidemic spreading in the human population, treated as a scale-free
network, taking into account spatial localization of individuals, with a three-
level hierarchical structure of interpersonal interactions on the basis of SIS
model [29]. Similar problem, in the frame of SIR model, were investigated
earlier in Ref. [16].

We assume that each individual belongs to some social groups [7]: from
the smallest one (e.g. family or friends), to a large one (e.g. community of the
whole city). Interpersonal interactions among individuals in the same group
are stronger than interactions among individuals from different groups. The
smaller the group, the stronger an individual’s influence on the other indi-
viduals in that group. From the point of view of the spreading of an epidemic
most effective are social connections with the family, close friends etc., how-
ever, random contacts with unknown individuals are important too. Such
a random contact is most probable for individuals, who live (or work) in
this same place, e.g. in the same building. On the other hand a contem-
porary community is very mobile; therefore, there is a nonzero probability
of contact between two arbitrarily chosen individuals from a population.
Such contact can occur e.g. commuting, in the cinema or in another public
place, and can results in an infection of a new individual. In our model
we take into account this hierarchical structure of a social network, with
interpersonal connections between neighbors and contacts between random
individuals referring to the mobility of a community. The hierarchical struc-
ture of interpersonal interactions described in the present paper seems to be
more plausible for modeling real social networks.

This article is organized as follows. The model of a network of human
contacts and probabilities of infection depending on the type of social con-
tact, as well as the master equation, are described in Section 2. The results,



The SIS Model of Epidemic Spreading in a Hierarchical Social Network 1581

like the influence of structure of social network and preventive vaccination
on spreading process, are described in Section 3. Also, in that section the
probability that endemic states of epidemic occurs, depending on the param-
eters describing a disease (e.g. time of incubation), is calculated. Results
obtained from numerical model and results obtained from solution of the
master equation are compared in Section 4, and summarized in Section 5.

2. The model

In our model each individual has one of four permitted states: healthly
and susceptible (S), infected (IN), ill (IL), healthy and unsusceptible or
isolated from the rest of the population (R). The state of the individuals
evolves in time and depends on their previous state and the connections
or random contacts with other individuals. The probabilities of transitions
between different states in one time step are described with the following
parameters: WS→IN, the probability that a susceptible individual will be
infected by an ill individual (it also denotes how contagious the disease is);
WIN→IL, the probability that infected individual become ill (this value is
connected with the average time of incubation); WIL→R, the probability that
an ill individual will recover or be isolated from the rest of the population
(e.g. in a hospital); WR→S, the probability that an unsusceptible individual
lose its immunity and became healthy and susceptible (this value may be
referred to the probability of the mutation of the pathogen).

The spreading process in a population can be treated as a nonstationary
process, which is described by the master equation, and that approach was
applied in a number of studies [14, 24, 29–33]. The results obtained in our
model will be compared with the solutions of this equation in section 4.
For the present case the changes in time of the probabilities PX(t) that an
individual is in one of the possible states X (where X =S, IN, IL or R) are
described with the master equation
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dPS(t)
dt

= WR→SPR(t) − WS→INPIL(t)PS(t) ,

dPIN(t)
dt

= WS→INPIL(t)PS(t) − WIN→ILPIN(t) ,

dPIL(t)
dt

= WIN→ILPIN(t) − WIL→RPIL(t) ,

dPR(t)
dt

= WIL→RPIL(t) − WR→SPR(t) .

(1)

This simple analytical model has one serious disadvantage — it does not
take into account the structure of interpersonal interactions in the human
population which is the important part of our model, where the popula-
tion and its structure are described as follows. The population consists of
N = L ×L individuals Sij localized by the indices i, j in a two-dimensional
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lattice. Connections and random contacts between individuals have a hierar-
chical structure. The connections of each individual with k neighbors is the
first level of interpersonal interactions (see Fig. 1(a)). All connections are
symmetrical and have the same value. We have assumed that the network of
social connections is scale-free, i.e. the distribution of connectivity of indi-
viduals has the form P (k) ∼ k−γ (γ = 3 was used in most of computations),
with k generated from the range (kmin, kmax). Initialy all individuals are
not connected. Next, the connections between individuals are created with
the probability P (l), depending on the distance l between individuals Sij

and Snm, where n = i ± l1 ; m = j ± l2 (l1, l2 are two independent random
variables and the sign is generated with the probability 0.5):

P (l) ∼
1

1 + exp [(l − a)/b]
+ 0.01

L − l

L
. (2)

The second term in Eq. (2) causes P (l) to reach zero slowly enough.
Hence, the network of the first level connections has small-world properties.
The whole population is divided into local groups of G = LG × LG indi-
viduals, where the size of those groups is connected with the parameters
a = LG and b = LG/4 of the distribution (2). Thus, most connections are
created between individuals located in the same local group. The structure
of the network from the point of view of a certain individual is depicted in
Fig. 1(a). Having created the connection between Sij and Snm, the connec-
tions between the individual Snm and each neighbor of the individual Sij

are created with the probabilities pc (Fig. 1(b)). Similarly, new connections

Fig. 1. An example of a network with L = 24 and LG = 8 (nine local groups) from

the point of view of the S11,13 individual, who is connected with k11,13 = 7 neighbors

and four of those connections are located in its local group (a). When a connection

between two individuals Sij and Snm is created (solid line), the individual Snm is

connected with the neighbors of the individual Sij . Next, the connections between

the neighbors Snm and the individual Sij are created (this is not shown in the

figure). Each new connection (dashed line) is created with the probability pc (b).
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between Sij and the neighbors of the individual Snm are created, also with
the probabilities pc. However, each pair of individuals can be connected only
once, and a new connection is added to each individual only when its actual
number of connections is smaller than the value kij (where i, j = 1, 2, ..., L)
generated with the distribution k−γ . In this way desirable distribution of
connectivity is obtained. It should be noted that in this procedure the value
pc influences the clustering coefficient C of the network [4, 34]

C =

〈

2Eij

kij(kij − 1)

〉

, (3)

where Eij is the number of connections between neighbors of the ij-th indi-
vidual. For pc > 0 the relation between clustering coefficient of an individual
and its connectivity has a form C(k) ∼ k−β [17].

To distinguish the effectiveness of interactions between individuals in
different levels of a hierarchy we introduce three equations describing the
probabilities of infection. Let us describe the effectiveness of first-level con-
nections in the spreading of epidemics. Taking into account that interper-
sonal connections are a more effective way of spreading of the epidemic than
random contacts, we assume that the probability of an infection of an indi-
vidual by one of k neighbors is a simple nonlinear function of the number of
ill neighbors [23] and has a form:

p1 = WS→IN

√

kIL

k
, (4)

where kIL is the number of neighbors in the state (IL). Note that, p1 increases
faster for a lower value of kIL.

The second level of interpersonal interactions is random contacts be-
tween individuals in the same local group of G individuals. They are most
probable for the individuals living (or working) in this same place e.g. in the
same building. In our model we assumed that the probability of infection
resulting from such a random contact is proportional to the power two of
the probability that an individual from the local group is ill:

p2 = WS→IN

(

GIL

G

)2

, (5)

where GIL is the number of ill individuals in a local group.
The third level of interpersonal interactions is random contacts between

pairs of individuals who do not know each other and are chosen arbitrarily
from the whole population. The probability p3 of infection caused by such
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a contact does not depend on the localization of the individuals and we
assume it in the form:

p3 = WS→IN

(

NIL

N

)2

, (6)

where NIL is the number of ill individuals in the whole population. The
nonlinear factors in Eqs. (5), (6) cause the probabilities p2 and p3 to ini-
tialy increase very slowly and became significant for a great number of ill
individuals.

It can be seen that from the point of view of each individual its interper-
sonal interactions have a hierarchical structure and they can be divided into
three levels: k neighbors, individuals from the same local group and individ-
uals from the rest of the population. Note that, as results from Eqs. (4)–(6)
the probabilities p1, p2, p3 of an infection of each individual depend non-
linearly on the number of ill individuals and their localization in one of the
abovementioned levels. This is why the probability of an infection of a cer-
tain individual is greatest when an ill individual is one of its k neighbors, it
is smaller when an ill individual belongs to the same local group and it is
smallest when an ill individual is located somewhere in the rest of the popu-
lation. Other probabilities of a transition between states X,Y are described
by the parameters WX→Y, as in the master equation (Eq. (1)).

3. Results

Computations were performed for the initial conditions with one ill (IL)
and randomly located individual and the rest of the population healthy and
susceptible (S). Synchronous dynamics with assumption that an individual
can change its state only ones in each time step was used. Because there are
three equations describing the probabilities of infection, at first we check the
influence of individuals in the first level (p1), next the influence of the indi-
viduals in the second level (p2) and at the end the influence of the individuals
in the third level of a hierarchy (p3).

Fig. 2 shows the influence of the localization of the source of infection in
one of three levels of interpersonal interactions on the number of newly in-
fected individuals as a function of time (epidemic curves). It can be seen that
the number of newly infected individuals resulting from connections with k
neighbors is approximately ten times greater for times 30 < t < 50 than in
the case of random contacts. In the first stage of the epidemic, new infections
result from the interactions with k neighbors (probability p1), whereas the
possibility of infection resulting from random contacts (p2 and p3) becomes
significant when the number of ill individuals is large enough.
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Fig. 2. Epidemic curves (the number of newly infected individuals per time step)

as a function of time for different types of interpersonal interactions. Infections

resulting from interpersonal connections — curve (a); infections resulting from

random contacts with the individuals from a local group — curve (b); infections

resulting from random contacts with individuals from the rest of the population

— curve (c). The values of the other parameters are: γ = 3, L = 500, LG = 20,

WS→IN = 0.5, WIN→IL = 0.5, WIL→R = 0.5, WR→S = 0, kmin = 8 and kmax = 24.

In our model it is possible to investigate the influence of the value of
the clustering coefficient C (Eq. (3)) on the spreading process by changing
the value of pc. This problem was also discussed in earlier papers [11, 28].
The progress of the epidemic depends significantly on the value of C. As
is shown in Fig. 3, the greater C, the greater the time tmax, in which the

Fig. 3. The time tmax in which the number of ill individuals reaches a maxi-

mum value as a function of the clustering coefficient C for different values of

WS→IN. Results were averaged over 1000 independent simulations — standard

deviation is less than ten percent. The values of the other parameters are: γ = 3,

kmin = 8, kmax = 24, WIN→IL = 0.5, WIL→R = 0.5, WR→S = 0, L = 100, LG = 20 .

number of ill individuals reaches its maximum value, wmax = NIL(tmax)/N .
Moreover, the value of this maximum decreases with increasing C. Higher
values of C cause the number of individuals grouped in clusters of highly
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connected nodes increases. When one ill individual appears in a cluster, first
individuals from that cluster are infected and next the infection spreads
outside the cluster. This slows down the spreading process in the whole
population. The final number V of the individuals which were infected at
least one time before the epidemic dies out (i.e. the range of the epidemic)
is not influenced by C for the case WR→S = 0, but in the case WR→S > 0
range of epidemic slightly decreases with increasing C.

Another important parameter is the time of incubation proportional in
our model to τ = 1/WIN→IL. In the case when WR→S = 0 it was found that
the range of the epidemic V is influenced by τ−1 i.e. the higher the value
τ−1, the greater the range V , especially when the value WS→IN is low and
WS→IN < WIL→R. However, for high enough values of WS→IN, the range of
the epidemic does not depend on time τ . On the other hand, the duration of
the epidemic T and tmax decreases with the decreasing time of incubation —
the epidemic spreads more rapidly. The maximal number of ill individuals
wmax increases with the increasing parameter τ−1. In the case WR→S > 0
the behavior of the system is more complicated because the endemic state of
epidemic can occur with probability PE (we define PE as a probability that
after 104 time steps the number of ill or infected individuals is greater than
zero). It was found that the longer time of incubation τ , the greater proba-
bility PE. When τ is small the epidemic spreads rapidly and almost whole
population is quickly infected, then infected individuals become unsuscepti-
ble. There are only a few susceptible individuals which can be infected and
small number of ill individuals and, therefore, epidemic dies out, because
the probability that an individual will be infected is to low. On the other
hand, when τ is large, the epidemic spread much slower and the number of
susceptible individuals is always large enough. Hence, the probability PE

takes nonzero values. In Fig. 4 the influence of the parameter WS→IN on
the probability PE is shown. It was found that very contagious disease has
small chance to survive, especially when time of incubation is short. The
maximum of PE (which is a global maximum for large enough WIN→IL) is
observed for WS→IN slightly smaller than WIL→R.

Similar influence on the spreading process has the parameter WR→S

(Fig. 5). For very small values of WS→IN epidemic quickly dies out, be-
cause the probability that a new individual will be infected is to low. In
the case when WR→S is low the endemic state can occur only for narrow
range of values of WS→IN. This is so because probability of infection is
low enough and susceptible individuals appear approximately in the same
rate in which they are infected. If value of WS→IN is to large, almost the
whole population is quickly infected and the spreading process is stopped,
because the number of susceptible individuals is to low. On the other hand, if
WS→IN increases, the probability that susceptible individuals (which appear
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Fig. 4. The influence of the parameter WS→IN on the probability PE for different

values WIN→IL. Results were averaged over 100 independent simulations. The

values of the other parameters are as in Fig. 3 and WIL→R = 0.2; WR→S = 0.002;

pc = 0.5; L = 300.

Fig. 5. The influence of the parameter WS→IN on the probability PE for different

values WR→S. Results were averaged over 100 independent simulations. The values

of the other parameters are as in Fig. 3 and WIL→R = 0.2; WIN→IL = 0.2; pc = 0.5;

L = 300.

in population), will be infected also increases, even if there is relatively small
number of susceptible individuals and ill individuals. Therefore, probability
PE increases with increasing WS→IN for high enough WR→S. An increase in
WR→S cause that the greater number of susceptible individuals appears in
the population in one time step and there is an increase in PE.

Changes in the parameter LG have the strongest influence on the spa-
tial character of the spreading process. For the lowest values of LG there
is a small number of long range connections, and infections of individuals
spatially located near ill individuals are more likely. The spreading process
is similar to the propagation of the wave front when secondary sources of
epidemics are activated [22]. With increasing LG, the average length of con-
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nections increases. Therefore, the epidemic spreads slightly faster and the
range of the epidemic is slightly smaller, which results from weaker interac-
tions between individuals in the same local group.

The spreading process and the range of the epidemic are strongly influ-
enced by the parameter kmax. An increase in the value of kmax (and, as
a result, the total number of connections in the network) accelerates the
spreading process and increases the range of the epidemic V in the pop-
ulation (Fig. 6(a)). For higher values of kmax the maximal number of ill
individuals wmax has a higher value and occurs earlier (Fig. 6(b), (c)). As
results from Fig. 6 significant changes in V , wmax and tmax are observed
only for low values of kmax, then the curves saturate. It is also interest-
ing to discuss the influence of the parameter WS→IN on the aforementioned
relations. It was found, that the higher the values of WS→IN, the smaller
the influence of the parameter kmax on the evolution of the epidemic i.e.

the saturation of the curves V (kmax), wmax(kmax) and tmax(kmax) occurs for
lower values of kmax. For large enough values of the parameter WR→S, the
range of epidemic is slightly influenced by kmax (see dashed line in Fig. 6(a)
for WR→S = 0.005 and WS→IN = 0.3).

Fig. 6. The influence of the maximum number of the connectivity kmax on range of

the epidemic V (a), the maximum value of the number of ill individuals wmax (b)

and the time tmax (c), for different values of WS→IN and pc = 0.5. Results were

averaged over 1000 independent simulations — standard deviation is near to five

percent. The values of the other parameters are as in Fig. 3.
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The connectivity kstart of the individual which is the initial source of
the epidemic is another important parameter which determines the time
evolution of the epidemic. This parameter has a similar influence on the
behavior of V , wmax and tmax as the parameter kmax. An earlier work
discusses the influence of the localization of the initial source of epidemic in
the population on the spreading process [21].

It is important to investigate the influence of the preventive vaccination
(the number NR0 of the individuals in the state (R) at time t = 0) on the
spreading process. In Fig. 7(a) the time tmax (which well describe dynamic
properties of the spreading process, i.e. the rate of spread) as a function
of the number of preventive vaccinated (and randomly chosen) individuals
for different values of WS→IN, is shown. For low values of NR0 the time of
duration of the epidemic T increases, because epidemic can not spread freely.
For a certain value of NR0, denoted NRC, the time tmax reaches a maximum.
The abrupt decrease of the times tmax and T , observed for bigger values of
NR0, indicates that a phase transition occurs at NRC. This is proved by the

Fig. 7. The influence of the number of the preventive vaccinated individuals NR0

on time tmax (a) and range of the epidemic V (b) for different values WR→S and

WS→IN = 0.3. The relation between time tmax and the NR0 for different values of

WS→IN and WRS = 0.0015 in the case when individuals with greatest k are vacci-

nated is shown in (c). Results were averaged over 1000 independent simulations —

standard deviation is near to five percent. The values of the other parameters are

as in Fig. 3 and pc = 0.5.
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significant increase of the transient times (i.e. the time before the system
reaches the point attractor) for NR0 slightly smaller than NRC, which is
typical behavior for a phase transition. Such a phase transition is observed
in percolating systems [35]. When the value of WS→IN increases, the part of
the population that should be preventively vaccinated in order to suppress an
epidemic also increases. Similar influence has parameter WR→S: the greater
WR→S, the greater NRC. Moreover, with increasing WR→S the range of the
epidemic V decreases more abruptly (see Fig. 7(b)).

When preventive vaccinated individuals are not chosen randomly, but in-
dividuals with the greatest k are chosen, the results are similar (cf. Fig. 7(c)
and Fig. 7(a)). However, the phase transition occurs for a lower value NR0,
which means that a smaller number of preventive vaccinated individuals
is needed to suppress the epidemic. Note that, in this case, for values
NR0 slightly smaller than the critical value NRC, the times tmax and T
increase quickly with NR0. This means that the rate of the spreading of epi-
demic is much smaller, because only individuals with small k can be infected
(cf. Fig. 6(b)).

4. Comparison with master equation

In the master equation it is assumed that each individual interacts with
all other individuals in the population and interactions with all individuals
are treated in the same way. In contemporary and large communities this
is not true, because the people interact strongly only with a small (in com-
parison to the size of the whole population) number of other individuals. In
Fig. 8 results obtained from the analytical solutions of the master Eq. (1)
and from the present model are compared. The two curves are similar but
in the case of our model, the number of the ill individuals increases faster
and the maximum appears for lower values of time than in the case of the
solutions of the master equation. When only one individual is ill at t = 0,
the number of infected individuals NIN resulting from the master equation
increases very slowly, because PIL is very small. In our model, however,
strong interactions with nearest neighbors are taken into account; as a con-
sequence the epidemic spreads faster, which explain the discrepancy between
the location of the two curves. For large enough time t the solution of mas-
ter equation settles in fixed point, but in the case of numerical calculation
oscillations of the number of ill individuals are still observed. When the
number of susceptible individuals is very low, the number of ill individuals
decreases, because the probability that a new individual will be infected is
low. On the other hand, when the number of ill individuals is low the num-
ber of susceptible individuals increases. Hence, when the critical value NS is
reached, the epidemic starts to spread. In consequence, there is an abrupt
increase in NIL.
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Fig. 8. Comparison of the relation NIL(t)/N obtained in the presented model (solid

line) with the solution of the master equation (dashed line) for WS→IN = 0.5,

WIL→R = 0.1, WR→S = 0.005 and pc = 0.5. The values of the other parameters

are as in Fig. 3.

5. Conclusions

A model of the spreading of epidemic in a population with the hierar-
chical structure of interpersonal interactions have been described and inves-
tigated numerically. The structure of interpersonal connections is based on
a scale-free network. Spatial localization of individuals belonging to different
social groups and the mobility of the individuals in the community are taken
into account. It was found, that the type of interpersonal interactions has
an essential influence on the spreading process. In particular, connections
with the nearest neighbors (i.e. family or friends) are more important than
random contacts between strange individuals.

Our calculations, performed for initialy one ill and randomly chosen in-
dividual, show, that epidemic spreads more slowly in a population with
a higher value of the clustering coefficient C. This process depends also on
the incubation time τ . With increasing values of τ the duration time T of the
epidemic increases. On the other hand, an increase of the maximal number
of connections in the population kmax causes an increase of the range of the
epidemic and accelerates the spreading process. The influence of different
types of initial sources of epidemic, e.g. massive disperse of a pathogen sim-
ulating bio-terrorist attack, on spreading process need further investigation.

In our model the influence of preventive vaccinations on the spreading
of the epidemic was investigated. We found a critical value of preventively
vaccinated individuals, sufficient for the suppression of the epidemic.

From all the results obtained a general conclusion emerges that an in-
crease of the probability WS→IN decreases the influence of all the parameters
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characterizing the social network (i.e. kmax, LG or clustering coefficient) on
the dynamics and range of the epidemic. This observation shows how dan-
gerous are most contagious diseases.

Our results were compared with the solutions of the master equations.
The character of the two solutions is similar, however, there are discrepancies
between the locations of the maxima of the relations of the number of ill
individuals and time. It is caused by the assumptions in our model which
take into account the hierarchical structure of interpersonal interactions in
a more plausible way than in the case of the master equation.
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