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1D diffusion in glassy polymers with no stresses considered explicitly
is studied. A class of different uncorrelated and correlated random walks
(RW), described by suitable master equations, is presented. The limiting
processes which lead to the set of partial differential equations (PDEs) of
parabolic and hyperbolic types generating the “travelling waves” solutions
are discussed. Finally, some numerical solutions addressed to diffusion in
glassy polymers are discussed.
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1. Introduction

Diffusion in glassy polymers is known as non-fickian “case II diffusion”
[1, 2]. In this work we would like to show the molecular basis of some of
the equations used in the description of it. First of all, however, to provide
some flavour of the process in question, let us comment on a few experimental
facts which form a basis of classification of the process under consideration
as “case II diffusion”. Namely, there are three such features (see Fig. 1):

• travelling waves form of probability density (concentration) profiles,

• S-shape of kinetic isotherm sorption curve Mt

M∞
→

√
t,

• straight line form of Mt

M∞
→ t for early times of the process.
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Fig. 1. The characteristic features of case II diffusion.

So far there is no direct way of showing how to get from random walk
process to partial differential equation generating the listed features of case II
diffusion. Some guesses can be made however based on the first of the listed
features i.e. travelling wave form of solution.

It is known that there are, at least, three classes of equations for which
a suitable random walk process exists i.e.:

(i) Smoluchowski equation of the form

∂p

∂t
= −c ∂p

∂x
+D

∂2p

∂x2
, (1)

or
∂p

∂t
= − ∂

∂x
(c(x)p) +D

∂2p

∂x2
. (2)

(ii) Quasi-linear diffusion equation

∂p

∂t
=

∂

∂x

[
D(p)

∂p

∂x

]
. (3)

(iii) Damped wave equation (hyperbolic Smoluchowski equation)

∂p

∂t
+ τ

∂2p

∂t2
=

∂

∂x

[
D(·)∂p

∂x

]
, (4)

where p is the probability density (or concentration of identical, non-
interacting particles), and D(·) stands for D, D(t) or D(x) possess the
travelling, solitary wave solutions [3–5].
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The analysis presented here is mainly applicable to 1D diffusion in glassy
polymer membranes where a probability density (concentration) gradient
arises within the membrane due to the boundary conditions. It can also be
applied to the confined 1D geometries like nanopores. In higher dimensional
space, in case there is a local equilibrium in transverse direction to the
direction of the probability density gradient (i.e. direction of the diffusion
flux) then the 2D/3D problem in confined geometries can be reduced to 1D
diffusion problem with energetic and/or entropic barrier [6].

In the next section we shall provide a scheme of how to get from RW
to the above mentioned PDEs with the emphasis on the physical “flavour”
rather than the mathematical rigour.

2. From RW to PDE

2.1. Unrestricted 1D random walks with Smoluchowski equation
as continuous limit

2.1.1. Constant jump probabilities of colliding molecules

The apparent randomness of the motion of molecule is characterised by
assuming that each collision independently moves the particle to the right
with probability p̂ or to the left with probability q̂, respectively, (where
p̂+ q̂ = 1).

If we recall p(x, t) as a probability of a particle to be at position x at
time t then we can easily accept that

p(x, t+ τ) = p̂p(x− δ, t) + q̂p(x+ δ, t) , (5)

i.e. that the probability of a particle to be at x at the time t + τ equals
the probability that it was at the point x − δ at the time t multiplied by
the probability p̂ that it moved to the right in the following step plus the
probability that the particle was at the point x+ δ at the time t multiplied
by the probability q̂ that it moved to the left in the following step.

Fig. 2. An illustration of behaviour of jumping molecule to be found at position x

and time t+ τ according to Eq. (5).
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Expanding all terms of Eq. (5) in a Taylor series with the remainder we
get 





p(x, t+ τ) = p(x, t) + τpt(x, t) +O(τ2) ,

p(x± δ, t) = p(x, t) ± δpx(x, t) + 1
2
δ2pxx(x, t) +O(δ3) .

(6)

Substituting (6) into (5) and taking the limits as δ → 0 and τ → 0 we
readily obtain

∂p

∂t
= −c ∂p

∂x
+D

∂2p

∂x2
, (7)

i.e. the desired Smoluchowski equation with D = limδ→0(δ
2/2τ ) and

c = limδ→0(δ/τ (p̂− q̂)).

2.1.2. Position dependent jump probabilities

Extending the results of the previous section we shall consider the ran-
dom walk process in which probability that a particle located at the point
x moves to the right at the i-th step is

P (xi = δ) = p̂(x) = 1
2
[1 + b(x)δ] , (8)

and the probability that it moves to the left is

P (xi = −δ) = q̂(x) = 1
2

[1 − b(x)δ] . (9)

As can be seen from the above p̂(x)+ q̂(x) = 1 for any b(x). On the other
hand the choice of b(x) should provide an obvious relation 0 ≤ p̂, q̂ ≤ 1.

Hence, taking into consideration Eqs. (8) and (9) the relation (5) can be
altered as follows

p(x, t+ τ) = p̂(x− δ)p(x− δ, t) + q̂(x+ δ)p(x+ δ, t) , (10)

and using Taylor series expansion the final limiting partial differential equa-
tion can be obtained

∂p

∂t
= − ∂

∂x
D [b(x)p] +D

∂2p

∂x2
. (11)

Note that for constant b we get c = bD. It is also worthy to notice
that heterogeneous “drift term” provided by Eq. (11) reflects much better
the activity of induced stresses in case II diffusion than the constant one
(cf. Eq. (7)). Namely, some experimental evidences on shape and placement
of the concentration profile can be taken into account in constructing the
b(x) function (it should be given, anyway!) [7].
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It is noteworthy that similar 1D Smoluchowski-type equation with po-
sition dependent coefficients arises from the reduction of some 2D/3D dif-
fusion problems in confined geometries (e.g. diffusion in the nanopares of
smoothly varying cross section area) [6]. In such case the dependence on
position accounts for the local inhomogeneity of the membrane.

2.2. Unrestricted 1D random walk with nonlinear (quasi-linear)
diffusion equation as continuous limit

As should be expected, in case of nonlinear diffusion equation, the prob-
abilities of a random walker to go right (p̂) or left (q̂) are concentration
(probability density) dependent. We will refer to two cases introduced by
Montroll and West [4, 9].

2.2.1. Clannish random walk

Suppose we have a population of two species of random walkers A and B
who perform a concurrent 1D random walk characterised by the intensifica-
tion of the clannishness of the members of one species as the concentration of
the other increases. The walk is performed on a horizontal line divided into
a number of cells, each of the length a, and it is assumed that the density
of both species combined is ρ, which remains constant. The total numbers
of walkers in each cell is N = ρa (see details in [10]).

A clannishness bias, characterised by a parameter α is introduced such
that from a cell of concentration p of A’s the probability of an A making its
next step to the right is

p̂+ α(1 − p) , (12)

while that to the left is

q̂ − α(1 − p) , (13)

and, obviously, p̂+ q̂ = 1.
Following the treatment in [10] we finally get

∂p

∂t
= − ∂

∂x

[
D
∂p

∂x
− Pp− ψp(1 − p)

]
, (14)

where D = limδ→0 (a2/2τ ), P = limδ→0 (a(2p̂ − 1)/τ), ψ = limδ→0 (2αa/τ).
By suitable “rescaling” Eq. (14) can be put in a slightly simpler form.

Namely, if

φ = P + ψ and r =
pφ

ψ
,
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then we get

∂r

∂t
= − ∂

∂x

[
D
∂r

∂x
− ψr(1 − r)

]
, (15)

as an alternative form of the clannish random walk equation.

The clannish random walk resulting in an arbitrary functional drift, was
discussed in [8].

2.2.2. Quasi-linear random walk

Very similar arguments lead to the following, quasi-linear diffusion equa-
tion as a continuous limit of concentration dependent random walk [9].

∂p

∂t
= D

∂2p

∂x2
− 2ψ

∂

∂x

[
g(p)p

∂p

∂x

]
, (16)

or
∂p

∂t
=

∂

∂x

[
D̂
∂p

∂x

]
, (17)

where D = a2/(2τ ), ψ = (µa2)/τ , D̂ = D − 2ψg(p)p, g is a weighting
function, µ is a coupling parameter.

As can be seen from the form of diffusion coefficient D̂ there are some
possibilities to get the step function like relationship for D̂(p) needed to
reflect the situation in case II diffusion (see Fig. 3). This can be done by
a suitable choice of a coupling parameter µ, negative in this situation.
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Fig. 3. Concentration profiles for quasi-linear diffusion equation. Early time

solution to Eq. (16) for p(x, 0) = 0, p(0, t) = 1 and D(p) = 50.5 + 49.5

tanh((p− 0.8)/0.05).
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2.3. Unrestricted 1D random walk with hyperbolic Smoluchowski equation
as continuous limit

In this section we will consider the correlated random walk i.e. when

〈xixj〉 6= 0 for any i, j (18)

holds, and the correlation coefficient reads

ρ(xi, xj) =
〈(xi − 〈xi〉)(xj − 〈xj〉)〉

[V (xi)V (xj)]
1

2

. (19)

Assuming partial correlations between two non-adjacent random vari-
ables xi and xj (i.e. |j− i| > 1) are equal to zero, and identical distribution
of random variables, we have

ρ(xi, xi+1) = ρ , (20)

and consequently
ρ(xi, xi+k) = ρk . (21)

Following [11] we can write

〈
x2

〉
=

(
δ

τ

2
)[

1 + ρ

1 − ρ
τt− 2ρ (1 − ρ

t

τ )τ2

(1 − ρ)2

]

, (22)

where δ is the particle jump within time τ and they both tend to zero.
Assuming further that lim(δ/τ) = γ is finite (the particle velocity) we get

lim
τ→0

(
τ

1 − ρ

)
=

1

2λ
, λ > 0 , (23)

to provide, a finite non-zero limit for Eq. (22). Following Ornstein and
Uhlenbeck [12] we also have

lim
τ→0

(
ρ

t

τ

)
= e−2λτ , (24)

so, finally, Eq. (22) tends to

〈x2〉 =
γ2

λ

[
t− 1

2λ

(
1 − e−2λt

)]
. (25)

Let us observe that equation (25) gives

〈
x2

〉
= Dt , (26)



1602 Z.J. Grzywna, J.K. Stolarczyk

where D = γ2/λ for large values of time i.e. the result from Section 2.1.1,
and for small times, on expanding e−2λt in a Maclaurin series Eq. (25) gives

√
〈x2〉
t

∼= γ , (27)

which says that the motion of the particle is nearly uniform with speed γ.
Following the approach of [11] we shall show how to construct the set of
“master equations” and their limiting PDE that characterises the correlated
RW described.

Let α(x, t) be the probability that a particle is at point x at time t and
arrived there from the left, whereas β(x, t) is the probability that a particle
is at x, and arrived there from the right. Let also define probability that
the particle persists in its direction after completing a stop by p̂, and by q̂
the probability that the particle reverses its direction. Probabilities p̂ and
q̂ are constant and their sum equals 1. With step δ occurring in time τ we
get (see Fig. 4)

α(x, t + τ) = α(x− δ, t)p̂ + β(x− δ, t)q̂ , (28)

β(x, t+ τ) = β(x+ δ, t)p̂ + α(x+ δ, t)q̂ . (29)

Fig. 4. An illustration of behaviour of jumping molecule to be found at position x

and time t+ τ according to Eqs. (28), (29).

Following [3,11] one can get from Eqs. (28) and (29) the coupled system
of first order PDEs

∂α

∂t
= −γ ∂α

∂x
− λα+ λβ , (30)

∂β

∂t
= γ

∂β

∂x
+ λα− λβ , (31)

describing probability density functions for right and left moving particles,
respectively.
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2.3.1. Constant particle velocity, γ = const.

This case, by the postulate γ = const., refers to homogeneous space
within which the molecule walks randomly. As we already have seen from
Fig. 4 the probability density distribution of a moving particle p(x, t) is
a sum of α and β

p(x, t) = α(x, t) + β(x, t) . (32)

The system (30) and (31) along with the proper initial conditions consti-
tute an initial value problem (IVP) that can be solved directly. However, to
compare our results with those of the previous sections we need to get the
suitable PDE of second order. To do that we simply follow [3], to get finally

∂p

∂t
+ τ

∂2p

∂t2
= D

∂2p

∂x2
, (33)

i.e. hyperbolic diffusion equation where τ = 1/(2λ) and D = γ2/(2λ).

2.3.2. Position dependent particle velocity, γ = γ(x)

This case refers to spatially inhomogeneous, correlated random walk
problem. Assuming λ = const. and γ = γ(x) we get

∂α

∂t
= −γ(x)∂α

∂x
− λα+ λβ , (34)

∂β

∂t
= γ(x)

∂β

∂x
+ λα− λβ . (35)

Following essentially the same procedure we arrived at the “Smoluchowski
type” hyperbolic diffusion equation

∂p

∂t
+ τ

∂2p

∂t2
= D(x)

∂2p

∂x2
+

1

2
D′(x)

∂p

∂x
, (36)

where prime indicates differentiation with respect to x. Please, note that the
form of D(x) function provides modelling of both: attractive forces when
D(x) is an increasing function of x and repulsive forces otherwise.

2.3.3. Time dependent particle velocity, γ = γ(t)

This case describes the particle movement under the force which does
not follow the Stokes law [13], like in the case of γ = const., but offers
the diffusion in the time dependent potential. Assuming λ = const. and
γ = γ(t) we get

∂α

∂t
= −γ(t)∂α

∂x
− λα+ λβ , (37)

∂β

∂t
= γ(t)

∂β

∂x
+ λα− λβ . (38)
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Also in this case the procedure from the previous section holds i.e.
adding Eqs. (37) and (38) and next subtracting one from another, and differ-
entiation with respect to t and x, respectively, yields the following equation

∂p

∂t
+ τ

∂2p

∂t2
= D(t)

∂2p

∂x2
+

1

2
D′(t)

∂p

∂x
, (39)

where prime indicates differentiation with respect to time. Also here both
types of forces can be modelled, i.e. attractive and repulsive.

As we have seen from the above there are quite a few possibilities of pro-
viding a molecular view of travelling wave behaviour of a probability density.
In the next paragraph we shall show how it looks like on a phenomenologi-
cal level i.e. we shall present some numerical solutions of the aforementioned
PDEs1.

3. Results and discussion of numerical solutions

We shall restrict our analysis to one initial and boundary value problem
(IBVP) i.e. to unsymmetrical sorption which formulation can be presented
in the following form






Âp = 0 , x ∈ (0, l), t ∈ R
+

p(x, 0) = 0 ,

p(0, t) = p0 ,

flux |x=l = 0 ,

(40)

where Â stands for differential operator which takes the form of Eqs. (1)–(4).

3.1. The simplest Smoluchowski equation

In this case the Â takes the form

Â ≡ ∂

∂t
+ c

∂

∂x
−D

∂2

∂x2
. (41)

Our intention is to demonstrate that Eq. (1) can reproduce the main
features of case II diffusion (cf. Fig. 1) for a suitably chosen drift constant c
(see Fig. 5)

Note, that the value of drift coefficient represents the constant force
(the negative derivative of linear potential field) supporting the diffusional
movement of a Brownian particle.

1 The divergence form of Eqs. (36), (39) will be discussed in Appendix.
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Fig. 5. Case II diffusion features reproduced by Eqs. (40), (41) for different values

of convection parameter c. Diffusion coefficient D = 1.

3.2. Smoluchowski equation with position dependent drift term

Let us observe that operator (42) offers description with inhomogeneous
drift i.e. the force under which the Brownian molecule moves depends upon
position [7]. In Fig. 6 we present the family of solutions of the problem (40)

with Â given by Eq. (42) for different b(x) =
{
1 + εx2

}
where ε is a constant.

The choice of particular relation for b(x) depends on “physical” analysis of the
situation in question. For example b(x) as a negative function on x describes
Brownian motion with a particle subjected to an elastic “restoring” force.

Â ≡ ∂

∂t
+ c

∂

∂x
Db(x) −D

∂2

∂x2
. (42)

It is quite evident that in case of x-dependent drift we can have diffu-
sion enhanced by a drift (positive sign) or drift acting opposite to diffusion
(negative sign).
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Fig. 6. Case II diffusion features reproduced by Smoluchowski equation with x-dep

drift. Time evolution of p(x, t) profiles for ε = −9; comparison of p(x, t) profiles

for different values of ε, where b(x) = 1 + εx2 and mass uptake as a function of

time and square root of time.

3.3. Hyperbolic diffusion with constant D

This equation is known to eliminate the infinite speed of a particle in
Brownian motion by the usual parabolic equation, that is definitely not re-
alistic [14]. This is also well known that this equation, known as damped
wave equation, generates the “travelling wave solution” or d’Alembert solu-
tion [15]. Therefore, the features shown in Fig. 7 are quite expected provided
the relaxation time τ is sufficiently large, usually in the order of minutes.

It should be noticed that case II diffusion features are reproduced only
for τ ≥ 1.

3.4. Hyperbolic diffusion with x dependent D

The process represented by Eq. (36) is, in fact, hyperbolic inhomoge-
neous diffusion with inhomogeneous drift. As can be seen from Fig. 8 the
manifestation of the spatial inhomogeneity takes place for sufficiently large x.

The choice of D(x) dependence should depend on the case in question,
and has to be verified by experimental data.
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Fig. 7. Case II diffusion features reproduced by hyperbolic diffusion with constant

D and different relaxation times τ , according to Eq. (33).
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Fig. 8. Case II diffusion features reproduced by hyperbolic diffusion with position

dependentD, according to Eq. (36), where ε is a parameter in expression onD(x) =

1 + εx and τ = 0.1
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3.5. Hyperbolic diffusion with time dependent D

The case is, almost by definition, addressed to glassy polymers where the
time dependent (relaxation) phenomena are the generic features [1, 16–18].
Like previously, the process of transport represented in this case by Eq. (39)
is of Smoluchowski type i.e. it contains also the drift term.

As can be seen from Fig. 9 the influence of t-dependent coefficients in the
set of plots is mild but significant. It is also quite visible that heterogeneity
i.e. x-dependence is a more sensitive property than the time dependence.
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Fig. 9. Case II diffusion features reproduced by hyperbolic diffusion with time

dependent D, according to Eq. (39), where ε is a parameter in expression onD(t) =

1 + εt2 and τ = 0.1.

4. Concluding remarks

In this paper we have extended an analysis of microscopic view of diffu-
sion in a potential field (stresses). We have shown how to get from random
walk to partial differential equation of second order for cases where jump
probability depends upon position, time or presence of other particles. One
of the main points in our analysis was an observation that stress field in-
duced by the diffusing molecules is a potential field at least in Hooke’s law
regime. That gave a solid basis for Smoluchowski type equations which
have been used throughout the paper, supporting the existence of a “drift
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term” i.e. deterministic part of a mass transport operator in question.
On the other hand we have provided quite a few ways of expressing cor-
relation (i.e. an active way of taking into account the presence of other
molecules). Namely, in a standard way by assuming (18), we have arrived
at the hyperbolic Smoluchowski equation. By letting the probability of ran-
domly walking molecules to be x, t or concentration dependent, we have
been able to generate the class of PDEs as continuous limits of correlated
(in a more general sense) random walk.

The main purpose of our analysis, however, was to provide an explana-
tion of case II diffusion. As can be clearly seen from Fig. 3 the quasi-linear
RW gives the travelling waves form of concentration profiles. Decreasing
velocity of these waves provides, however, no possibility of reproducing the
two other features of case II [1, 2]. The full reproduction is provided by
the set of parabolic Smoluchowski equations (Eqs. (41), (42)) as well as by
hyperbolic type of diffusion equations (Eqs. (33), (36), (39)).

It is worthy to realize that both approaches are applicable to glassy
polymers below their glass transition temperatures Tg (or for penetrant con-
centration below critical value c⋆). A very interesting approach to diffusion
through nanopores in glassy polymers below their Tg was presented only re-
cently [19,20]. Above Tg the polymer changes itself to elastic state in which
stresses relax (almost) instantaneously. Hence no stress field can exist there
for prolonged periods of time. We claim, however, that even for polymers
undergoing glass transition induced by diffusing particles our approach is
still valid for layers of glassy polymer ahead of the case II diffusive front.
Strong stresses there have been confirmed experimentally (resulting in cracks
and crazes in the polymer) supporting the approach presented in this paper.

This work was partially supported by Silesian University of Technology
grant number BW-422/RCh4/2004.

Appendix A

As it is well known the condition for mass conservation i.e. the continuity
equation, reads

∂p

∂t
= −∂J

∂x
, (A.1)

where p(x, t) is the probability density (concentration), and J(x, t) is the
flux.
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All equations discussed in this paper fulfil this condition although not in
all cases it is obvious. For the hyperbolic diffusion equation it reads

∂p

∂t
= − ∂

∂x

(
−D∂p

∂x
− τ

∂J

∂t

)
(A.2)

and
∂p

∂t
= D

∂2p

dx2
+ τ

∂2J

∂t∂x
. (A.3)

Taking into account equation (A.1), we can get

∂2J

∂t∂x
= −∂

2p

∂t2
, (A.4)

what finally gives

∂p

∂t
+ τ

∂2p

∂t2
= D

∂2p

∂x2
. (A.5)

In case of Smoluchowski hyperbolic diffusion equations i.e. with drift,
the flux is given by the equation

J(x, t) = −D(t)
∂p

∂x
+ k(t)p − τ

∂J

∂t
, (A.6)

where k(t) = 1/2D′(t).
For position dependent case we have to write

J(x, t) = −D(x)
∂p

∂x
+ kp− τ

∂J

∂t
, (A.7)

where k is a constant drift coefficient. This allows only linear dependence
of D upon x i.e. D(x) = D0(1 + εx). This assumption leads to

∂p

∂t
+ τ

∂2p

∂t2
=

∂

∂x

[
D(x)

∂p

∂x
− 1

2
D′(x)p

]
, (A.8)

i.e. k = 1/2D′(x) = 1/2εD0.
Note: In numerical calculations D0 = 1.
It is noteworthy that a general method to show that a diffusion equation

fulfils the mass conservation law (i.e. is in agreement with the continuity
equation) requires a proof that the diffusion flux J in the equation is exactly
the same as the flux entering the dissipation or the entropy production of
the particular diffusion process [21].
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