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PECULIARITIES OF BROWNIAN MOTION
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Transport of over-damped Brownian particles in periodic double-barrier
potentials is studied in the absence and under the influence of a constant
tilting force. Depending on the value of the tilt the transport of particles in
potentials with two barriers per period has in general character similar to
that in simple potentials, exhibiting at the same time in certain parameter
regions qualitatively different features. As the most unexpected result it
is found that diffusion coefficient can have two maxima. It is also shown
that in the wide range of tilting force the transport can be realized through
two different Poissonian processes, having at a certain tilt a resonant-like
enhancement of the coherence.

PACS numbers: 05.40.–a, 05.60.–k, 02.50.Ey

Brownian motion in periodic structures is a relevant problem in several
fields of physics, being very interesting from technological, experimental, as
well as theoretical point of view, and has been a subject of intense investiga-
tions already many years [1–3]. It represents a model that can be applied to
numerous systems, ranging from superionic conductors [4] and intercalation
compounds to sub-monolayer films adsorbed on surfaces of crystalline sub-
strates [5], weakly pinned charge-density-wave condensates [6], and Joseph-
son junctions [7]. These systems consist of particles that are fixed around
certain equilibrium sites and form a regular lattice, and of particles that are
mobile and move through this lattice. In Ref. [2] it was shown that the effect
of any one-dimensional periodic field is to produce a macroscopic diffusion
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Fig. 1. The general shapes of the periodic potentials. Solid line: piecewise linear
double-barrier potential; dashed line: simple sawtooth potential. The potential
barrier with the unit-height we call to be the main barrier, and the one with the
height ∆ = A2−A1 < 1 the additional barrier of the double-barrier potential. The
parameters k1, k2 and k define the positions of the extrema of the potential, while
the quantities α, β, γ and δ represent the slopes (forces).

constant which is always smaller than the Einstein diffusion constant. Later
it was proved in Refs. [8, 9] (see also Ref. [10]) that applying a constant
external force the diffusion coefficient can be enhanced compared to the free
diffusion.

In the studies of Brownian motion in periodic potentials the easiest
choice, and also the mostly exploited one, is to use a simple cosine-type
potential. However, in many cases this is an oversimplification and we are
closer to a real situation using more complicated potentials (see Ref. [11], and
also [12]). As said in Ref. [13] experimental studies performed on different su-

perionic conductor materials show that a number of the ionic compounds are

known in which diffusion of ions occurs in double-well potentials. Also the
molecular-dynamics simulations of self-diffusion on metal surfaces [14] and
experimental data for superionic conductors [15] provide the evidences that
the potential barriers of different heights are important for understanding of
transport processes in corresponding systems. To study double-barrier po-
tentials is of relevance also in modeling the kinetics of motor proteins [16,17].

In the present contribution we will thus study the over-damped motion
of Brownian particles in the periodic potentials with two barriers per period
(see Fig. 1), focusing on the new features appearing compared to the case of
the simple potentials. We consider both possibilities: the Brownian motion
just in the periodic potential V0(x), and also under the influence of a constant
force. The system is described by the following Langevin equation

η
dx(t)

dt
= −

dV0(x)

dx
+ F + ξ(t) , (1)
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where F ≥ 0, η is the viscous friction coefficient, ξ(t) is the zero mean
Gaussian white noise with correlation function 〈ξ(t) ξ(t′)〉 = 2 ηkBT δ(t− t′),
and T is the temperature. Though we consider only the equilibrium thermal
fluctuations, the results are interesting to compare with the ones obtained in
Ref. [12] for the over-damped Brownian particles in a potential composed of
N hills within one period, driven also by symmetric dichotomic fluctuations.

The basic quantities of our interest are the effective diffusion coefficient
and the average particle current defined as:

D = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
,

〈ẋ〉 = lim
t→∞

〈x(t)〉

t
. (2)

The third quantity, we are interested in, is the Péclet number

Pe =
L〈ẋ〉

D
, (3)

which characterizes the relationship between the directed and diffusive move-
ment of a Brownian particle [9]. Proceeding from the general scheme devel-
oped in Ref. [8] we derived exact algebraic expressions for these quantities
in the case of the simple sawtooth potential (the calculations and results
are revealed in Ref. [18]), and also in the presence of an additional potential
trap (see Ref. [20]). In our calculations we took, with no loss of generality,
the period L = 1 and replaced the relevant quantities with the dimensionless
ones: F̃ = F/Fc , where Fc = A/(L−k) corresponds to the disappearance of

the main potential barrier, and T̃ = kBTA−1 , D̃ = DηA−1 , D̃0 = D0ηA−1

so that D̃0 = T̃ and 〈˜̇x〉 = ηA−1 〈ẋ〉. We also chose A = 1. For brevity, in
what follows, we will omit the tilde signs above the symbols. Thus, all the
dependencies, we plot in this paper, are dimensionless and are based on the
explicit expressions for the diffusion coefficient, current, and Péclet number.

The analytic result for the diffusion coefficient, presented in Ref. [20], is
valid for an arbitrary value of the temperature and the tilting force. Now,
if F = 0 then D = Z−1, where the statistical sum can be divided into two
parts, Z = Z1 + Z2 with

Z1 = 2T

{

gδα gαβ

[

cosh
1 − A1

T
− 1

]

+ gαβ gβγ

[

cosh
A2 − A1

T
− 1

]

+ gβγ gγδ

[

cosh
A2

T
− 1

]

+ gγδ gδα

[

cosh
1

T
− 1

]}

, (4)

Z2 = −2T

{

gαβ gγδ

[

cosh
A1

T
− 1

]

+ gδα gβγ

[

cosh
1 − A2

T
− 1

]}

, (5)
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where

gµν =
1

tan µ
+

1

tan ν
,

with µ, ν = α, β, γ, δ (see Fig. 1).
The four terms in Z1 correspond to the four potential barriers that parti-

cle overcomes per period due to the diffusive motion, and that are in general
of different heights. The higher these barriers are compared to the temper-
ature, the bigger is the factor Z1 and the more suppressed is the spreading.
The coefficients gµν gνσ take into account the shape of the minimum as well
as the shape of the maximum of the potential associated with the corre-
sponding barrier. The two terms in Z2 take into account the differences of
the extrema from the minimum value A1 = 0 and from the maximum value
A2 = 1.

For the potentials with ∆ = A2 − A1 = 1 the factor Z2 = 0. Whereas
now gδα gαβ + gαβ gβγ + gβγ gγδ + gγδ gδα = 1, then Z1 does not depend on
the values of the asymmetry parameters k1,2 and k (see Fig. 1) anymore,
and Z = Z1 = 2T [cosh(T−1) − 1] like in the case of the simple sawtooth
potential. However, in the following we assume that ∆ < 1, and then Z2 < 0.

If we consider now a Brownian particle moving in a bistable potential,
that is A1 = 0 but A2 6= 1, then

Z1 = 2T gαβγδ

{

gβγ

[

cosh
∆

T
− 1

]

+ gδα

[

cosh
1

T
− 1

]}

,

Z2 = −2T gβγ gδα

[

cosh
1 − ∆

T
− 1

]

. (6)

If instead A2 = 1 and A1 6= 0 then the potential is metastable and

Z1 = 2T gαβγδ

{

gαβ

[

cosh
∆

T
− 1

]

+ gγδ

[

cosh
1

T
− 1

]}

,

Z2 = −2T gαβ gγδ

[

cosh
1 − ∆

T
− 1

]

. (7)

In Eqs. (6) and (7)

gαβγδ =
∑

µ=α,β,γ,δ

1

tan µ
.

In the case of a symmetric metastable potential α = β and γ = δ, for the
bistable one α = δ and β = γ, and one can see that the quantities Z1 and Z2,
and thus the diffusion coefficient, coincide for the same values of ∆ for the
two types of potentials. If the potentials are asymmetric then the behavior of
the diffusion coefficients D versus ∆ can be different. The dependence of the
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Fig. 2. Diffusion coefficient D as a function of ∆ in the symmetric bi- and
metastable periodic potentials in the absence of an tilting force; T = 0.1.

diffusion coefficient in symmetric bi- and metastable potentials versus the
additional barrier height is illustrated in Fig. 2. In this figure one can also
see that it is possible to have a situation where the diffusion in a potential
with two minima per period is suppressed compared to the case of a simple
sawtooth potential, though from the condition Z2 < 0 one could assume that
an additional trap in general should promote diffusion. However, if the value
of ∆ is sufficiently small the effective potential contains the segments where
the deterministic force is approximately zero, which causes the decrease of
diffusion (cf. Ref. [20]. Comparable results for the behavior of D(∆) are
found in Ref. [13] at a high friction regime. However, in Ref. [13] the motion
is not still completely over-damped and the diffusion coefficient rises at the
values ∆ → 0 which obviously is an effect of the inertia of a particle. In
the over-damped limit such a region is absent and the value of diffusion
coefficient at ∆ = 0 is

D = 2

[

T

(

cosh
1

T
− 1

)

+ sinh
1

T
+

1

2T

]−1

. (8)

Now, if the Brownian particle is in a simple sawtooth potential with
a positive asymmetry (k > 1/2) and there is a very small constant force in-
fluencing the system, then the diffusion is suppressed respect to the spread-
ing at F = 0 (see Ref. [21], but also [22]). The same is valid for a double-well
potential if at least one of the potential minima is asymmetric to the right,
this means k1 > k2/2 or/and k > (1 − k2)/2. Furthermore, for a certain
type of potential shape one can observe the suppression of diffusion also
at the larger tilting forces giving rise to a double-maximum in the diffu-
sion coefficient D(F ), as demonstrated in Fig. 3. In fact, astonishing is not
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Fig. 3. The existence of two maxima for diffusion coefficient versus tilting force:
(1): T = 0.0095; (2): T = 0.01; (3): T = 0.0105. The potential parameters are
k1 = 0.79, k2 = 0.8, k = 0.81, A1 = 0.888, A2 = 1; the corresponding periodic
potential is also depicted.

the suppression of the spreading, but the increase of the diffusion coeffi-
cient after the decrease. To obtain such a double-enhancement the slope of
the additional potential barrier must be much bigger compared to the one
of the main barrier, and the height of the barrier must be relatively small
(∆ = 10T , T ≈ 1/100). The decrease of the diffusion coefficient versus

tilting force takes first of all place due to the disappearance of the main
potential barrier. At the tilting force F = 1 particle can be in the region of
free diffusion or trapped in the additional potential minimum. In that case
for every value of F , which is very slightly larger than the previous value,
we can consider the situation to be equal to the one of tilting force close to
zero, whereas the actual external force is small compared to the critical force
at which the potential has no minima anymore. Thus as an additional effect
the spreading is decreased similarly to the suppression which takes place at
small values of the tilting, as discussed in [21]. Further the diffusion coeffi-
cient increases due to the acceleration of diffusion as it takes place also in
the simple potentials, and due to the delocalization process as the effective
barrier height gets smaller (see Ref. [21]). Whereas the value of the tilting is
actually not zero, but is very large, and the height of the potential barrier is
small compared to the temperature, then the diffusion decreases to the free
diffusion level already before exceeding the critical tilting.

For most of the potentials with β > δ, however, the diffusion coefficient
D(F ) does not have two maxima, but the acceleration of diffusion is charac-
terized by two regions related to the two potential minima (see Fig. 4). In
Refs. [18, 19] we showed, in the case of a simple sawtooth potential, that at
low temperatures and for subcritical tilt the coherence level stabilizes to the



Peculiarities of Brownian Motion Depending on the Structure . . . 1619

5 Pe

log    [D/D(0)]

0

10

20

30

40

0.4 0.8 1.2 1.6 2
F

10

.

Fig. 4. The comparison of the diffusion coefficient D and Péclet number Pe as the
functions of tilting force F . Dashed line: simple sawtooth potential; solid line:
double-well potential with k1 = 0.3, k2 = 0.38, k = 0.65, ∆ = 0.4. Temperature
T = 0.01.

value Pe(F ) = 2. In this parameter region, where the acceleration of diffu-
sion is most essential, the particles are mainly localized around the potential
minima and transport is described with great accuracy by the Poissonian
hopping process (see Ref. [18]).

Now, for the double-well potentials with β > δ there exists a threshold
value of the tilting force

F0 =
(1 − ∆)(1 − k)

1 − k − ∆k
, ∆k = k2 − k1 , (9)

at which the main potential barrier becomes smaller than the additional
barrier. If F < F0, particles are mainly localized near the primary traps,
whereas if F > F0, near the extra traps. As a result the acceleration of
diffusion versus tilting force is realized through two different Poissonian pro-
cesses. As seen in Fig. 4, the two regions of the acceleration of diffusion
correspond to these different Poisson processes. Thereby the Poissonian
process in the first region coincides with the one which takes place in the
corresponding simple sawtooth potential.

In the region of crossover between the two regimes of the enhancement
of diffusion, the Péclet number passes through a sharp maximum with the
characteristic value Pe = 4. Thus, in a certain region of the tilting force
a small variation of the potential has an influence on the character of trans-
port (cf. Ref. [23]). The observed enhancement of coherence appears in
the region, where the acceleration regime of diffusion and current changes,
whereas the increase of diffusion slows down compared to the increase of
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current. In this case the average populations of the primary traps and the
extra traps are close to each other and the possibility of the localization of
Brownian particles near the minima of both types is considerable, leading to
the relative suppression of diffusion. The suppression is the largest if both
of the potential traps are switched on with equal weights. Such a doubling
of the effective number of the localization centers in the region of Poisso-
nian process gives a qualitative explanation for the universal value of Péclet
number Pe = 4.

In Fig. 5 one can see that for the existence of the extremum in the
coherence of Brownian motion versus tilting force it must be valid that
β > δ. If this condition is not fulfilled then the Brownian motion is in
the region of subcritical tilting described by one Poissonian process that
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Fig. 5. 2/Pe (randomness parameter) versus tilting force F and ∆. Asymmetry
coefficients are: k1 = 0.35, k2 = 0.5, k = 0.75; if ∆ = 0.6 then β = δ. Temperature
T = 0.02.
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Fig. 6. Diffusion coefficient D as a function of the tilting force F and ∆. The
potential parameters are the same as in Fig. 5. Temperature T = 0.05.
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corresponds to the one in the primary potential traps and there are no
special peculiarities one could talk about (cf. Ref. [12]), expect that the
diffusion coefficient is suppressed compared to the one in the corresponding
simple sawtooth potential, in the same reason as discussed for the case F = 0
(see also Ref. [20]). As shown in Fig. 6 the suppression of diffusion is most
essential at the value ∆ so that β = δ for the given asymmetry parameters,
due to the doubling of the effective potential traps. For the values of ∆ for
which β > δ the maximal value of the diffusion coefficient increases and we
obtain the discussed enhancement of coherence in the region of subcritical
tilting force.

To conclude, we emphasize that the model of a Brownian particle moving
in a periodic potential with two barriers per period turns out to be unexpect-
edly rich and flexible. This provides a possibility to describe in the different
regions of the space of the system parameters various effects, which may be
of relevance in condensed matter physics and molecular biology.

We acknowledge support by Estonian Scientific Foundation trough Grant
No. 5662.
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