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We have studied variability and predictability of population behaviour
in a simple model of exponential growth. Population variability is related
to uncertainty of prediction for the dynamics conditioned upon the initial
state only. We contrasted it with replicate variability, defined in terms of
short-term predictability along a single realisation of a stochastic process.
We show that for exponential growth, the population variance increases
proportionally to the square of the current population size, whereas the
replicate variance is a linear function of the population size. Thus, for large
population sizes, the relative predictability for a single population is much
better than for an ensemble of realisations. This stands in contrast with
the behaviour of a simple stochastic process (Ornstein—Uhlenbeck process),
where the population and the replicate variances have similar behaviour.
The results have profound consequences for parameter estimation and pre-
diction for many stochastic population models based on the exponential
formula.

PACS numbers: 05.45.Ra, 05.45.Xt, 87.23.Cc

1. Introduction

In analysis of physical, chemical and biological systems incorporating a
stochastic component, we are most often interested in general properties of
a (real or hypothetical) ensemble of such systems. Thus, we typically ask a
question: What would a typical behaviour be of our biological system, were
we to repeat the experiment again? In this approach, each individual real-
isation of a stochastic process has no separate meaning and we concentrate
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on the ensemble (or population) properties. However, in practical applica-
tions we are often forced to consider a single realisation. We often want to
predict how a particular population would evolve in the future, or whether
its behaviour is similar to or different from, other historical records. This
is particularly important in population biology and epidemiology, where we
are faced with analysing and predicting a single outbreak of a disease or a
particular invasion of species that takes place in ‘real’ time.

For systems with ergodic properties, when we can substitute time for
replication and replication for time, these two approaches are interchange-
able. For highly non-equilibrium processes, like epidemic outbreaks or in-
vasions of species, this is no longer the case. The progression of number of
infected individuals as a function of time forms a unique and highly cor-
related sequence, limited in numbers and duration, as the disease passes
through the population and dies out. For such systems there is no steady
state and therefore no stationary distribution [1]. Thus, most of the tra-
ditionally used analysis tools |2, 3] are not applicable. The outcomes of
epidemics may also strongly depend on the initial state and/or substantially
vary between individual replicates [4].

Many biological, physical and chemical systems are characterised by large
differences between outcomes of replicates within the same experiment as
well as by a high sensitivity to small changes in the conditions under which
experiments are repeated [5|. This feature makes population (or ensem-
ble) predictions very difficult. It is therefore essential to understand sources
of variability, in order to maximise the chances for a successful prediction.
A key element of our approach lies in the relationship between variability
and prediction. Outcome of processes that are characterised by large vari-
ability cannot be predicted with a good confidence. We can therefore use
predictability as a measure of variability.

We are considering a simplest model of disease spread through a large
(infinite) population, concentrating on two contrasting approaches to vari-
ability: Ensemble variability is defined as difference between two (or more)
observations of an ensemble of populations, sampled at the same time, but
regardless of which individual realisation they come from. This forms the
‘usual’ way in which variability is typically introduced for stochastic systems.
We contrast this definition with replicate variability, that is associated with
a single realisation. As a single realisation of a stochastic process is not a
well-defined object, we need to define very carefully what is meant by the
replicate variability. We achieve this by analysing predictability along a cer-
tain trajectory, conditioned on its history. We have chosen an exponential
growth model for its simplicity, but also because it forms the basis for many
models of a population behaviour [6].
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2. Model

The exponential growth model is defined through the following master
equation |7]

%P(m,t):b{(a;—1)P(a:—1,t)—a:P(a:,t)} , (1)
where P (z,t) is a probability of observing x individuals in a population at
a given time ¢, and b is an infection rate. The probability is interpreted here
in the ‘frequentist’ sense, as a proportion of replicate populations in which
exactly z individuals are observed at time ¢, assuming an infinite ensemble of
replicated populations [9]. The model is analogous to a simple birth model
without death, and so the process is not stationary.

Equation (1) can be solved analytically and P (z,t) is a combination of
exponentials of form exp (—bxzt) [2]. Appendix A gives the details of the
solution and its properties [§].

Since no analytical solution can be obtained for the short-term pre-
dictability, in the rest of the paper we will concentrate on simulations. For
a fixed realisation k, the number of new individuals added to the system
between time ¢ and ¢ + dt is calculated as a Poisson variable, with a rate
given by bxy (t) dt.

Tp (t + dt) = Tk (t) +P (ba:k dt) . (2)

The time step dt is assumed to be small, and we checked the results
by varying it over several orders of magnitude, while keeping the overall
rate bdt constant. The population was initiated from a fixed number of
individuals, z (0), corresponding to P (x,0) = ¢ (x — 2 (0)). The model have
been simulated for 2000 steps, assuming b = 0.0025 and the time step dt =
0.01 (thus ¢t = 0,...,20). 2000 replicates were generated for x (0) = 1 and
x (0) = 100.

The ensemble variability is quantified by calculating the second central
moment (variance) based on the empirical estimate of P (x,t) obtained us-
ing (2). Quantifying the replicate variability is much more difficult, as a
single replicate k has no meaning in the ‘frequentist’ interpretation. An au-
tocorrelation function or other similar characteristics cannot be used due to
non-stationary character of the series x (t). Instead, we use the predictability
to characterise the uncertainty along each replicate curve.

A replicate k is defined by specifying a finite and discrete set of points
xy (t,) along the trajectory, {t,;n =1,2,...}. This can be interpreted in
terms of a set of points that has been measured from an outcome of a process.
The underlying stochastic process zj, (t) (which can be either continuous or
discrete) may change its value between those measurements, but we assume
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that those changes are not directly observable. Hence, a single replicate is
properly defined as an equivalence class of all realisations of the stochastic
process z (t) agreeing with the given one on a set of measured points x, (¢,).

We want to predict future values of zy, (t') given zy, (t,,), for t' > ¢, (¢, is
the n-th observed point), for a fixed k£ and n. We are concentrating on the
local predictability, so that we assume that ¢’ — ¢, is small. We have chosen
t' =t,+1=t,+100dt (dt = 0.01). The birth process (1) is Markovian,
and so the state of the system xj (¢,) at t,, contains complete information
about the future dynamic. Thus, to predict the values at ¢ > t,, we use (1)
with the initial condition equal to zj (¢,). After choosing a replicate k at
random, we used 2000 simulations to estimate the probability distribution
P (x,t) and variance at time ¢'. This procedure was then repeated for all
values of n.

We also consider an alternative model, for which the increase (or de-
crease) in the population size is independent of the current value. An
Ornstein—Uhlenbeck process is simulated by drawing increments from a nor-
mal distribution with zero mean and unit variance, and discounting the
previous value of x by a factor \. We consider two cases, one with a small
correlation between successive steps, corresponding to A = 0.9, and with a
high correlation, for which A = 1.0 (equivalent to the pure diffusion process).

xp (t+dt) = Axg (8) + N (0,1) .

3. Results

The number of infected individuals at a given time, xy (t), simulated
from (1), broadly follows an exponential growth, with a strong increase in
the overall ensemble variability over time, Fig. 1(a) (for zj (0) = 1) and
Fig. 2(a) (for z (0) = 100). The mean-field approximation, given by

xmr (t) = 2 (0) exp (bt) , (3)

represents the general trend (thick line in figures 1 and 2), see also
Appendix A. However, there is a difference in relative levels of variability for
different initial conditions. For a small initial value (Fig. 1), there is a large
variation around the mean behaviour (note that this effect is relative to the
overall mean value). The exponential trend can be removed, by plotting
either log (z) (figure 1(b)) or log () — bt (figure 1(c)) as a function of t. The
first transformation produces a straight-line relationship with a slope b, for
large ¢ (for large x (t)), whereas the second plot emphasises stochastic com-
ponent of the dynamics. When a larger initial value is used (z (0) = 100),
the variability is relatively smaller (figure 2), but the mean value is much
larger as well. However, as can be seen by comparing figures 1(c) and 2(c),
the relative variability is smaller in the case with the larger starting value.
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Fig.1. Examples of trajectories generated for the exponential growth model (1)
for small initial condition (z (0) = 1, 10 replicates are shown, differing only by a
different sequence of random numbers in (2)). (a) shows the untransformed values
of z (t), (b) is the same as (a), but with logarithmic scale on the y-axis, whereas in
(¢), the overall trend given by (3) is removed (trajectories show the ratio of x (¢) to
amr (t) on a logarithmic scale). The thick line in all plots corresponds to ayr ().

The difference between the ensemble variability and the replicate vari-
ability in figure 1 is a striking feature of the simulation results for z (0) = 1.
If the only information about a given population is its initial size at ¢t = 0,
the relative uncertainty in the population size at t > 0 is very large. This
stands in contrast to the relative smoothness of individual realisations shown
in figure 1(a), particularly for large values of t. Removing the exponential
trend (figures 1(b) and 1(c)) makes the difference even more apparent. For
example, in figure 1(b) (logarithmic transformation), individual trajectories
follow a straight-line relationship, each with a similar slope which is asymp-
totically equal to b. Initially (i.e. for short times ¢ and small values of x (t)),
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there are large differences both within and among individual realisations,
but the within-replicate component declines and the trajectories are becom-
ing relatively smoother as ¢ — oo. This is particularly clearly visible in
figures 1(c) and 2(c).
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Fig. 2. The same as in figure 1, but for large initial condition (z (x,0) = 100). (a)
shows the untransformed values of x (t), (b) is the same as (a), but with logarith-
mic scale on the y-axis, whereas in (c), the overall trend given by (3) is removed
(trajectories show the ratio of z (¢) to xymr (t) on a logarithmic scale). The thick
line in all plots corresponds to zyr (t). Note changed range of y-axis in comparison
to figure 1.

The master equation describes the evolution of the probability distribu-
tion corresponding to a behaviour of the whole ensemble of replicates. The
ensemble variability can be characterised by computing the second central
moment for P (z,t), or alternatively by computing a variance (or an in-
terquantile distance), for a given time ¢. We can interpret the variance at
any given time ¢ as a measure of uncertainty with which we can predict the
size of an epidemic at ¢, conditioned on a fixed initial state at £ = 0. Dynamic
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of variance for z (0) = 1 is shown in figure 3. Because the initial distribu-
tion is sharp, the variance is initially small, but soon reaches its asymptotic
behaviour (c¢f. Appendix A). Afterwards, the variance grows exponentially
(figure 3(a); because the y-axis is logarithmic, the graph is a straight line),
but faster than x (¢) (figure 3(b)). Further analysis shows that the popu-
lation variance behaves asymptotically like x2 () (figure 3(b)), so that the
standard deviation is asymptotically proportional to z (¢) (figure 3(c)), cf.
Appendix A.
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Fig.3. Population variability (thin lines) is compared with replicate variability
(thick lines) for the population model (1) with = (0) =1 (as in figure 1). Variance
is shown in (a), variance-to-mean ratio in (b) and standard-deviation-to-mean ratio
in (c). Note the logarithmic scale on the y-axis. For the replicate analysis a single
randomly chosen realisation was analysed.

The single-replicate uncertainty is characterised here by the variance for
the probability distribution associated with a short-term prediction condi-
tioned on initial values taken from a randomly chosen replicate at different
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times (¢ = 1, 2, ...). In contrast to the ensemble variance, the replicate
variance grows much slower with time (figure 3(a)) as it is proportional to
x (t) rather than 2 (¢) (figure 3(b)). For small initial values (z (0) = 1 as
in figures 1 and 3), there are substantial differences between estimates of
the replicate variance based on different realisations, although the qualita-
tive behaviour is the same (figure 4(a)). The differences are fully linked to
different values of z (t), reflecting the proportionality of the variance to the
average value of x (t) for a given ¢, see figure 4(b).
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Fig.4. Population variability (thin lines) is compared with replicate variability
(thick lines) for the population model (1) with = (0) = 1 (as in figures 1 and 3).
Variance is shown in (a) and variance-to-mean ratio in (b). Note the logarithmic
scale on the y-axis. In this figure, 10 randomly chosen replicates are analysed for
replicate variability, in contrast to only one replicate in figure 3. Only part of the
graph for the population variance-to-mean ratio is shown in (b); for the full plot
compare with figure 3(b).
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This behaviour can be contrasted with a model in which there is no non-
linear growth. For the Ornstein—Uhlenbeck process characterised by weak
correlation (A = 0.9; figures 5(a) and 5(b)), the ensemble variance and the
replicate variance are both constant in time and approximately equal, sug-
gesting that short-term and long-term predictability is the same in this case.
This corresponds to the traditional approach used in modelling population
dynamics, where each observation in each replicate is assumed to be un-
correlated with other observations. When strong temporal correlations are
included (A = 1.0, a Wiener process, figures 5(c) and 5(d)), the ensemble
variance is larger than the replicate variance. The former increases linearly
in time, whereas the latter stays constant. The population mean is close
to 0 in both cases. In the case of the Wiener process, the short-term pre-
dictability is much better than the long-term predictability, due to strong
temporal correlations.
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Fig.5. Examples of trajectories for the Ornstein—Uhlenbeck process with A = 0.9
(a) and for the Wiener process, A = 1.0 (b). Only two trajectories are shown in (a)
and ten trajectories in (b), for clarity of presentation. Population variances (thin
lines) are compared with replicate variances (thick lines) for the OU process (c)
and for the Wiener process in (d). Note that in contrast to figure 2, the y-axis is
not logarithmic here.
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4. Discussion

We have shown that for a model that describes exponential growth, the
variability along a single replicate is much smaller than between realisations,
and the difference increases as the population becomes larger.

The striking difference in the asymptotic behaviour of the ensemble and
replicate variances can be understood by identifying the main sources of
variability in both cases. When the process x (t) is simulated between ¢ and
t" >t (t' — t small), the uncertainty in the prediction is associated with
the Poisson process for which the variance equals the mean. Since for the
short-term prediction — based on the current value of xy, (t) — the Poisson
error is the dominating factor, the replicate variance follows the mean value
(as in figure 3(b)).

On the other hand, figures 1(c) and 2(c) suggest that the ensemble vari-
ability is mostly determined in the first phase of the dynamics, when the
populations are small. Because the mechanism for the generation of the ini-
tial variability is also Poissonian, the initial variance is related to the mean
population size at ¢ = 0, = (0). With time growing, the within-replicate
variability becomes proportionally smaller (figures 1(b) and 1(c)), and so
the trajectories become effectively smoother. At the same time, the indi-
vidual replicates grow exponentially, and therefore the difference between
two randomly picked realisations also grows exponentially like exp (bt). As
a result, the ensemble variance follows the square of the mean z? (t), rather
than the mean. Thus, the different behaviour of the ensemble and replicate
behaviour is a result of a small initial sample size (contrast figures 1 and 2)
and a nonlinear (exponential) growth. This analysis allows us to identify
the basic mechanisms responsible for such a difference: small initial popula-
tion size and nonlinear (exponential) departures of trajectories. The results
reported here are consistent with analytical solutions given in [8] and in the
Appendix A below.

The results presented here do not contradict any asymptotic results ob-
tained in the limit of large population sizes. Any results, like those in [10],
assume that = (¢) > 1 for all times. In our case, the initial value of x (t) is
small.

The population model we used in this paper is very simple, assuming
no limitation to the growth of a population. However, exponential function
forms a basic building block of many population models. More complicated
models, including those studied in [4,6] can also be simulated and analysed
using our method. We suggest that our analysis has profound consequences
for consideration of appropriate statistical methods in model fitting as well
as for the design and interpretation of ecological and epidemiological exper-
iments [4].
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Appendix A
Analytical expressions for the ‘ensemble’ variability

The results presented here are obtained in [2,8]. The probability that
x (t) equals to x, given the initial condition z (0) = z¢ is given by

Pz(t)=x) = ("” - 1) (e—bt)“ (1 - e—bt)x_"“. (A.1)

1‘0—1

Mean value of x (t) follows the following equation

E [z (t)] = zo €. (A.2)
Variance is given by
Var [z ()] = xq (1 — e_bt> — 1 e, (A.3)
when ¢t — 0o. As a result,
Var [z (t)] b 1
— = =e"—-1— —E[x(t)], A4
B Bl (1) (A.4)
and
Var [z (t)] —1/2 —1/2
4 = 1—e bt A.
E [33 (t)] (330) € - (':UO) ’ ( 5)
all in the long-time limit.
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