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We study a transport in composite system where the subdiffusive sol-
vent (as for example gel) is separated by a thin membrane from the region
where normal diffusion occurs. The solutions of the diffusion equation with
fractional derivative are found in the system of interest. We also discuss
the dependence of mean square displacement σ2 on time in long-time ap-
proximation.
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1. Introduction

The normal diffusion reflects the Brownian motion of the particles where
each particle walks randomly with finite mean square displacement of the
jump length σ2 and mean waiting time for a step τ . Then, the diffusion
is characterised by linear dependence of σ2 on time. However, there are
systems where the jumps occur with “extremaly low frequency” (which gives
infinite values of τ), as for example in porous media or gel solvent [1, 2]. In
such a system, the transport is subdiffusive and it is characterised by the
relation [2]

σ2(t) =
2Dα

Γ (1 + α)
tα , (1)

where Dα is the subdiffusion coefficient measured in the units [m2/sα], α is
the subdiffusion parameter (0 < α < 1). The case of α = 1 corresponds to
the normal diffusion.
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In this paper we study a composite system where the subdiffusive solvent
is separated from the one where normal diffusion occurs by a thin membrane.
Using the Green’s functions obtained from subdiffusion and diffusion equa-
tions we find the dependence of mean square displacement σ2 on time.
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Fig. 1. The mean square displacement σ2 as a function of time: σ2
+(⋄), σ2

−

(◦), σ2

for homogeneous system of normal diffusion (△) and for homogeneous system of
subdiffusion (2). The parameters equal D = 1, Dα = 0.1 (in arbitrary units),
α = 2/3.

To obtain the concentration profiles C of transported substance in sub-
diffusive systems one uses the subdiffusion equation with fractional time
derivative of the Riemann–Liouville form [2]

∂C(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x, t)

∂x2
. (2)

For α = 1 above equation appears to be the Fick equation for the normal
diffusion. The Green’s function G(x, t;x0) is defined as a solution of the
equation (2) with the initial condition G(x, 0;x0) = δ(x − x0) and appro-
priate boundary conditions. This function gives the probability density to
find a random walker at the position x in time t; the walker starts from x0

at t = 0 .

2. Green’s functions for diffusive–subdiffusive system

Let us assume that the normal diffusion occurs in the region x < 0 and
subdiffusion is present for x > 0. In the following the index α is assigned
to the function defined in the region with subdiffusion. Since the diffusion
equation is of the second order, with respect to the space variable, one needs
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two boundary conditions at the discontinuity of the system. Here we adopt
the following boundary conditions at the membrane located at x = 0 [3]

J(0−, t) = Jα(0+, t), (3)

C(0−, t) = λCα(0+, t), (4)

where J denotes the flux of transported substance, the dimensionless param-
eter λ controls the membrane permeability. To obtain the Green’s functions
for considered system we use the procedure described in the paper [4], which
is particularly useful for the multi-part systems. The starting point of the
procedure is the solution corresponding to the analogous multi-part system
where only normal diffusion is present but with different diffusion coeffi-
cients. So, at first we consider the two-part system where normal diffusion
occurs with diffusion coefficients D and D1 in the regions x < 0 and x > 0,
respectively. Next, we get the Laplace transform (which is defined by the

relation f̂(s) = L(f(t)) =
∫ ∞

0 e−stf(t)dt) of the solutions of normal diffu-
sion and we obtain the ones for the subdiffusive system by means of the
substitution D1 = Dαs1−α, which is done in the part of the system where
subdiffusion occurs. To obtain the inverse Laplace transform we find the

series expansion of the considered function in terms of sνe−asβ

, and use the
following formula

L−1(sνe−asβ

) = fν,β(t; a)

= − 1

πt1+ν

∞
∑

k=0

sin [π (kβ + ν)] Γ (1 + kβ + ν)

k!

(

− a

tβ

)k
,

where a > 0, β > 0 and the parameter ν is not limited.
Solving the normal diffusion and subdiffusion equations with boundary

conditions (3) and (4), we obtain the following Green’s functions

G−−(x, t;x0) =
1

2
√

πDt

[

e−(x−x0)2/4Dt + e−(x+x0)2/4Dt
]

+
1√
D

∞
∑

n=0

(−γ)n+1f((1−α)n−α)/2,α/2

(

t;
−x − x0√

D

)

, (5)

G+−(x, s;x0) =
1√
D

∞
∑

n=0

∞
∑

k=0

(−γ)n
1

k!

(

x0√
D

)k

f((1−α)n+k−1)/2,α/2

(

t;
x√
D

)

,

(6)
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G−+(x, s;x0) =
1√
D

∞
∑

n=0

∞
∑

k=0

(−γ)n
1

k!

(

− x0√
D

)k

f((1−α)n+αk−1)/2,α/2

(

t;
−x√
D

)

,

(7)

G++(x, t;x0) =
1

2
√

Dαt

[

fα/2−1,α/2

(

t;
| x − x0 |√

Dα

)

+fα/2−1,α/2

(

t;
x + x0√

D

)]

− 1√
Dα

∞
∑

n=0

(−γ)nf((1−α)n+α−1)/2,α/2

(

t;
x + x0√

D

)

, (8)

where γ =
√

Dα

D
1
λ . Here the indexes − and + of the Green’s functions

are assigned to the regions x < 0 and x > 0, respectively. The first index
corresponds to the location of the point x, the latter, to the location of the
point x0.

3. Time evolution of mean square displacement

The mean square displacement (MSD) σ2 is calculated from the formula

σ2
j =

〈

x2
j

〉

− 〈xj〉2, where

〈

xk
j (t)

〉

=

0
∫

−∞

xkG−,j(x, t;x0)dx +

∞
∫

0

xkG+,j(x, t;x0)dx , (9)

k = 1, 2. The dispersion is calculated separately for x0 < 0 (where j = −)
and for x0 > 0 (j = +). The relations (5)–(9) provide to rather complicated
functions of MSD, therefore, we perform the calculations in the limit of large
time. From numerical calculations we can deduce that for typical values of
the parameters (Dα ∼ 10−10 m2/sα, D ∼ 10−9 m2/s, x0 ∼ 10−3m) the limit
of “large time” is of the order of seconds. After calculations, we obtain for
x0 < 0

〈x−(t)〉 ≈ x0 − 2

√

Dt

π
, σ2

− ≈ 2DAt − B1t
(1+α)/2 ,

and for x0 > 0

〈x+(t)〉 ≈ x0 − 2

√

Dt

π
, σ2

+ ≈ 2DAt + B2t
α ,

where A = 1 − 1
2Γ 2(3/2)

≈ 0.363, B1 = 2
√

DDα

Γ ((3+α)/2) and B2 = 2Dα

Γ (1+α) .
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4. Final remarks

Character of the transport in the considered system differs from pure
diffusive as well as from pure subdiffusive one. The mean square displace-
ment σ2, which for long times is independent of membrane permeability,
is a combination of linear function and a power function of time with the
exponent smaller the unity. The dominant term in both parts of the system
is very similar to the one for the pure diffusion system, but it is reduced
by the factor A with respect to the normal diffusion case. The “subdiffusive
corrections” are appreciable except the cases when α → 1 or α → 0. In
the first case the system transforms to the one where the normal diffusion
occurs. In the latter limit we deal with the system of normal diffusion with
fully absorbing wall placed at x = 0. Let us note that the mean position
of the random walker changes with time. Such an effect is observed in non-
homogeneous systems of normal diffusion and it is not only determined by
the “subdiffusive part” of the considered system.
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