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scale of errors of the Smoluchowski approach. A large number of parti-
cles used (typically N = 681472) allow us to obtain quantitative results.
The simulations show a decisive influence of the distribution function of
the reagents, gAB(r), on the accuracy of results. If the liquid structure is
ignored (gAB(r) ≡ 1) the discrepancies between the model and the simula-
tions are large especially for a very short times for which the models fail
to match simulations even qualitatively. An inclusion of the distribution
function significantly improves the description of the quenching process.
For short time stages of the quenching the model excellently agrees with
the simulations, if the characteristic reaction time is long. If it is very short
(the SCK model), significant discrepancies appear due to ballistic motion of
the reactants but the quantitative agreement is still good. For a long time
the model that takes into account the liquid structure is typically burdened
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1. Introduction

The fluorescence quenching [1] is an example of a very simple diffusion
controlled chemical reaction. During this reaction an excited state of the A
molecule (A*) de-excites by interacting with the B molecule called quencher.
A standard approach to the kinetics of the diffusion controlled reaction was
formulated by Smoluchowski [1, 2] over 80 years ago. The most popular
model that bases on this approach is the Smoluchowski–Collins–Kimball
(SCK) [1, 3] model. It assumes that the reactants are spherical and the
reaction occurs instantaneously when the interparticle distance, r, is equal
to the reaction radius, a. The model gives a simple analytical formula for
the reaction rate [1, 4], which is widely used to interpret experimental data
of fluorescence quenching [5–9]. Many experiments [10–13] show inconsis-
tencies between the model and reality. The recent works of Krystkowiak
and Maciejewski [12, 13] report significant differences between the parame-
ters obtained by fitting the experimental results of fluorescence quenching
with the SCK model and the values obtained by different methods. On the
other hand, the report on consistency between the model and experimen-
tal results can be also found in the literature [14]. Another model which
applies the Smoluchowski approach is the Step Function Nonradiative Life-
time model [1, 15, 16]. It assumes that the reaction occurs with a given
constant probability if r is lower than a given R parameter (unfortunately,
also called as the reaction radius), which is a more reasonable approximation
than that for the SCK model. It is shown [10,17] that the model better fits
experimental results than the SCK one.

The purpose of our work is to test the applicability of the Smoluchowski
approach by comparing the results obtained from the SCK and the SFNL
model with computer simulation results. We simulate reaction between A*
and B using molecular dynamics (MD) and our assumptions match as closely
as possible that of the models. Since most of the assumptions of the theory
are satisfied, the differences between the models and the simulations give us
information on the scale and the origin of the inconsistencies coming from
the application of the Smoluchowski approach. The simulations also allow us
to estimate the errors caused by the neglect of spatial correlations between
A* and B (gA∗B(r) = 1) typical in analysis of experimental data.

A large scale of our simulations (typically, the total number of molecules
N = 681472) has allowed us to make the quantitative test. Simple, qual-
itative comparisons for both the Smoluchowski [1, 2] and the SCK model
with simulation results for a hard sphere liquid were performed over 10
years ago [18, 19]. The main conclusion [19] was that the SCK model gave
surprisingly good results, much better than the Smoluchowski one. Zhou
and Szabo [19] showed also that the agreement between the model and the
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simulations improved significantly when the shape of the two-particle ra-
dial distribution function was taken into account. This conclusion was only
qualitative one and no quantitative analysis of differences between the model
and the simulations have been performed. The scale of simulations was not
sufficient to obtain quantitative results. As a consequence, they wrongly
concluded that incorporating the gAB(r) function into the model one ob-
tains an exact description of the kinetics at short times [19]. As shown by
our simulations, this is not true if the reaction is very fast (i.e. exactly the
case that they studied).

The paper bases on the results of our two works [16, 20]. It is organized
as follows. Section 2 presents the Smoluchowski approach and both models
considered: the SCK model and the SFNL model. The information on sim-
ulation technique, the interparticle interactions and methods of describing
simulation results are given at the beginning of Section 3. The computer
simulation results are presented in two subsections. Sec. 3.1 gives the results
for short time of quenching reaction by comparing the time dependent rate
coefficients obtained from simulation with that from the models for a few
selected cases. The differences between the values of diffusion obtained by
fitting the theoretical curve with the experimental results and the real values
“measured” directly during the simulations are discussed in Sec. 3.2. These
differences give us a measure of errors coming from the application of the
Smoluchowski approach to the description of diffusion controlled reactions.
The summary and conclusions are presented in Section 4.

2. Models

Following the Smoluchowski approach, we consider spherical molecules
in three dimensional bulk liquid and a fluorescence quenching reaction in
the form:

A∗ + B → A + B , (2.1)

where A* is an excited A molecule and B is a quencher. We assume that
from the mechanical point of view the system is in the equilibrium state
and the excited and ground states of A are identical. We treat reaction as
a sum of independent processes, which, in practice, means that the number
fractions of A* and B molecules fulfill: xA∗ ≪ xB ≪ 1. We assume that the
probability of finding the A* particle around the B particle at the interparti-
cle distance r and at time t, p(r, t), satisfies the Smoluchowski equation [1,2]
for spherical molecules, here (the formula (2.2)) written in the general form
with the reaction governed by the sink term [21], κ(r)p(r, t).

∂p(r, t)

∂t
=

DS

r2

∂

∂r

(

r2gAB(r)
∂

∂r

(

p(r, t)

gAB(r)

))

+ κ(r)p(r, t) . (2.2)
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The initial condition is: p(r, 0) = gAB(r), where gAB(r) is the equilibrium
pair distribution function which, according to our assumptions, is identical
to gA∗B(r). The DS coefficient is independent of r and equal to the sum
of the diffusion coefficients of A and B of bulk liquid. The first boundary
condition reads: limr→∞ p(r, t) = 1. The second, the reflecting boundary
condition, results from the presence of the distance of minimum approach,
a. Therefore:

[

∂

∂r

(

p(r, t)

gAB(r)

)]

r=a

≡ 0 . (2.3)

The kinetics of the reaction (2.1) is described by the rate coefficient, k(t),
which, in the absence of spontaneous de-excitation (A* → A), can be defined
as:

k(t) = −
1

ρxB

∂ ln(NA∗)

∂t
, (2.4)

where NA∗(t) is the current number of A*, ρ(= N/V ) is the numerical
density and, xB(= NB/N) is the number fraction of quencher. Considering
(2.2) and (2.3) the rate coefficient can be also written as:

k(t) = 4π

∞
∫

a

κ(r)p(r, t)r2dr . (2.5)

We consider two cases of the Smoluchowski approach. First, when the gAB(r)
function is known (here we take it from simulations) and equation (2.2) is
applied in the present form. Further, this case is called the full model (or
case). Second, which is standard for interpreting experimental results, when
the distribution function is not known. For such a case one assumes that
the liquid is structureless, which means:

gAB(r) = Θ(r − a) ≡
{

1 for r ≥ a ,
0 for r < a

(2.6)

and (2.2) reduces to the diffusion equation completed by the sink term.
Further, this case is called the simplified model (or case).

We are going to consider two models:

(A) The Smoluchowski–Collins–Kimball (SCK) model for which:

κ(r) =
k0

4πa2
δ(r − a) , (2.7)

where k0 is the intrinsic rate coefficient. We consider only the special
case that the reaction always occurs if r = a, which exactly determines
[19, 22] k0:

k0 = 4a2

(

πkBT (mA + mB)

2mAmB

)1/2

.
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The introduction of the SCK model by the reflecting boundary condi-
tion (2.3) and the sink term in the form of (2.7) is equivalent [23, 24]
to the standard definition by assuming κ(r) = 0 and imposing the
Collins–Kimball boundary condition [1,3]. According to Pedersen and
Sibani [2, 4], the rate coefficient for the model can be written at long
times as:

k(t ≫ 1) =
4πDSae

1 + DS/f

(

1 +
f

DS

exp
(

γ2DSt
)

erfc
(

γ
√

DSt
)

)

, (2.8)

where

f =
k0gAB(a)

4πae
, γ =

(

1 +
f

DS

)

a−1
e , a−1

e =

∞
∫

a

dr

gAB(r)r2
.

For the simplified case, the formula (2.8) is the exact solution of the
model for a whole range of t. The exact solution of the full model for
short times is obtained numerically.

(B) The Step Function Nonradiative Lifetime model with the sink term:

κ(r) =
1

τ
Θ(R − r) , (2.9)

where τ is the nonradiative lifetime. The exact solution of (2.2) and
(2.9) is not known even if one assumes (2.6). For the full case (2.2) is
solved numerically. For the simplified case a reasonable approximation
has been presented in [16]:

k(t) ∼=
4π

3τ

(

R3 − a3
)

exp

(

−
t

τ

)

+4π
√

D3
S
τ

4
∑

n=0

γn

t/τ
∫

0

Gn(q, y) exp

(

−
t

τ

)

dy , (2.10)

where the parameters q and γn are functions of a/(DSτ)1/2 and
R/(DSτ)1/2 only. The Gn(q, y) functions are expressed by simple an-
alytical functions [16].
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3. Computer simulations [16, 20]

The computer simulations were performed using standard molecular dy-
namics (MD) constant volume and energy (NVE) method [25]. The cubic
box and the periodic boundary conditions were applied [25]. The total num-
ber of particles, N , was typically equal to 681472. During a single simulation
run all particles interacted via the potential of the same kind. Three various
kinds of spherical interparticle potentials were considered: Lennard–Jones
(LJ), modified Lennard–Jones with (σ/r)12 replaced by exp[18(1 − r/σ)]
(denoted by R6e), and soft spheres (SS). The cut-off distance was very short
(RC/σ = 1.65–2.15) and the LJ and the R6e potentials were truncated using
the switch function.

For all the investigated systems the reagents (A, A*, and B) were me-
chanically identical (identical ε, σ, and mass — m) and differed only by
a chemical identity parameter. The reaction (2.1) was realized by simple
re-labeling A* to A so the simulated system was always in the mechanical
equilibrium state. At the beginning of each evolution (after equilibration)
some of the reagents were randomly labeled as the B particles. We con-
sidered two kinds of microscopic models of the reaction (2.1): the SCK
reaction and the SFNL reaction, exactly corresponding to the sink terms of
discussed models. The SCK reaction occurred instantaneously (probability
= 1) if r = a. If at t = 0, r < a the reaction was assumed to occur earlier
and it was not taken into account in the evaluation of k(t). For the SFNL
reaction, according to (2.9), the probability that the reaction occurs within
the time interval [t, t + ∆t] is equal to ∆t/τ if r ≤ R and 0 otherwise.

We considered two kinds of liquids. First, called the simple liquid,
consisted only of A and B. Second, called the mixture, consisted of the
heavy components (A and B) and the light solvent, S, (90% molar frac-
tion). The parameters of the heavy particles were: σA = σB = 1.35 and
mA = mB = (σA/σS)3mS. The σAS parameter (= σBS) of the A–S inter-
action satisfied the Lorentz–Berthelot rule [25]: σAS = (σA + σS)/2. The
mixture modeled the system with strong solute–solvent correlations. The
energy parameter ε was the same for all the A–A, B–B, A–B and S–S inter-
actions. For the solute–solvent interaction, the energy parameter εAS = ηε,
where η was equal or sometimes even higher than 1. The numerical values
presented further are expressed in reduced units (i.e. for: σ = ǫ = m = 1.0)
of A (= B) for the simple liquids and the reduced units of S for the mixtures.
Otherwise the units are explicitly written in the text.

According to the Smoluchowski approach DS = DA + DB, where DA

and DB (here, the same) are the diffusion coefficients of the reactants of a
bulk liquid. The value of the coefficient was “measured” during simulations
by using the Einstein formula [25]. The remaining parameters of the models
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(a for the SCK model and R, τ for the SFNL model) were the reaction
parameters taken to the simulations. More information about the simulation
details (interparticle potentials, optimization, etc.) is given in Ref. [20].

In order to analyze the simulation data we calculated the time dependent
rate coefficient by omitting in (2.4) the higher order terms in δt:

k(t) = −
1

ρxB

NA∗(t + δt) − NA∗(t − δt)

2δtNA∗(t + δt)
. (3.1)

Our idea was to treat the simulation results like experimental ones. The
theoretical values of k(t) obtained from (2.5) were fitted to the simulation
results (from (3.1)) by the least square method. The minimizations were
performed with respect to one parameter (X) or to two parameters. In
further considerations, Xfit denotes the value of X corresponding to the best
fit.

It is shown in Sec. 3.1 that in the case of the simplified model the
discrepancy between the model and the simulations is significantly higher at
short times than at t → ∞. As a result, the values of Xfit strongly depend
on the total time of simulation, tT, if the short time data are not excluded.
In order to eliminate this effect we determined the limit of Xfit attained
for tD → ∞, where tD (discarded time) is defined as the upper limit of
the time interval {0, tD} that is not taken into account in the minimization.
The limit obtained this way, Lim(Xfit), is well defined (here, independent
of tT) and may be used to test the accuracy of the model by comparing
the obtained value with that from the simulation. More information on the
problem and discussion about tD is given in Ref. [20] (Lim(Xfit) are called
there the “idealized” values).

3.1. The early phase of fluorescence quenching process

Figs. 1 and 2 show a typical time evolution of k(t) for the early phase of
fluorescence quenching for the SCK reaction at a = σAB for the simple liquid
R6e (Fig. 1) and the mixture R6e (Fig. 2). The simulation parameters are
given in the captions of the figures. k(t)/k(0) obtained from the simulations
(circles — calculated from (3.1)) is compared with the prediction by the
full model (the solid line — the numerical solution of (2.2) and (2.6) with
gAB(r) from simulations) and by the simplified model (the dashed line —
the formula (2.8) for gAB(r) ≡ 1). In this paper, the prediction always
means that the theoretical model corresponds to the kind of reaction (SCK
or SFNL) and all parameters are the same as that in the simulation. In
Sec. 3.2 it is shown that Lim(Dfit

S
) may significantly differ from DS. In order

to minimize the influence of the long time effect on the comparison for the
early phase of quenching the results presented in Figs. 1 and 2 are taken
from the simulations that, for the full model, Lim(Dfit

S
) ≈ DS.
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t [σAB(mA/ε)1/2]
0.1 1 10

k(t)/k(0)

0.1

1

Fig. 1. k(t)/k(0) as a function of time for the early phase of fluorescence quenching

from simulation of the SCK reaction at a = σAB (circles) and the prediction by

the SCK model: solid line — the full model, dashed line — the simplified model.

Simulation: the simple liquid R6e, ρ = 0.9358, kBT = 1.0, xB = 0.001 and,

DS = 0.0266 (all in the reduced units of A).

t [σAB(mA/ε)1/2]
0.1 1 10

k(t)/k(0)

0.01

0.1

1

Fig. 2. The same as in Fig. 1. Simulation: the mixture R6e, ρ = 0.8594, kBT = 1.0,

xB = 0.0005 and, DS = 0.0057 (all in the reduced units of S).
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The figures clearly show that it is impossible to describe, even qualita-
tively, the initial stage of the process, if the simplification (2.6) is applied
(dashed line). The curve resulted from the simplified model completely does
not fit the simulation results at short times. It is evident that a successful
minimization is possible only if one discards the initial stage data. This
conclusion is important since, in experimental practice the data are treated
as a whole without discarding the initial stage. In such a case, the errors
in the parameters extracted by fitting experimental results with the model
may be extremely large [20]. The description by the full model (solid line)
is qualitatively correct but quantitative differences at short times are sig-
nificant. The discrepancy for very short times (t ≤ σAA(mA/ε)1/2) is due
to ballistic motion of reactants, which is ignored by the Smoluchowski ap-
proach. At very short times the reaction rate is increased by ballistic inflow
of the reactants. The effect is quite strong, since here the reaction occurs
instantaneously with probability equal to one. As a consequence, the inflow
is not balanced by the outflow, which, in this special case, is equal to zero.
This discrepancy was not noticed by Zhou and Szabo [19] probably because
of a very low number of particles used in their simulations. As a result, they
concluded wrongly that the full model provides an exact description of the
kinetics at short times. Figs. 1 and 2 clearly show that for very fast reactions
this is not true (however, this is still true for t = 0). The discrepancy in
Fig. 2 spreads for a time of an order of magnitude larger than in Fig. 1.
This effect is probably due to the strong solute–solvent correlations, which
are also not taken into account by the Smoluchowski theory.

Fig. 3 shows k(t)/k(0) as a function of time for the SFNL reaction for
τ = 5.787σSS(mS/ε)

1/2 and R = 1.0667σAB for the mixture R6e. The
simulation parameters are given in the figure caption. The circles show the
simulation results. The solid line gives the prediction by the full model.
In this case the agreement is very good. For very short time the solid line
nicely agrees with the simulation results. For the reaction considered the
characteristic reaction time (here τ) is much longer than the time of ballistic
flight. As a result, the inflow of the reactants is balanced by the outflow and
the contribution to k(t) coming from the ballistic motion is non-noticeable.
The dashed and dotted lines give the results of the minimization for the
simplified SFNL model with respect to a and DS and for the simplified SCK
model with respect to a and k0, respectively. The dotted line does not fit
the simulation results. It demonstrates that the SCK model is not universal.
One should not expect that the parameters could be adjusted such that the
model describes an arbitrary quenching process. The dashed line (SFNL)
fits the simulation results nearly perfectly in spite of the model assumption
(2.6). For the system considered, this assumption is completely false. The
gAB(r) function has a sharp maximum at r ≈ 1.06σAB with the value of
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t  [σSS(mS/ε)1/2]
1 10

k(t)/k(0)
1

Fig. 3. k(t)/k(0) as a function of time for the early phase of fluorescence

quenching from: simulation of the SFNL reaction for R = 1.0667σAB and τ =

5.787σSS(mS/ε)1/2 (circles), the prediction by the SFNL full model (solid line), the

minimization with the SCK simplified model with respect to k0 and DS (dotted

line), the minimization with the SFNL simplified model with respect to a and DS

(dashed line). Simulation: the mixture R6e, ρ = 0.8594, kBT = 1.50, xB = 0.0005

and, DS = 0.0188 (all in the reduced units of S).

about 3.0. As a result, according to (2.5) and the initial condition, the value
of k(0) resulted from simulation should be much larger than that calculated
for the assumed structureless case. But the minimization performed within
the simplified model has compensated this maximum by increasing non-
physically the distance between R and a in the formula (2.10). As a result,
the dashed curve fits the simulation data very well but a nonsense value for
the distance of the minimum approach is obtained from the minimization (at
fixed R): afit = 0.6σAB. The SFNL model enables us to describe the effect
called the static quenching [10,17] even within the simplified model. This is
possible because the model depends on many parameters and the first term
on the right-hand side of (2.10) exactly fits the rate of static quenching.
However, as it is shown above, some of the parameters which resulted from
minimization may significantly disagree with the real ones.
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3.2. Errors of the model for the long time stage

In this subsection we estimate the errors coming from the application of
the Smoluchowski approach to describe the long time stage of fluorescence
quenching. By fitting the k(t) curve which resulted from the model with the
computer data and taking the limit with tD → ∞, we estimate the value
of diffusion constant. The obtained Lim(Dfit

S
) is then compared with the

value of DS taken from the simulation. According to Szabo [1], the SFNL
model becomes equivalent to the SCK model if t → ∞. As a consequence,
our analysis can be restricted only to the SCK model. The deviations in
Lim(afit) from the real value of a are not analyzed since they are strongly
correlated with that in Lim(Dfit

S
) [20]. We consider only the case when the

reaction (here the SCK one) exactly corresponds to the model. Therefore,
the value of Lim(Dfit

S
)/DS − 1 can be treated as a measure of error resulted

only from the description of the kinetics by the Smoluchowski equation. The
test has been performed for a wide range of reaction parameters and different
types of intermolecular interactions so we believe that random coincidences
are absent. The fact that the conditions of our computer experiments are
much closer to the assumptions of the models than it is for a real experiment,
allows us to treat the scale of deviations between the simulation results and
the model as a minimum level of errors expected in applications of the models
based on the Smoluchowski approach to real experiments.

a/σAB

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Lim(DS
fit)/DS-1

-0.20

-0.15

-0.10

-0.05

0.00

Fig. 4. The minimization — the SCK model at fixed a. Lim(Dfit
S

)/DS − 1 as a

function of a for the simple liquids at ρ = 0.9358, kBT = 1.0 and various interpar-

ticle potentials. Symbols: square — SS, xB = 0.0015, DS = 0.0802; triangle down

— LJ, xB = 0.00125, DS = 0.0560; circle — R6e, xB = 0.001, DS = 0.0266. All

in the reduced units of A. Filled symbols — the simplified model, empty symbols

connected by a solid line — the full model (gAB(r) from simulations).
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Lim(Dfit
S

)/DS as a function of a for a number of the simple liquids for dif-
ferent interparticle potentials at fixed temperature and density is presented
in Fig. 4. The same dependence for the mixtures for various temperatures
and solute–solvent interaction parameters (η) is given in Fig. 5. The filled
symbols show the results for the simplified model. The empty symbols,
connected by a line, present the results obtained by using the full model.

a/σAB

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

Lim(DS
fit)/DS-1

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Fig. 5. The minimization — the SCK model at fixed a. Lim(Dfit
S

)/DS − 1 as a

function of a for the mixtures at ρ = 0.8594, various temperatures and solute–

solvent interaction energy parameters (η). Symbols: triangle up — xB = 0.0005,

kBT = 1.0, DS = 0.0057, η = 1.0; square — xB = 0.0015, kBT = 1.25, DS =

0.0123, η = 1.1; triangle down — xB = 0.0005, kBT = 1.50, DS = 0.0188, η = 1.0;

circle — xB = 0.0007, kBT = 1.50, DS = 0.0112, η = 1.5; all in the reduced units

of S. Remaining notations as in Fig. 4.

First, general conclusion from Figs. 4 and 5 agrees with the result of
Zhou and Szabo [19]. An inclusion of real gAB(r) significantly improves
agreement between the simulation data and the model. Large number of N
applied in our simulations enables us to estimate the errors quantitatively.
For the simplified model, the maximum deviation in Lim(Dfit

S
) attain over

20% in the case of the simple liquid and 25% for the mixture. For the full
model, the deviation does not exceed 10% level. In all cases presented in
Figs. 4 and 5 the dependence of Lim(Dfit

S
)/DS on a is very similar in shape

and is characterized by a deep minimum for a close to σAB. The minimum
results from the screening by the first coordination shell (a sharp maximum
in gAB(r) for r close to σAB) that characterizes structure of real liquid. As
a result, Dfit

S
calculated with the assumption gAB(r) ≡ 1 for values of a in

the range where screening is effective is significantly reduced if compared
with the real one. At very short distances the probability of collision with
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a screening particle decreases and the screening becomes less effective. This
explains why, for simple liquids, the values of Lim(Dfit

S
)/DS are significantly

higher for a = σAB than at the minimum. For the mixtures (Fig. 5) the
increase in Lim(Dfit

S
)/DS for a approaching σAB is much less pronounced.

We think that it is related to the presence of solvent. The S molecules,
which are smaller than A (and B) ones, can efficiently screen the reactant
molecules at distances very close to σAB (which is impossible for the simple
liquids) and so reduce the increase of Dfit

S
at small a. It is confirmed by the

shape of gBC(r) function which has a sharp maximum for r ≈ 0.9σAB.
Basing on the results of the simulations for a = σAB, Zhou and Szabo

concluded [19] that the influence of gAB(r) on the rate coefficient in long
time limit is quite small. Figures 4 and 5 clearly show that the conclusion is
true but only in a very special case of the particles of very similar sizes (here
the simple liquid) and a equal or very close to σAB (Fig. 4 for a ≈ σAB).
In general, the differences between the results of the simplified model (filled
symbols) and the full model (empty symbols) are not low (Fig. 4 for a higher
than about 1.15σAB and Fig. 5 for all a).

4. Summary and final conclusions

In this work we have presented the results of molecular dynamics tests of
the SCK and the SFNL models of diffusion controlled de-excitation process
for spherical molecules. The simulations have been performed for various
potentials describing interparticle interactions. We have found that in long
time limit the shape of potential has a little influence on the results, thus
we believe that the conclusions presented below can be generalized to other
molecules of spherical or close to spherical shape. Our MD simulations were
performed for the reaction cross sections exactly the same as that assumed
by the models. As a result, we were able to extract the errors coming only
from the description based on the Smoluchowski approach. The agreement
of the diffusion coefficient, Dfit

S
, obtained from the minimization, with the

value from simulations was considered as a qualitative measure of the model
accuracy for t → ∞.

We demonstrated that a successful interpretation of experimental re-
sults with the models based on the Smoluchowski approach mainly depends
on possibility of discarding the data coming from the early stage of fluo-
rescence quenching. If this condition is fulfilled then the most important
conclusions are the following: (i) if the simplified model is applied, the val-
ues of Lim(Dfit

S
)/DS − 1 for a fixed a are almost always negative and can

attain even 25% . The conclusion of Zhou and Szabo that the errors in the
description of long time stage are quite small is true only for a very special
case of the liquid consisting of very similar size particles and the reaction
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radius close to the particle diameter; (ii) The deviations in Lim(Dfit
S

) sig-
nificantly decrease if the information on gAB(r) is included in the model.
However, the errors of about 10% may still occur.

The results presented in Sec. 3.1 show that the SCK model in the sim-
plified version fails completely for short times (Figs. 1 and 2). Within the
simplified model it is impossible to describe the initial stage of the process
even qualitatively. As a result, if the initial stage data are not discarded
(which is standard for describing experimental results), the parameters ob-
tained from the minimization must be burdened with very high errors. If
the full model is applied, the qualitative description is correct but, for very
short time, there are still significant discrepancies between k(t) from the
model and from the simulation (Figs. 1 and 2). The reason of the incon-
sistency is ballistic motion of particles and the fact that the characteristic
reaction time is very short (here, it is zero). If the characteristic time is
larger (Fig. 3 — the SFNL model, solid line) the discrepancy vanishes. The
SFNL model better fits the data than the SCK one (Fig. 3) and one can
obtain a good fit even if the simplified model is applied. But this is only the
result of the mathematical form of (2.10) and the parameters obtained from
the minimization are usually nonphysical.

Both the SCK model and the SFNL model do not correspond to real
processes because of oversimplified models for reaction cross section. But we
believe that the conclusions from the work may be generalized also to more
physical models which base on the Smoluchowski approach. The conclusions
for the short time stage are in obvious agreement with physical intuition.
Ignoring the liquid structure must lead to completely false description of
the initial stage also for more reasonable sink terms. We expect also that
the long time behavior of k(t) does not depend on a particular form of the
microscopic reaction cross section and its asymptotic form should be similar
to an SCK model with “effective” k0 and a. Therefore, our conclusions for
errors in the description of the kinetics for long times should be more or less
valid for any reaction.
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