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Our objective here is the study of the noise-assisted generation of mag-
netic flux in a collection of identical mesoscopic cylinders which are coupled
via mutual inductances. With thermal (Johnson–Nyquist)-fluctuations
acting at finite temperature, the system can be modeled in terms of a set
of Langevin equations with a corresponding Fokker–Planck equation. In
the limit of infinitely many constituents, the steady-state of the system is
determined by a mean-field-like, nonlinear Fokker–Planck equation. The
rich complexity of the generated average flux through each cylinder and
its characteristic fluctuations are investigated as a function of various pa-
rameters such as the temperature, the coupling strength and an externally
applied, uniform magnetic field.

PACS numbers: 64.60.Cn, 05.10.Gg, 73.23.–b

1. Introduction

Mesoscopic systems are in-between the micro- and the macro-world and
consequently form a bridge between quantum and classical physics [1]. They
exhibit a variety of novel and unusual phenomena of both quantum and clas-
sical origin. As such, they are of great interest not only from a fundamental
research point of view, but also from the viewpoint of novel technological
applications. An example of such a mesoscopic phenomenon is the persis-
tent current in a metallic ring [2]. The existence of such currents has been
experimentally confirmed by several groups [3].
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With this work we investigate a system of interacting three-dimensional
mesoscopic cylinders which are coupled via mutual inductances. It has been
shown before [4] that for two coplanar mesoscopic rings the self-inductance
can suppress the persistent current; in contrast, the mutual inductances
can cause an enhancement. Here, we consider a set of coaxial cylinders
and analyze the case of the “thermodynamic limit” of an infinite number
of interacting cylinders. The stationary state is then determined by a self-
consistent state equation. Such a model presents an idealized archetype of
e.g. long wires formed by “pieces” made of single-wall carbon nanotubes. In
Sec. 2 we describe in detail the model and derive a set of Langevin equations
for a flux threading each cylinder. A special case, i.e. a one-cylinder system,
is briefly discussed in Sec. 3. A Fokker–Planck equation corresponding to
the set of N Langevin equations is presented in Sec. 4. Addressing the
thermodynamic limit of infinite many constituents we derive a steady-state
equation from a nonlinear mean-field equation. In Sec. 5 we analyze the
average flux and its fluctuations, both in the interacting and non-interacting
mesoscopic cylinder systems, respectively.

2. Model description

In mesoscopic systems composed of a ring with toroidal or cylindrical
geometry persistent currents can occur. They signify the phase coherence
of the electrons, the so-called coherent electrons. In the ground state, at
the temperature T = 0, the only electrons present in the system are the
coherent ones. Their flow is persistent and non-dissipative. At non-zero
temperature, T > 0, a partial set of these electrons become “normal” and
their flow is dissipative. As a result, the amplitude of the persistent current
decreases with temperature [5]. It has been confirmed experimentally [6]
that mesoscopic rings connected to a current source exhibit a nonzero ohmic
resistance. This implies that the flow of “normal” electrons can be modeled
in terms of Ohm’s law. The total current consists thus of a sum of the
coherent current and an Ohmic current.

The mesoscopic cylinder considered herein is formed by the collection
of Nc quasi one-dimensional rings (current channels) stacked along an axis.
The coherent current is then a sum of contributions of single channels which
can produce currents being either paramagnetic for an even number Ne of
coherent electrons, or diamagnetic for an odd number of coherent electrons.
The probability of finding a channel with an odd number of coherent elec-
trons is denoted by P and the probability of finding a channel with an even
number of coherent electrons is equal to 1 − P . Next, consider a system of
N identical mesoscopic cylinders placed concentrically and periodically in
a uniform magnetic field B in the three-dimensional space. Because of the
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mutual inductance, the electric current in one cylinder will induce a mag-
netic flux in another cylinder. Therefore, the fluxes and the currents in the
cylinders are coupled according to the expression [4, 7]

φi =

N
∑

k=1

MikIk + φext , (1)

where φi and Ii denote the flux and the current in the i-th cylinder, respec-
tively. The flux φext is induced by an external uniform magnetic field B.
The coupling coefficients Mik = Mki (which form the matrix M) are the
mutual inductances for i 6= k and self-inductances L = Mii for i = k [7].
The current in the k-th cylinder is a sum

Ik = Inor
k + Icoh

k (2)

of the Ohmic (dissipative) current Inor
k

and the persistent current Icoh
k

. The
Ohmic current Inor

k
= Inor(φk) is determined by the Ohm’s law and Lenz’s

rule, i.e.,

Inor(φk) = − 1

R

d

dt
φk +

√

2kBT

R
Γk(t) , (3)

where R is a resistance of a single cylinder [8], kB denotes the Boltzmann
constant and Γk(t) describes the thermal, Johnson–Nyquist fluctuations of
the Ohmic current. This thermal noise is modeled by a set of independent
Gaussian white noises of zero average, i.e., 〈Γk(t)〉 = 0 and δ-correlated

function 〈Γk(t)Γi(s)〉 = δkiδ(t − s). The noise intensity D0 =
√

2kBT/R is
chosen in accordance with the classical fluctuation–dissipation theorem [9].
The current of the coherent electrons Icoh

k
= Icoh(φk, T ) has been determined

in Ref. [5] and reads

Icoh(φk, T ) =
NcI

∗

2

[

Pg(φk/φ0, T ) + (1 − P )g(φk/φ0 + 1/2, T )
]

, (4)

where the flux quantum φ0 := h/e is the ratio of the Planck constant h
and the electron charge e. The characteristic current I∗ = h eNe/(2l

2
xme),

with Ne being the number of coherent electrons in a single current chan-
nel, lx is the circumference of the cylinder and me is the mass of electron.
Moreover, [5]

g(x, T ) =

∞
∑

n=1

An(T ) sin(2nπx) (5)

denotes the current in a channel with an even number of coherent electrons.
The amplitudes read

An(T ) =
4T

πT ∗

exp(−nT/T ∗)

1 − exp(−2nT/T ∗)
cos(nkFlx) . (6)
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The characteristic temperature T ∗ is determined from the relation kBT ∗ =
∆F/2π2, where ∆F marks the energy gap and kF is the momentum at the
Fermi surface.

Upon combining (3) and (4) into (1) we obtain the following set of
stochastic equations:

1

R

N
∑

k=1

Mik

dφk

dt
=φext−φi+

N
∑

k=1

MikIcoh(φk, T )+

√

2kBT

R

N
∑

k=1

MikΓk(t) , (7)

for i = 1 . . . N . Multiplying this system of equations by
(

M−1
)

ni
and next

summing over i one finds

1

R

dφn

dt
=

N
∑

i=1

(M−1)ni [φext − φi] + Icoh(φn, T ) +

√

2kBT

R
Γn(t) . (8)

For the following let us introduce dimensionless variables. The dimensionless
flux xn = φn/φ0 is given in units of the flux quantum. The dimensionless
time reads s = t/τ0, where τ0 = L/R is the relaxation time of the averaged
Ohmic current. The dimensionless Langevin equations (8) thus assume the
form

dxn

ds
= −V ′(xn, T ) −

N
∑

i(6=n)

λnixi +
√

2D Γ̃n(s) , (9)

where the prime denotes the derivative with respect to the first argument
of the generalized potential V (xn, T ), i.e. here with respect to xn and the
generalized potential is given by

V (xn, T ) = 1
2 anx2

n − bnxn − I0

xn
∫

f(y, T )dy . (10)

The coupling constants are λni = L(M−1)ni, and the parameter an =
L(M−1)nn corresponds to the n-th diagonal element of the inverse ma-
trix M−1. The re-scaled, externally induced fluxes are bn = γnφext/φ0,

where γn = L∑

N

i=1(M−1)ni. The re-scaled characteristic current is given
by I0 = Nc LI∗/φ0 and

f(y, T ) = Pg(y, T ) + (1 − P )g(y + 1
2 , T ) . (11)

The zero-mean re-scaled noise reads Γ̃n(s) =
√

τ0 Γn(τ0s) possessing the cor-

relations 〈Γ̃n(s1)Γ̃m(s2)〉 = δnmδ(s1−s2). Its overall intensity is determined
by D = kBT/2ε0, where ε0 = φ2

0/2L [10].
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3. The case of no coupling

For the noninteracting system, the flux dynamics threading a cylinder is
described by the Langevin equation

ẋ = −V ′(x, T ) +
√

2D Γ̃ (s) , (12)

which is a particular case of (9) with a vanishing mutual inductance. The
generalized potential

V (x, T ) = 1
2x2 − σx − I0

x
∫

f(y, T )dy, σ =
φext

φ0
, (13)

is in general multistable, see for details in Refs. [10] and [11]. The shape
of the potential is very sensitive to the parameter P which enters implicitly
the function f(y, T ) in (11). If σ = 0 and P = 1, the potential has —
for sufficiently low temperature — maximum at x = 0, while for P = 0
it has a minimum. The global minimum (or minima) of the potential (13)
can be interpreted as the self-sustaining fluxes (or currents) in the system.
The additional but local minima correspond to meta-stable states and indi-
cates the possibility of a so-called flux trapping [11]. For comparison with
the coupled system, we assume that the flux trapping is absent in the sys-
tem, i.e. the potential (13) is either monostable or bistable in dependence
whether the temperature of the system is above or below some critical tem-
perature Tc [11].

4. The coupled system

The coupled system of N cylinders is described by the set of N Langevin
equations (9). The N -dimensional joint probability distribution p({xn}, s),
which characterizes the dynamics of the fluxes {xn} = {x1, x2, . . . , xN}
which thread the N cylinders fulfills a Fokker–Planck equation [9]. Its form
follows from Eqs. (9), reading

∂

∂s
p({xn}, s) =

N
∑

n=1

∂

∂xn

[

V ′(xn, T ) +

N
∑

i=1(6=n)

λnixi

]

p({xn}, s)

+D

N
∑

n=1

∂2

∂x2
n

p({xn}, s) . (14)

Due to the symmetry λni = λin, the set of Eqs. (9) is a gradient system
independent of the specific configuration of the cylinders. In consequence,
the stationary solution of (14) is the Gibbs-like distribution,
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pst({xn}) ∝ exp

[−W ({xn})
D

]

,

W ({xn}) =

N
∑

n=1

V (xn, T ) +

N
∑

n=1

N
∑

i=1(6=n)

λnixnxi . (15)

In the absence of the external magnetic field (bn = 0), the mean flux in
a finite chain of mesoscopic cylinders vanishes due to the symmetry of the
potential W ({xn}). A non-zero mean flux can occur only in the limit of
infinitely many cylinders. We thus consider an infinite coaxial linear chain
of interacting cylinders in the mean field approximation.

The reduced one-dimensional probability density p(xk, s) can be obtained
from p({xn}, s) by integrating it over all variables except xk. Such an inte-
gration applied to (14) yields for the steady states the nonlinear equation

∂

∂xk



V ′(xk, T ) +

N
∑

i(6=k)

λki〈xi|xk〉



 ps(xk) + D
∂2

∂x2
k

ps(xk) = 0 , (16)

where ps(xk) is the stationary, one-dimensional probability density and
〈xi|xk〉 =

∫

xips(xi|xk)dxi denotes a stationary conditional average of xi

with respect to the stationary conditional probability density ps(xi|xk). The
equation is not closed because ps(xi|xk) = ps(xi, xk)/ps(xk) is expressed by
a two-dimensional probability density ps(xi, xk). In turn, an equation for
this quantity involves the three-dimensional probability density, and so on.
In this way we obtain an hierarchy-chain of infinite coupled equations. To
arrive at an equation which can be studied analytically, we have to introduce
an approximate scheme. We proceed in the following way: The conditional
average can be formally rewritten as 〈xi|xk〉 = 〈xi〉+cik, where cik describes
the correlations between the i-th and the k-th cylinder. In the limit of a large
numbers of cylinders, i.e. when N → ∞, the system becomes statistically
homogeneous so that the stationary average 〈xk〉 = 〈x〉 does not depend on
the index k. Moreover, consistent with a mean-field description, we neglect
correlations, i.e. we assume that cik = 0. Consequently, the stationary
probability density ps(x) of the representative x = xk satisfies a non-linear
Fokker–Planck equation [12], i.e.,

d

dx

[

U ′(x, T ) − λµ
]

ps(x) + D
d2

dx2
ps(x) = 0 , (17)
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with the “order parameter” reading

µ ≡ 〈x〉 =

∞
∫

−∞

x ps(x) dx . (18)

The effective, generalized potential is given by

U(x, T ) = 1
2 ax2 − γσx − I0

x
∫

f(y, T )dy . (19)

The parameter a = L(M−1)kk equals the (k-independent) diagonal ele-
ment of the inverse matrix M−1, the parameter b = φext/φ0 (cf. (13))
and γ = L∑

i
(M−1)ki. The effective coupling constant λ = −∑

i6=k
λki =

−L∑

i6=k
(M−1)ki. In the thermodynamic limit, all these quantities do not

depend on the element indexes of the matrix M−1 and, therefore, the rela-
tion γ = a − λ holds.

Both, the convergence and the approximate value of the above series are
implied by the fast decay of the mutual inductance with increasing distance
among cylinders [7]. The ratio λ is small and, usually, the absolute value
of λ does not exceed 0.1, i.e. −0.1 < λ < 0.1 [7]. It is important to note
that for the coaxial alignment considered in this work the effective coupling
constant is positive, i.e., λ > 0. Therefore, we expect a “ferromagnetic”
state of the system characterized by a parallel alignment of the magnetic
moments induced by currents flowing in the neighboring cylinders. For this
ordering the currents in the neighboring cylinders flow in the same direction.
This indicates the possibility of the symmetry breaking in the system when
the external magnetic field B = 0.

The formal stationary solution of Eq. (17) reads

ps(x) = ps(x, µ) = N0(µ) exp

[

− U(x, T ) − λµx

D

]

, (20)

where the normalization constant N0(µ) depends on the order parameter µ.
Inserting this solution into (18) yields a self-consistent state equation of the
form

µ = F (µ) , (21)

where

F (µ) =

∞
∫

−∞

x exp [−(U(x, T ) − λµx)/D(T )] dx

∞
∫

−∞

exp [−(U(x, T ) − λµx)/D(T )] dx

, (22)

with the intensity of thermal fluctuations D = D(T ) being ∝ T , see below
Eq. (11).



1700 J. Łuczka, J. Dajka, P. Hänggi

5. Analysis of the nonlinear state equation

An analysis of the state equation for the case that φext = 0, i.e. when
the external magnetic field B = 0, has been presented in [13]. Therein,
it has been shown that the so-called flux state, characterized by the non-
vanishing mean magnetic flux µ = 〈x〉 6= 0, can occur even if the external
magnetic field B = 0. On the parameters plane (T > 0, λ > 0) there is
a monotonically increasing line, starting from the origin (0, 0) below which
the flux state appears, i.e. a finite, noise-induced flux emerges for sufficiently
low temperatures and sufficiently strong coupling. Here, we focus on the case
B 6= 0 with B being a uniform static magnetic field parallel to the axis of
the coaxially formed cylinders. This means that the parameter σ in the
potentials (13) and (19) becomes ∝ φext ∝ B.

We next compare and contrast the properties of the coupled and the
uncoupled system, respectively. Such an analysis can serve as a guideline
for interpreting possible experimental results.

In the absence of mutual coupling the dynamics of the system is char-
acterized by the generalized potential V (x, T ) given by (13). It depends
strongly on both, the temperature T and the external flux σ which is imposed
onto the system, see Fig. 1. Its shape changes from the symmetrical bistable
form for σ = 0 to the asymmetrical, monostable form for σ ∈ (0, 1/4). Next,
for σ = 1/4 it assumes a symmetric monostable shape. For σ ∈ (1/4, 1/2)
it becomes again asymmetric and monostable. Finally, for σ = 1/2 it is
symmetric bistable. This symmetry follows from (13) and can be recast as

Fig. 1. The generalized potential (13) of the uncoupled system is depicted for

several values of the external flux σ. The remaining values of the parameters are:

T/T ∗ = 0.5, D = 0.001T/T ∗, I0 = 1, P = 1/2 in (11) and kFlx = 0.1 in (6).



Magnetic Flux in Mesoscopic Cylinders 1701

the relation V (x, σ + 1/2) = V (x − 1/2, σ) − 1/8. It indicates a kind of
periodicity with a period L = 1/2.

In Fig. 2 we present the temperature dependence of the stationary mean
magnetic flux µ for the case of coupled (λ 6= 0) and the uncoupled (λ = 0)
cylinders. For uncoupled cylinders and in the absence of an external driving
(σ = 0), the magnetic flux is µ = 0, as expected. Switching on the exter-
nal magnetic flux induces a non-zero value of the mean flux threading the
cylinders. At high temperature, there is no coherent current and the system
behaves asymptotically Gaussian. In this high temperature limit we have
µ = σ, both for the case of coupled and the uncoupled cylinders. At low tem-
peratures, a small change of the externally induced magnetic flux σ results
in a relatively large value of µ. This “amplification” of µ with respect to σ
at small temperatures is steep but continuous, see in Fig. 3. This drastic in-
crease is caused by the coherent current flowing in the system because in the
low temperature limit the susceptibility of coherent electrons (represented
by the flux-derivative of the current-flux characteristics) approaches infin-
ity. These effects are present as well for the case of a coupled system (not
depicted). In the whole temperature regime, the non-zero coupling between
cylinders results in the increase of the mean flux µ. At low temperatures,
the mean flux in the system approaches a finite value, indicating the possible
collective behavior in the absence of an external driving, see in Ref. [13].

Fig. 2. The mean flux threading one cylinder for a coupled (set of nonvanishing

coupling constants λ’s) and an uncoupled (λ = 0) system for several values of the

re-scaled externally induced flux σ, for a = 1.02 and γ = a − λ. The values of the

remaining parameters are the same as in Fig. 1.
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Fig. 3. The mean flux µ treading the uncoupled (λ = 0) cylinder at low temper-

atures is shown vs. the external magnetic flux σ. The remaining values of the

parameters are as in Fig. 1.

Due to the intricate temperature dependence of the generalized poten-
tial caused by the coherent part (11), the system can exhibit an unusual
behavior: We note that for σ = 0.25 (one half of the period L = 1/2) the
mean flux µ essentially becomes independent of temperature, i.e. it de-
pends very weakly on T . This value separates two regimes, cf. Fig. 2: for
σ < 0.25 the mean flux is a decreasing function of the temperature while for
σ > 0.25 it becomes an increasing function of temperature. This constitutes
a temperature-induced effect in equilibrium which leads to an increase of the
persistent current in the mesoscopic system. Similar effects are known to oc-
cur in mesoscopic systems, but there are typically caused by non-equilibrium
sources of fluctuations [14]. Notably, this effect is preserved for the case of
coupled cylinders with λ > 0.

Another measurable quantity of foremost interest and which is strongly
affected by both, the external field σ and the non-zero coupling λ is the
variance of the order parameter. This measure of the strength of fluctua-
tions is depicted with Fig. 4. Its behavior at low and high temperature
is generic: as temperature increases, fluctuations increase as well. At suffi-
ciently high temperatures we observe — regardless of the coupling strength
— the expected linear dependence, being typical for a Gaussian behavior.
However, at moderate temperatures and small σ, there is a regime of the
reduction of fluctuations: although temperature increases, fluctuations de-
cline. It is a case when the potential changes its form from the bistable to
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Fig. 4. The fluctuations of the order parameter are depicted for several values of

the externally induced magnetic flux. The values of the remaining parameters have

been chosen as in Fig. 1. In particular, the temperature is chosen to be below the

characteristic temperature, i.e. T/T ∗ = 0.5.

monostable shape. In the presence of finite coupling, it corroborates the
conjecture stated in [13] that the coupled system undergoes a noise-induced
transition into an energetically favorable state, a finite flux state.

6. Conclusions

In conclusion, we have studied the behavior of a linear chain of interact-
ing mesoscopic cylinders in a finite, uniform magnetic filed B. The influence
of this externally applied magnetic field causes a rich and complex thermal
noise assisted flux behavior, both for the case of uncoupled and coupled cylin-
ders. Our study models the common experimental set-up when investigating
persistent currents and flux in mesoscopic systems at low temperatures. The
properties of the total current flowing in an individual cylinder follow readily
from the results of the magnetic flux via the inversion of the relation in (1).

Financial support by the KBN via grant PBZ-MIN-008/P03/2003,
the ESF (Stochastic Dynamics: Fundamentals and Applications) and the
Polen–DAAD/KBN (Stochastic Complexity, 323-bis PPP Polen, J.L. and
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