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Effects of network topology are studied in a system of cellular automata
driven by a totalistic rule. In particular, propagation of a signal is consid-
ered in the directed network obtained from a flat (square) lattice by adding
directed connections. The model is motivated by features found in human
neural system. Cooperation between local dynamics and network organi-
zation results in fast stabilization of the system. Simple model of neural
pyramidal cell is proposed to stabilize the automata in the oscillating firing
patterns form.
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1. Introduction

The motivation for cellular automata concept was biology [1]. During
last 50 years the idea of the many element system which is discrete in time,
space and states, and which evolves accordingly to the locally given rule has
been successfully applied in many fields of scientific interest and not only
of biological origin, [2]. Many aspects of self-organizations can be explained
with the help of cellular automata. Therefore, one can say that the easiest
way for understanding complex system is through cellular automata |[3].
Unfortunately, the validity of this approach is usually qualitatively. It seems
that something is missed in the concept of the cellular automata system
organization.

* Presented at the XVII Marian Smoluchowski Symposium on Statistical Physics,
Zakopane, Poland, September 4-9, 2004.
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Coupled systems can be modeled as networks or graphs, where the ver-
tices represent the elements of a system, and the edges represent interactions
between them. The network topology may be random (each node is ran-
domly wired to any other node) or regular (each vertex is connected in a fixed
pattern to identical number of its neighboring nodes). Watts and Strogatz [4]
showed that between these two extremes there is a regime, called small-world
network, which presents properties of both networks. Small-world network
can be highly clustered like regular networks and, at the same time, have
small path lengths like random ones.

The topology of the network influences the dynamics. According to the
universality hypothesis the details of the network are qualified as mean field
approximation or other. In this sense the critical properties such as, e.g.,
critical exponents, are sensitive to the details of topology. However, from ex-
aminations of human and technological systems and their organizations the
importance of network effect has been emerged [5]. The lesson is that not
only design of interactions matter greatly in reconstructing nature phenom-
ena but the structure of connections: asymmetry and heterogeneity, matter
significantly.

Many basic features of the network topology can be read from the vertex
degree distribution, [5]. A vertex degree is the number corresponding to
number of vertices to which the vertex is directly connected. The regular
lattice has a delta distribution, the stochastic graph provides the Poisson
sharply peaked distribution. The peak value corresponds to the average
vertex degree and because of its high probability to occur this vertex degree
is typical for a network. Small-world network gives also the exponential
dependence on vertex degree. Networks, where the distribution of vertex
degree is of power-law type are called a scale-free networks [6].

An important problem in neuroscience is to understand how the structure
and functions at one level of organization is manifest in the structure and
function at higher levels of organization [7-9|. For example, at the molec-
ular level, the voltage and current across the cell membrane is controlled
by ion channel proteins. At a higher level of organization, information of
relevance is represented in the rate or timing of action potential. Exper-
imental evidence suggests that synchronous activity of large assembles of
neurons provide the basis of the remarkable computational performance of
the brain [10]. Motivated by this, contrary to the presently used digital com-
puter memories where information is encoded in the form of a given string
of binary digits, there is an approach in which the encoding is embodied in
oscillations of the activity of the memory nodes.

Information processing in the proposed dynamical memory is closely re-
lated to the percolation phenomena [11]. Much work has been done on the
family of cellular automata known as bootstrap percolation [12]. The boot-
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strap percolation denotes the Z¢ lattice where each site can be active or
inactive and where initialy (¢ = 0) sites are active with probability p, and
each time step a site becomes active if at least its [ neighbors are active. The
question is to find the critical probability p.it above which all sites become
active for large ¢ and given [. In case of a square infinite lattice and [ = 2
then peis = m2/18 is known exactly [13]. For finite lattice systems pei; is
smaller about two times than the thermodynamic value.

Cellular automata of interacting locally elements with topology different
from a regular lattice or a random network could be a conception for the
absent ideas in the cellular automata system organization. This conception
should at least provide hints how the underlying geometry cooperates with
a dynamical rule in fixing properties of the stable system. The mentioned
earlier achievements in neuroscience as well as discoveries about the organi-
zation in different natural networks [14| motivate us for such reconsidering
basic features of cellular automata.

In the following we basically ask how allowing for long-range connec-
tions (hence, non-local interactions) influence the bootstrap percolation.
We present computer simulation results obtained for cellular automata with
topology modified by the presences of additional directed edges. The con-
sidered changes are made following the Barabasi and Albert concept [6] of
preferential attachment. Thus, the network grows. However, the growth is
limited to the number of edges, since the number of nodes is unchanged. Mo-
tivation for such a net construction comes from the fact that during the life
time, the number of neurons in the human neuron system does not increase
(precisely, the total number of cell diminishes with age) but the number of
synapses (the communication links) on each neuron does [8]. These new
edges introduced are directed to better imitate an axon to synapses connec-
tion. Instead of conclusion we propose a model of a neural network where
the synchronous state means a precisely timed periodic firing pattern.

2. Cellular automata on directed network

2.1. Directed network construction

All basic connections of two dimensional square lattice are conserved.
The regular links are considered as two directed edges. New directed edges
are added with intensity governed by a parameter p, see Fig. 1. The value of
the parameter p is chosen in such a way that it describes the average vertex
degree after the network modification. By this procedure we would imitate
all types of folding, bending, twisting the flat surface of neurons.

Depending on how the new edges are added: at random or intentionally
(with linear preference to link to highly connected nodes), a different network
is constructed, see Fig. 2 for the vertex degree distributions. The estimates
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Fig. 1. New directed edges are added to a square lattice connections. Each directed
edges increases by 1 the degree of the pointed vertex.
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Fig. 2. Distribution of vertex degree in case of random adding (top panel) or with
preference to link to highly connected nodes (bottom panel). (k) describes the

average vertex in-degree. The dashed lines plot approximations by the Gaussian
distributions.
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of distributions in both cases (random and intentional edge adding) lead to
the distributions which can be approximated by the Gaussian distribution
centered at (k) = 4 + p (see dashed lines in Fig. 2), (k) denotes the aver-
age vertex degree. The spread of the distributions, measured by standard
deviations, is different in both cases. The difference grows with the value of
parameter p. In result when p is large enough, namely p > 100, then the
degree of a typical vertex means the wide interval in case of intentional link-
ing. Therefore, we can expect that effects of heterogeneity of the network
could appear.

2.2. Totalistic rule on directed network

The automata cell assigned to each vertex is considered as binary, i.e.,
a cell can be active or inactive what denotes o; € {1,0}, suitable. The state
of automata cell is changed according to the following totalistic rule:

1 if O'j t l
oi(t +1) = { jE%(t) 0> (1)

0 otherwise

where IV; denotes the set of in-neighbors of i-th vertex, i.e., neighbors con-
nected by the edge directed to the i-th vertex. Such a dynamics is often used
to mimic spreading diseases and then the [ parameter describes the num-
ber of sick neighbors which results that a central node becomes sick [15].
Notice, that a sick node becomes healthy only if it has a sufficient number of
neighbors which are healthy. If one assumes that a sick node cannot recover
from its disease, so the node which gets disease is sick for ever, the problem
is known as the bootstrap percolation. On a square lattice if initial density
of active cells p is low then the system quickly converges to a steady state
of rectangular islands of active cells surrounded by a sea of inactive cells.
However, as p crosses some threshold then every cell becomes active.

2.3. Results

In computer simulation experiments we test what is the effect of growing
number of connections and especially we are interested in what kind of the
stable state is reached if we start from a random picture or from a picture
which is invariant with respect to the (1) dynamics set on a square lattice.
So that we are able we observe properties of final configurations when the
evolution starts at either a random state with a given p or with a square
filled with cells in active state. The size of the square corresponds to p.

The experiment goes as follows:

e For a given initial density of 1's p, p € [0,1], the initial state of au-
tomata cells is prepared either at random or as the square of 1’s that
corresponds to p.
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e For a given number of p, p = 1,2,..., the directed long-ranged con-
nections are established either randomly choosing a destination or in-
tentionally choosing a destination.

e For a given [, Il = 0,1,2,...

the totalistic rule (1) is applied syn-

chronously many times to fix the stable state.
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Fig. 3. Bootstrap percolation on cellular automata with directed edges added ran-
domly or preferentially and if the initial state is at random or a rectangle of 1’s.
All four possible combinations are listed in the top panel.
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Fig. 3 presents results for l = 1 and [ = 10. If each vertex has the one ex-
tra edge at average then the stabilization with other than the homogeneous
configuration of all cells 1’s or all cell 0’s appears only if p € (0.04,0.10) in
case of random initial state. But when the initial state is fixed by a rect-
angle then inhomogeneous final state happens only if p € (0.02,0.07). This
difference denotes that 1’s arranges in the square shape work more efficiently
on transferring state to all cells active. Both the size of uncertainty interval
in p and the distance between uncertainty intervals when different initial
states happens, decrease with the increase of the number of extra edges.
This is a consequence of loosing geometry of a square lattice. When p = 10
then systems stops to feel the fixed initial configuration. When [ is high
enough, e.g., I > 10, see bottom figure of Fig. 3, then the system is a two-
state system. The uncertainty intervals squeeze to 0.01 what means here the
precision of the performed simulations. However, the discrepancy between
dashed lines (which represent intentionally prepared network) and solid lines
(which represent randomly prepared network) is persistent. It seems that
the heterogeneity of the network that is modified intentionally decreases the
threshold for bootstrap percolation.

3. Modeling firing patterns

The hippocampus is perhaps the most studied structure in the brain [9].
The hippocampus is formed by two interlocking sheets of cortex and in cross-
section has a very defined laminar structure with layers visible where rows
of pyramidal cells are arranged. The connections within the hippocampus
generally follow this laminar format and, as a rule, are uni-directional.

Let us take a look at a pyramidal cell from the hippocampus, see Fig.4,
to better understand the model [16]. It has a pyramid-shaped soma and two
large dendritic trees, the apical dendrites at the top, and the smaller basal
dendrites at the bottom. There is also a long thin axon. Obviously, all this
extended branching can allow for a lot of information processing of its many
inputs, by making use of both temporal and spatial summation. A cortical
pyramidal cell has approximately 20-30000 synapses on it, and makes as
many synapses on other neurons.

Pyramidal cells in the hippocampus show a range of interesting firing
patterns, [16,17]:

— with no external input, a cell fires bursts of action potentials every
few seconds;

— with increasing amounts of stimulation, the frequency of bursts in-
creases;

— with even larger amounts of input, the cell switches over to a pattern
of regular firing instead of bursting.
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Fig.4. Neuron parts and functions: dendrites (apical and basal) — receive infor-
mation from other neurons in the form of electrical signals; soma (cell body) —
processes information by adding together all the signals; azon — sends output to
other neurons; Action Potential — electric impulse traveling from soma to axon
terminals; synapse — transmits information to a next neuron. Axon terminals
release chemicals (neurotransmitters) onto dendrites of another neuron that either
excites or inhibits that an neuron. In the picture, a typical cortical pyramidal cell,
from [16]. (This particular cell is of rat olfactory cortex.)

For example, during an epileptic seizure, the bursts in different cells
become synchronized over large portions of the hippocampus. So, there are
lots of good reasons for wanting to understand more about the behavior of
these cells.

Basing on the above description we propose the following model.

(i) Let a neural cell state be described by the product o; x 3; where

e 0; € {1,0} corresponds to the axon state of the i-th neuron: fire
— Action Potential is produced and quiet none Action Potential
is produced;

o ¥, € {Active, Resting, Over Reactive} corresponds to a state of
the soma of the i-th neuron. The soma states are governed by
timing: activity interval — time in which each time step the axon
alternatively changes its state, and refractory interval — number
of time steps in which the axon is in 0 state independently of any
external signal.
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(ii) Let the isolated from external signals neuron periodically switch be-
tween the Active state of its soma with a burst of Action Potentials
in the axon (of length of the activity interval) to the Resting state of
soma in which no axon activity (of length of the refractory interval) is
present.

(iii) Let the stimulus from external axons change the length of the refrac-
tory interval:

2
refractory _interval(t 4+ 1) = refractory _interval(t) — < Z g (t)) .
JEN;

Thus, the stimulus from other axon decreases the refractory time. If
the refractory time becomes zero then the soma of a neuron changes its
state to OuerReactive, what causes that its axon is in the permanent
fire state for the whole time of the activity interval. Then the soma
switches to the Resting state.

The parameters used by us in simulations are as follows: number of
additional edges p = 500, the activity interval is set to 20, the refractory
interval is set to 100. The initial state is prepared at random in all state
space of axon and soma. It appears that the cellular automata system
leads to the stabilization with precisely timed periodic firing patterns with
the period equal to 22 independently of p and the refractory interval. The
length of the period depends on the activity interval while the refractory
interval determines the time to reach the periodic solution.

Our findings are only preliminary, and are included here to present new
challenges which open to cellular automata concept if one admits manipu-
lating with geometry of the underlying network.

This work is supported by the Gdansk University Project BW-5400-5-
0256-4.
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