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In a two-dimensional (2D) equilibrium Lennard–Jones (LJ) liquid, coar-
se-grained time-averaged spatial distribution of local solid-like structures is
studied in order to estimate the hypothetical local-structure-based long
time scale. Standard NVE molecular dynamics simulation method is used.
Time-averaged distributions indicate a structural slow mode with a char-
acteristic time-scale at least two orders of magnitude larger than the local
oscillation period.
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1. Local structure and its fluctuation in liquids and glasses

Hypothesis of a relatively long-living (solid-like) local structure in dense
equilibrium liquids appeared at the beginning of XX-th century as an at-
tempt to explain the Bragg scattering experiments. Since then, multi-
ple qualitative and semi-quantitative formulations were proposed, see, e.g.,
Refs. [1, 2]. The kinetic theory of liquids, formulated by Frenkel [3] (see
also works of Eyring [4]), has put forward an intuitively clear physical pic-
ture of locally ordered clusters that resemble a crystal-like type of ordering
but do not constitute nuclei of a solid phase in the thermodynamic sense.
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A statistical-mechanics formulation based on a coarsened description as-
sumes introduction of a local-order parameter field ψ(r). Both crystalline
(Hess [5], Mitus and Patashinskii [6]) and non-crystalline (Nelson, Toner,
Steinhardt and Ronchetti [7, 8]) local order and corresponding fields ψ(r)
were introduced. These ideas were used to formulate a phenomenological
theory of melting [6] and its generalization for a fluctuation theory of locally
ordered liquids [9, 10].

In a system with long-living local structure, the thermal motions in equi-
librium and super-cooled liquids is treated in terms of two components (see,
e.g., Refs. [11, 12] and references therein). The first component, vibra-
tional motion of particles, conserves the local structure, while the second
component, rearrangements in small clusters, changes the local structure in
a cluster and correspondingly the local value ψ(r) of the order parameter
field. Both components of the motion result in fluctuations of microscopic
characteristics. A widely accepted assumption states that the rearrange-
ment component constitutes a slow mode of structural relaxation. Under
this assumption, short-time averages (measurements) can be interpreted as
thermodynamic properties at constant structure. This, in turn, leads in
a natural way to the concept of short-time thermodynamics [11]. The short-
time susceptibilities (bulk modulus KT {ψ(r)}, heat capacity cV {ψ(r)} or
thermal coefficient of pressure αP {ψ(r)}) are related to structure fluctua-
tions at constant volume and temperature in a way that resembles relations
between thermodynamic fluctuations and susceptibilities in classical statis-
tical mechanics (see, e.g., in Ref. [13]). The difference in short and long time
susceptibilities gives a practical measure of structure fluctuations [12,14,15].

This approach offers a coarsened statistical-mechanics description of
local-structure-driven effects both in equilibrium and non-equilibrium liq-
uids and glasses. At limited experimental times, the glass transition can be
treated as a crossover between short- and long-time behavior: upon super-
cooling, the relaxation times grow and may exceed the characteristic times
of an experiment. When the structurally frozen clusters become dominant,
only the short-time regime can be realized. However, validation of the sug-
gested physical picture of two-component motion, in particular in appli-
cation to equilibrium liquids, remains a challenge. The crucial point here
is the condition of structure conservation during short-time measurements.
This condition means that the time of life of the local structure has to be
significantly larger than a typical particle vibration period.

A test of the concept, and a quantification of an appropriate local-
structure parameter ψ is a non-trivial task. The arguably simplest system to
study the existence life-time of local structure is a 2D computer-generated
liquid. The probabilistic analysis of local structure (LSA) revealed impor-
tant static properties of 2D liquids close to the two-phase region, including
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a high concentration of local solid-like structure, dramatic changes in en-
sembles of local structure fluctuations upon cooling, and a freezing criterion
based on these changes [17,18]. Then, the local structure in 2D equilibrium
liquids may be characterized by an order parameter (see, e.g., a review pa-
per [16]). However, the study in Refs. [16–18] was limited to the statistics
of snapshots. So far no time-dependent phenomena were studied using local
structure approach. A direct observation of the lifetime of local structure as-
sumes studying the history of particle arrangements and analyzing possible
structure memory effects.

The aim of the current paper is to propose a simple approach for an
analysis of structure memory effects. We apply this approach to a computer-
simulated 2D equilibrium liquid, to provide arguments in favor of a long,
local structure-based, temporal scale in this system.

The paper is organized as follows. The next section deals with molecu-
lar dynamics simulation of 2D Lennard–Jones system. Section 3 introduces
the concept of time-averaged spatial distribution of local solid-like struc-
tures in 2D computer-simulated liquids. Those distributions are presented
in Section 4. A general discussion is given in Section 5.

2. Simulation

We have simulated a 2D system of N = 2500 atoms interacting via
Lennard–Jones potential vLJ(r)

vLJ(r) = 4 ε

[

(σ

r

)12
−

(σ

r

)6
]

, (1)

at reduced temperature T ∗≡kBT/ε=0.7 and reduced density ρ∗ ≡ρ σ2 =0.8
(kB stands for Boltzmann constant). At this temperature the liquidus line
was found (using LSA approach) at reduced density ρ∗ ≃ 0.82 [17]. The criti-
cal temperature reads approximately T ∗ ≃ 0.55. A standard NVE molecular
dynamics method with velocity Verlet algorithm was used [19]. The time
step was ∆t = 0.0064 τ0. To relate this to a physical time, one uses argon
atom parameters, to obtain ∆t = 2 × 10−15 s. The total time of simulation
was 10−10 s ≃ 80 τLJ, where τLJ denotes the oscillation period in a harmonic
regime of LJ potential: τLJ ≃ 1.2× 10−12 s. The equilibrium characteristics
were sampled after 5 × 104 equilibration steps.

It is important to keep in mind that 2D systems exhibit some peculiarities
due to large (as compared to 3D) long-wavelength fluctuations [20]. For
historical reasons we describe the system in terms of melting and liquid-
solid coexistence between liquidus and solidus lines, although the solid phase
may be actually a hexatic phase [21,22]. In finite and not too large systems
used for computer simulations, differences between the hexatic and the true
crystalline phases are negligibly small [17].
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3. Time-averaged spatial distribution of solid-like atoms

3.1. Local-structure analysis

An analysis of local solid-like structures in an instantaneous configuration
of atoms is done using a probabilistic approach to structure recognition.
Below, we present its main concepts; an interested reader can find more
information in a review paper [16].

The local order in a 2D system in the neighborhood of an atom located
at the point r is described by 2D local version of bond-order parameter of
Nelson et al. [7, 8, 23]

Q6m(r) =
1

N0

N0
∑

i=1

Y6m(π/2, φi) , (2)

where Y6m(θ, φ) (m = −6, . . . , 6) denotes the spherical harmonic function,
the sum is taken over the N0 = 6 metrically defined nearest-neighbors of
the atom located at the point r and the pair of polar and azimuthal angles
(θi, φi) describes the direction between the central atom r and its i-th nearest
neighbor. The invariant Q(r) for (N0 + 1)-atom cluster with central atom
at r is defined as [8, 23]

Q2
6(r) =

4π

13

6
∑

m=−6

|Q6m(r)|2 . (3)

The statistics of invariant Q6 in an instantaneous configuration is de-
scribed by a probability density function (PDF) ρ(Q6). This function is
approximated by an empirical PDF, constituting a histogram of random
variable Q6, calculated from the set {Q6(ri)}, i = 1 . . . N , where N denotes
the number of atoms. Furthermore, we assume that ρ(Q) can be decomposed
into PDFs ρk(Q) describing fluctuating patterns of structure Γk

ρ(Q) =
∑

k

ck ρk(Q) . (4)

We use two patterns as the candidates for the local structure in the system.
Pattern Γ6 is a 2D hexagon, i.e. aN0+1 = 7-atom cluster from 2D triangular
lattice. Pattern Γ5 is a 7-atom cluster centered around a 5-coordinated atom
(disclination in 2D triangular lattice). The PDFs for patterns depend on the
choice of an ensemble of the atoms’ fluctuations. The “best” decomposition
(4) is obtained by maximizing the significance level calculated from χ2-test
verification of the hypothesis which states that the data corresponding to
the left-hand side and the right-hand side of (4) are drawn from the same
distribution.
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Local structure analysis, performed for various 2D liquids, has lead to
a physical picture of 2D liquids as locally solid-like ordered systems [16].
In particular, the concentration of solid-like component constitutes, close to
the liquidus line, approximately 0.5. It remains constant during simulations,
up to thermodynamic fluctuations.

On the other hand, this analysis yields no information about the spatial
distribution of solid-like part of the system, crucial for studies of its temporal
evolution. Spatial distribution is a central object of interest in this paper and
is found using a simple probabilistic approach worked out in Refs. [23, 24].
Namely, each 7-atom cluster can be classified as a fluctuation either of the
pattern Γ5 or Γ6 using a Maximal Probability Decision Rule (MPDR). It
states that a trial cluster with invariant Q6 is a fluctuation of pattern Γ6

when Q6 > Q
(0)
6 . Q

(0)
6 is a solution of an equation ρ6(Q

(0)
6 ) = ρ5(Q

(0)
6 ), where

the PDFs for patterns are calculated from the decomposition (4). The value

of Q
(0)
6 depends on temperature and density. Close to the liquidus line, for

T ∗ = 0.7, Q
(0)
6 = 0.555 [17]. The central atom of a cluster classified as

a fluctuation of pattern Γ6 is called a solid-like atom (SLA); the remaining
atoms in the liquid are called liquid-like.

In Fig. 1 we present a typical spatial distribution of SLA atoms in an
instantaneous configuration at T ∗ = 0.7 and ρ∗ = 0.80, calculated using

MPDR with Q
(0)
6 = 0.555; liquid-like atoms are not shown. An analysis

of the time evolution of this distribution is a challenge because of a highly
irregular form of SLA clusters, and requires rather sophisticated tools. Those
topics are at progress now and will be presented elsewhere. Instead of a direct
calculation of characteristic time scales related to typical times of life of
those clusters, in this paper we use an indirect approach and study only
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Fig. 1. Solid-like atoms (crosses) in a configuration of LJ liquid of 2500 atoms at

T ∗ = 0.7, ρ∗ = 0.80. Liquid-like atoms are not shown.
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the coarse-grained time-averaged distributions of SLA atoms. As a result,
a detailed information about important features of time evolution of small
and large SLA clusters is lost. Nevertheless, even this simple approach
provides a measure of structural memory and clearly indicates an existence
of a time scale much larger than τLJ.

3.2. Coarse-grained time-averaged distributions

Coarse-grained time-averaged distributions of solid-like atoms are defined
as follows. We chose a set of M configurations, spanning the time interval
of length t. In each of the configurations the solid-like-atoms are found.
The coarse-graining procedure is done in the following way. We divide the
simulation box into N1 × N2 = N rectangles, i.e., one atom on average
per one rectangle. The cells are labeled with indices i = 1, . . . ,N1, j =
1, . . . , N2. The occupation pi,j(tk) of a cell (i, j) at a moment of time tk
(k = 1, . . . ,M, tM = t), i.e., in k-th configuration, is defined as a number of
SLA atoms in this cell. As a rule, pi,j(tk) = 0 or 1. In general, it is possible
that two SLA atoms occupy the same rectangle, but in dense systems those
events are rare. The time-averaged coarse-grained spatial distribution of
SLA clusters pi,j(t) is an average over configurations of pi,j(tk)

pi,j(t) =
1

M

M
∑

k=1

pi,j(tk) . (5)

Parameter pi,j(t) gives the probability of an occupation of rectangle (i, j)
in a time interval of length t. However, because of the fluctuations discussed
above, the notion of the probability has to be treated with some care. For
an ideal lattice pi,j(t) ≡ 1. The plots of pi,j(t) yield important information
about the stability of SLA clusters in a time interval t. For sufficiently large
time intervals, an average coarse-grained distribution of SLA clusters smears
out and pi,j(t) becomes a constant p∞ that is independent on i, j and t.
Moreover, this constant is equal to an average (equilibrium) concentration
of SLA atoms c6(T

∗, ρ∗)

pi,j(t) → p∞ = c6(T
∗, ρ∗) (t→ ∞) . (6)

This property of pi,j(t) plays an important role in the further analysis.
Namely, the decay of spatial heterogeneity of pi,j(t) with increasing time
interval t gives information about local structure-based time-scales in the
system. If the plot of pi,j(t) displays spatial heterogeneity, then memory ef-
fects exist in the corresponding time interval t, leading to spatial correlations
between SLA clusters.
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4. Results

In Fig. 2 we present the time-averaged probabilities pi,j(t) for time
interval t = 10−10 s ≃ 80 τLJ, calculated for the reduced density ρ∗ = 0.8
at reduced temperature T ∗ = 0.7. The equilibrium concentration of solid-
like structures reads c6 = 0.42 ± 0.01. Instead of a 3D plot we present
a few 2D cross-sections, constituting of those areas in (i, j) plane where
pi,j(t) ≥ p, for the following values of p: p = 0.3, 0.4, 0.5 and 0.6. We
find that the cross-sections are not spatially homogeneous. In Fig. 2(a)
there are a few patches where the time-averaged local solid-like structures
occur with low probability p < 0.3. The size of those patches grows with
increasing value of probability p. In the case of p = 0.4, i.e. close to the
value p∞ = 0.42, they occupy a large part of (i, j) plane, see Fig. 2(b).
For a higher probability p= 0.5, noticeably larger than p∞, one still finds
patches where SLA atoms tend to stay during the simulation (Fig. 2(c)).
Some traces of this inhomogeneity are still seen for p = 0.6, see Fig. 2(d).
Clearly, the spatial distribution of time-averaged solid-like structures has not
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Fig. 2. Cross-sections of time-averaged probabilities pi,j(t) with plane p = const.

for time interval t = 10−10 s ≃ 80 τLJ, calculated for the reduced density ρ∗ = 0.8

at reduced temperature T ∗ = 0.7, for (a) p = 0.3, (b) 0.4, (c) 0.5 and (d) 0.6.
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reached the homogeneous long-time form discussed in the previous section,
in which case the cross-sections for p = 0.3 and 0.4 should consist of only
black points, while those corresponding to p = 0.5 and 0.6 should be white.

5. Discussion and conclusions

In this paper, we have introduced an indirect measure for memory ef-
fects related to local structures in 2D computer simulated liquids, namely
the time-averaged coarse-grained distributions of solid-like atoms. The main
result of our study is the observation that in the time interval two orders of
magnitude larger than the oscillation period τLJ , the averaged SLA distri-
bution is not uniform. The plots display the islands in (i, j) plane occupied
by SLA atoms with a relatively high probability during the simulation run.
And vice versa, the regions exist where the SLA appear with a noticeably
lower probability than its average value, the last being equal to the equi-
librium concentration of SLA atoms. We conclude that in a 2D LJ liquid,
memory effects exist due to a local solid-like structure, which becomes a good
candidate for a slow mode.

We expect that in super-cooled liquids the difference between short and
long-time scales is more distinct than in an equilibrium liquid. The time
scales t > 10−10 s are sufficiently large for (local) phonon-like modes in
compact condensed matter, and for a short-time, local-structure-based ther-
modynamics in glass-forming liquids [15].

More studies are necessary to quantify the concept of large time scales.
This includes a detailed analysis of the dependence of results on the av-
eraging period. Our preliminary results show that some heterogeneity in
time-averaged distributions persists for times much larger than those used
in the present work. Studies for other values of thermodynamic parameters
should also be done. Finally, let us point out that the real (i.e., not averaged
over time) dynamics of SLA clusters should be studied in order to cast more
light onto structural processes that define the time scales in liquids. Those
studies are in progress now.
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