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We use the cellular-automaton Duke–Rubinstein model to simulate gel
electrophoresis of DNA in periodically changing electric field. The field is
dichotomic and its time average is zero. We observe non-vanishing current
of molecules, what is known as the ratchet effect. We calculate the drift
velocity and the diffusion coefficient for large field amplitude, where nonlin-
ear effects can be observed. The results indicate that tuning the amplitude
and frequency of the applied field for a given range of the molecule length
can improve the resolving power of the separation of DNA.
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1. Introduction

Separation of molecules of DNA is of current interest in biophysics, be-
cause of existing and new applications in genetic technology. For this pur-
pose, the gel electrophoresis (GE) is a standard technique [1]. The resolving
power of GE depends on the velocity v of the investigated molecules and on
the bandwidth [2], which in turn can be expressed by the mobility µ and the
diffusion coefficient D. From an experimental point of view, these quantities
can be modified by the gel concentration and the field intensity. They are
known to depend also on the molecule length.
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Here we are interested in GE in the presence of electric field which peri-
odically varies in time pulsating between two field intensities E+, E

−
, each

of duration t+, t
−
, respectively. The motivation for this kind of studies is

twofold: First, additional parameter which is the frequency of the applied
field allows for a better tuning of the experimental values of the steady-state
velocity [2]. Second, it can be used to control the diffusion coefficient of the
moving molecules and a resolution ratio for the GE separation. The latter is
due to the fact that the unbiased but asymmetrical electric field pulses are
responsible for building a ratchet-type mechanism which stands behind the
efficient isolation of various conformational forms of the same polymer [3,4].
The process investigated is of great interest and a special challenge for
nanotechnology, as it serves for a design of molecular Brownian machines
and rectifying devices that transport small (micrometer- to millimeter-sized)
particles [5–7]. In the case discussed in this study, simulations of the tilting
ratcheting device [4] are performed by use of the cellular-automaton model.
Its feasibility for the purpose of the ratchet-modeling and applications of
the methodology in bio-materials research and engineering have been dis-
cussed elsewhere [8]. Here we report the results of our cellular automata
simulations of the GE and demonstrate ratcheting efficiency of the diffusion
of DNA molecules in the presence of applied ac field with zero time average.
To allow for the non-zero current, the field has to be large enough to include
nonlinear effects. For low field intensity, the mobility µ = v/E does not
depend on E and the net current is zero by symmetry. The simulations are
performed within the Duke–Rubinstein model [9, 10], with additional tricks
adopted after Ref. [11]. More detailed description of the algorithm can be
found in [11–14]. Except Ref. [13], all those works are devoted to situations
with the external field constant in time. Some preliminary results of the
simulation for time-varying field have been presented in [13]. There, the
velocity v and diffusion D of moving DNA fragments have been investigated
as dependent on the field frequency. In this work we present a more detailed
and complete study of the case.

2. Calculations

The simulation of an electrophoretic ratchet is similar to that one, at
constant field described in [12]. However, now we have two values ε

−
and

ε+ proportional to intensities of the applied field in two directions. Durations
of the appropriate pulses are t

−
and t+, hence we can define field frequency

f as f = 1/(t+ + t
−
). There, the time unit, 1MCs, is defined as a time in

which every repton realizes exp(−ε/2) trials of movement in field direction
and exp(ε/2) trials of movement in the opposite direction, where ε is the
electric to thermal energy ratio [11]. In order to keep the time average
value of the field equal to zero, we require that ε

−
t
−

= ε+t+. A course of
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simulation for a single DNA chain is as follows: first we apply the constant
field ε+ allowing the molecule to reach a stationary state (constant velocity)
and then, after switching the pulsing field on, we wait again until the mean
velocity is constant. Next we let the molecule move in the varying field for
some time to get good statistics, writing its position x and x2 every 100 MCs.
The long-time drift velocity v and the diffusion coefficient D are obtained
by averaging over 2000 molecules in stationary states.

The parameters of the simulation are: the molecule length expressed by
the number N of reptons in a molecule, the electric to thermal energy ratio
ε1 and ε2 for both field intensities E1 and E2, and the frequency f of the
changing field. The output is v and D, both in arbitrary units. An attempt
to a quantitative comparison with experiment for the field constant in time
is described in Ref. [14].

3. Results

In Fig. 1 the average velocity of molecules is shown as dependent on the
applied field frequency for three values of the amplitude of the applied field,
ε
−

= 0.1, 0.6 and 0.9. The amplitude ε+ is kept constant, ε+ = 0.3. We
note that for ε

−
= 0.3, the average velocity vanishes identically by symmetry

for any value of the field frequency. For ε
−

= 0.1, we observe a nontrivial
inverse point (not implied by the up–down symmetry of the applied field),
for which again v = 0. Moreover, at ε

−
= 0.6, the process is characterized

by a non-monotonous velocity dependence on the field frequency with an
apparent maximum of v at values f ≈ 10−6. The functional dependence
of the diffusion coefficient D versus field frequency f is displayed in Fig. 2
for ε

−
= 0.1. We note that the plot does not show any particular variation

at the inverse point; as a rule, D decreases with the field frequency except
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Fig. 1. Average velocity v against the field frequency f , for N = 60.
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irregularities at low frequencies, which are due to numerical errors. It is
rather obvious, that in the limit of small f , D achieves its value typical for
a constant field ε, averaged over ε

−
and ε+ with times t

−
, t+ as weights. As

found from Ref. [13], for constant field ε = 0.1 and N = 60 we get D = 0.01,
that is much less than D = 0.18 for ε = 0.3. The weight expressing time
ratio is t+/(t+ + t

−
) = 0.25 and gives the average D(f = 0) about 0.045,

i.e. two times larger than D = 0.025 for f = 4 × 10−5, read from Fig. 2.
As we see, D decreases rather sharply with f at small frequencies.
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Fig. 2. Diffusion coefficient D against the field frequency f , for N = 60.

Fig. 3 shows the velocity v in function of the field amplitude ε
−
. The

results have been obtained for N = 60, ε+ = 0.2, t+ = 2500. The plot
is characterized by two zeros, at ε

−
= 0.03 and ε

−
= 0.2. As a rule, v is

small in this range of relatively small fields showing that we are almost in
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Fig. 3. Average velocity v against ε
−

, for N = 60 and f = 0.77 × 10−4.
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the linear regime. The second zero follows from the up–down symmetry.
We note that the velocity is not constant for this plot, but it varies from
0.44 × 10−4 till 2.8 × 10−4 as ε

−
increases. This is because t

−
depends on

ε
−

through the condition ε
−
t
−

= ε+t+.

As we see in Fig. 4, the diffusion coefficient D increases remarkably
with ε

−
in the same range of parameters. This is in accordance with the

experimental rule that D increases with ε in the nonlinear regime [14].
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Fig. 4. Diffusion coefficient D against ε
−

, for N = 60 and f = 0.77 × 10−4.

In Figs. 5 and 6 we show the steric effects of v and D as dependent on the
molecule length N , for f = 0.77−4. We note that for N < 10, both quantities
display an unexpectedly sharp behavior. In particular, the maximum in the
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Fig. 5. Average velocity v against the molecule length N , for t+ =2500 and ε+ =0.2.

Inverse point at the right side is the same as the one in Fig. 1 for ε
−

=0.1.
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Fig. 6. Diffusion coefficient D against the molecule length N , for t+ = 2500

and ε+ = 0.2.

function D(N) at N = 3 is due to the fact that quite frequently, the molecule
is trapped in a symmetric configuration, hooked on the “gel fiber” exactly
at its centre. Such a configuration restricts, therefore, the motion of the
molecule along the applied field. This effect, however, is not of particular
interest for sufficiently long molecules whose length exceeeds N = 10. In
fact, above N = 10, the diffusion coefficient varies rather slowly. On the
contrary, v shows a maximum near N = 30 and a nontrivial inverse point at
N = 60. This means that the efficiency of the separation has a maximum at
N = 30. We have checked that the position of this maximum does depend
on the applied field amplitude and frequency.

4. Conclusions

Our numerical results indicate, that the velocity v of simulated motion of
DNA molecules is a complex function of the field amplitude and frequency,
it depends also strongly on molecular length. For field intensities ε

−
= ε+

and arbitrary f and N values, the velocity function is zero by symmetry.
Besides that, some other inverse points are found and are not implicated
by the above symmetry requirement. Between the zeros, some maxima of
v appear, as the one in Fig. 5. This behavior is of particular interest for
the resolving power of the GE technique. Best conditions can be achieved if
the velocity varies smoothly with the molecular length and, when simulta-
neously, the diffusion coefficient is small to provide narrow electrophoretic
bands. The results obtained so far do not allow to formulate general rules
for the velocity. In a directed GE polymer motion, the frequency and ampli-
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tude of the applied field should be tuned relevantly by taking into account
the desired length-range of separated molecules. As suggested by the results
presented in Figs. 2, 4, and 6 best experimental results may be expected
for low external field-values, high frequencies and not too short molecules.
That scenario should provide small values of the diffusion coefficient, which
results in a relatively narrow electrophoretic bands.
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