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Starting from the Volterra model of dissociated dislocations, a disloca-
tion dissociated into two Shockley partials under the action of the periodic
Peierls potential and a general external stress is modeled as a pair of cou-
pled Brownian particles in a washboard potential. It is found that mobility
shows a sensitive dependence on the parameters of the interaction between
partials. In particular, a resonant-like behavior of the average velocity,
for equilibrium separation distances close to half-integer multiples of the
period of the Peierls potential, is observed.

PACS numbers: 05.40.–a, 61.72.Lk

1. Introduction

The addition of noise to deterministic motion can give rise to interest-
ing effects, such as stochastic resonance [1], resonant activation [2], and the
mechanisms underlying the behavior of Brownian motors [3,4]. In particular,
transport phenomena in periodic potentials is of relevance in numerous con-
texts. Several applications have been studied in condensed matter physics,
nanotechnology, chemical physics, and molecular biology [3, 5–7].
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As for the study of two coupled Brownian particles in a periodic poten-
tial, attention has been focused on the overdamped limit [8–11], in which
most biologically oriented applications are made [12, 13], and, in a general
regime, on dimer diffusion on surfaces [14–16].

In this paper a model, consisting of two coupled Brownian motors moving
in a periodic substrate potential, is applied to the dynamics of dissociated
dislocations. In Sec. 2 the Volterra model of dissociated dislocations is
recalled and it is shown that when the environment is taken into account
through a Langevin dynamics it naturally leads to the model of two cou-
pled Brownian particles in a washboard potential, illustrated in Sec. 3. This
model presents a sensitive dependence on the main parameters of the in-
teraction between the two particles, as pointed out in Refs. [14–16]. Also,
detailed molecular dynamics simulations of dissociated dislocation dynam-
ics with different equilibrium distances [17,18] have confirmed the prediction
that a lower effective Peierls stress, corresponding to a lower critical tilt, re-
sults from a distance between the partials close to a half-integer multiple of
the potential period, due to the destructive interference of the Peierls po-
tentials felt by the partials [19, 20]. Here the same phenomenon is studied
in Sec. 4 by numerical simulation of the mesoscopic model of two coupled
Brownian particles, focusing on the effect of different equilibrium distances
and coupling strengths on the mobility of the whole system. A resonant-like
behavior in the average velocity as a function of the equilibrium distance is
found and its origin is summarized. Results are discussed in Sec. 5.

2. The Volterra model of dissociated dislocation

In order to consider a concrete example, in the following we refer to a
simple straight screw dislocation in a fcc crystal, but similar considerations
apply to edge dislocations. For dislocations of this type it is energetically
convenient to dissociate into partials dislocations, in the present case two
Schockley partials, in the geometry represented in Fig. 1 [21, 22]. The
two partials are in equilibrium at a separation distance determined by the
competition between a long range repulsive force ∝ 1/r and a constant
attractive force γ0, due to the fact that a stacking-fault ribbon is formed
between the partials. Novel phenomena take place, respect to the case of
a single perfect dislocation, due to the interaction between partials, since
under the action of an external stress partials can both move and change
their separation distance. At low temperatures, a dissociated dislocation
can be approximately described by the Volterra model, which provides its
potential energy in the form [19,20]
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V (x1, x2) = E0 log

(

x2 − x1

2w

)

+ γ0(x2 − x1) + σ⊥b⊥(x2 − x1)

−σ‖b‖(x1 + x2) + A0

[

cos

(

2πx1

a

)

+ cos

(

2πx2

a

)]

. (1)

The first term on the right hand side represents the repulsion between par-
tials and corresponds to a long range E0/r force, where E0 is an energy
factor and r = x2 − x1 (x2 > x1), x1 and x2 representing the coordinates of
the dislocation lines of the partials and w the dislocation core width. The
second term, proportional to the stacking fault energy γ0, represents the
attractive interaction due to the energy required to form the stacking-fault
ribbon between the partials. The third and fourth terms represent the con-
tributions of an external stress applied to the system on the plane defined by
the dislocation lines, with components σ parallel and perpendicular to the
dislocation lines, b being the corresponding Burgers vector components. It is
to be noted that a perpendicular stress σ⊥ only affects the distance between
partials, while a parallel stress σ‖ acts on the whole dislocation complex. Fi-
nally, the periodic Peierls potential felt by the dislocations, represented by
the last two terms, takes into account the discrete nature of the underlying
lattice structure, with a representing the distance between lattice planes in
the x-direction.

Fig. 1. Projections on the (111) plane of a generic fcc crystal of the system geometry

for an edge (left) and screw (right) dislocation. Arrows denote Burgers vectors of

partials. The area enclosed by the dislocation lines of the partials represents the

stacking-fault ribbon.

The description of a dissociated dislocation through the Volterra model
applies well to pure edge or screw dislocations near equilibrium and not
too small separation distances but it represents a simplification in real sit-
uations. In this preliminary investigation the two-dimensional character of



1748 M. Patriarca, P. Szelestey, E. Heinsalu

dissociated dislocations in fcc crystals, due to their mixed edge-screw nature
or revealed by kink–anti-kink pair formation is neglected. Also, the influence
of the external stress on the crystal structure itself — i.e. on the periodic
substrate potential — is not considered. Finally, since the Volterra model
describes a dislocation at zero temperature, in the following Langevin dy-
namics is used to model the interaction with the rest of the crystal, assumed
to be at constant temperature T . Despite its limited range of validity, the
Volterra model can be fruitfully used for analyzing some general features of
dissociated dislocations and their response to an applied field.

An important quantity in dislocation dynamics is the Peierls stress, de-
fined as the minimum stress required to move a straight dislocation in the
Peierls potential at T = 0. The Peierls stress corresponds to the criti-
cal tilt fcr of a one-dimensional particle in a periodic potential. For one-
dimensional motion in the potential V (x) = A0 cos(kx), the critical tilt is
given by fcr = A0k = 2πA0/a (= 2π in rescaled units). However, for a
system with two degrees of freedom moving in a periodic potential with the
same amplitude A0, the critical tilt fcr can be much smaller, depending on
the interaction parameters, as discussed in Sec. 4.

For the following considerations it is convenient to introduce the coordi-
nates

x = x2 − x1 ,

X =
x1 + x2

2
, (2)

which describe the relative and translational motion of the dislocation com-
plex, respectively. Then energy (1) can be rewritten as

V (X,x) = −E0 ln
( x

2w

)

+ γx − fX + A0 cos

(

kx

2

)

cos(kX) , (3)

where we have introduced the effective stacking fault energy γ = γ0 +σ⊥b⊥,
the external tilt f = 2σ‖b‖, and the wave vector k = 2π/a. The first two
terms on the right-hand side only depend on x and describe the interaction
between the partials. The third term represents the external driving force
acting on the dislocation complex and only depends on the center of mass
coordinate X. Finally, the last term is the periodic Peierls potential, which
couples the x and X degrees of freedom, and is shown in Fig. 2.

An estimate of the separation distance ∆x can be obtained by replacing
the Peierls potential A0 cos(kx/2) cos(kX) by its average (zero) value and
then minimizing V (X,x) respect to x, which gives

∆x =
E0

γ
. (4)
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Fig. 2. Peierls potential V (X, x) = A0 cos(kx/2) cos(kX) in the X-x plane. The

total potential (for zero tilt) is obtained by adding the x-dependent interaction

potential, which is of the form K(x − ∆x)2/2 in the harmonic approximation, see

text for details. Notice that the system can move along the X direction going round

the potential barriers, rather than overcoming them across the steepest paths as in

the one-dimensional case.

The variable x is expected to be equal to its equilibrium value ∆x only on
average, undergoing oscillations due to the x–X coupling. On the other
hand, the center of mass coordinate will either oscillate within a potential
valley or, if the tilt assumes large enough values, to vary over the X-axis
range as the whole system moves with a nonzero average drift velocity.

3. Model system

In the following we employ a simplified version of the model illustrated
above, in which the interaction potential between the partials is assumed to
be harmonic. Its form can be obtained by considering the small oscillations
around the equilibrium distance ∆x = E0/γ through an expansion of the
first two term in the potential (3) in powers of difference (x − ∆x). Then,
apart from a constant, one obtains

V (X,x) =
1

2
K(x − ∆x)2 − fX + A0 cos

(

kx

2

)

cos(kX) , (5)

where K = E0/∆x2 = γ2/E0.
We begin by formulating the equations of motion for the particles coor-

dinates x1 and x2, starting from the potential energy function (1), in which
the first two terms are replaced by K(x2 − x1 − ∆x)2/2, according to the
harmonic approximation introduced above. By adding a dissipative and a
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random force to model the interaction with the crystal at constant tempera-
ture T and assuming a mass per unit length m, one obtains the two coupled
Langevin equations

mẍ1 = kA0 sin(kx1) − K(x1 − x2 + ∆x) − ηẋ1 + R1(t) + f ,

mẍ2 = kA0 sin(kx2) − K(x2 − x1 − ∆x) − ηẋ2 + R2(t) + f , (6)

where η is the damping constant and R1(t) and R2(t) are two independent
stochastic Gaussian processes defined by

〈Ri(t)〉 = 0 , i = 1, 2 ,
〈

Ri(t)Rj(t
′)
〉

= 2ηkBTδijδ(t − t′) , i, j = 1, 2 . (7)

Moving to the relative and center of mass coordinates the equations
become

MẌ = kA0 cos

(

kx

2

)

sin(kX) + f − ηẊ + R(t) ,

µẍ = −K(x − ∆x) + kA0 sin

(

kx

2

)

cos(kX) −
ηẋ

2
+ r(t) , (8)

where M = 2m, µ = m/2, and the Gaussian random forces R(t) = [R1(t) +
R2(t)]/2 and r(t) = [R2(t) − R1(t)]/2 are defined by

〈R(t)〉 = 〈r(t)〉 = 0 ,

〈R(t)r(s)〉 = 0 ,
〈

r(t)r(t′)
〉

=
〈

R(t)R(t′)
〉

= ηkBTδ(t − t′) . (9)

The Langevin equations (6) have been integrated numerically, through a
standard Verlet algorithm with space unit a and energy unit A0. The system
evolution along one trajectory was simulated for a time period t = 2000, with
a time step ∆t = 0.05. Time averages have been obtained from that part of
2000 trajectories, after the transient depending on the initial conditions.

4. Results

In numerical simulations a value of (rescaled) temperature T = 0.1, a
friction coefficient η = 1 and a tilt f = 1.9 were used. The value f = 1.9 was
found to be critical for some distance value x ≈ 1.7a, which is suitable to
the following considerations, since it is between an integer and a half-integer
multiple of the separation distance.

The asymptotic average velocity v of the system, in units of the free
asymptotic velocity v0 = f/η, is shown in Fig. 3 in the interval of separation
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Fig. 3. Asymptotic rescaled average velocity v/v0, with v0 = f/η, obtained from

2000 trajectories, for an external tilt f = 1.9 and a coupling constant K = 10, for

different values of the rescaled equilibrium distance ∆x/a between the particles.

Peaks are located at distances equal to half-integer multiples of the period a.

distances ∆x ∈ (a, 3a). Its dependence on ∆x is in fact periodic, with
the same period a of Eqs. (6). While being practically equal to zero for
separation distances ∆x < 1.3a, 1.7a < ∆x < 2.3a, and ∆x > 1.7a, close to
integer multiples of a, it is appreciably larger than zero in the intervals ∆x =
(1.3a, 1.7a) and ∆x = (2.3a, 2.7a), with sharp peaks in correspondence of
half-integer multiples of a, namely ∆x = 3a/2 and ∆x = 5a/2.

The origin of the peaks is to be found in the fact that for half-integer
multiples of the ratio ∆x/a the optimal situation takes place, in which the
two particles can help each other’s motion. The underlying mechanism can
be illustrated from two different points of view.

In the picture of two coupled particles in a one-dimensional washboard
potential, for distances x = (n + 1/2)a, with n an integer number, one
partial going toward a potential well pushes the other partial climbing up
a potential barrier or vice versa. Were it possible to maintain the distance
exactly at a half integer multiple of the lattice period, the effective substrate
potential felt by the center of mass degree of freedom would be identically
zero according to Eqs. (6), since the substrate forces acting on the single
particles would cancel each other, leading to a zero critical tilt.

Alternatively, one can reinterpret Eqs. (8) in terms of a two-dimensional
analogy, as describing Brownian motion of a point-like particle in the X–x
plane in the presence of potential (5). The periodic part of the potential
is plotted in Fig. 2. One can see that the particle can cross the poten-
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tial landscape moving around the potential peaks under the action of an
external force, rather than through the steepest paths. The force neces-
sary to ensure a running solution will be in general much smaller than in
the one-dimensional case. One can also notice that the optimal trajectories
correspond to a constant distance x = (n + 1/2)a, with n integer.
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Fig. 4. As in Fig. 3, for different values of the coupling strength between the

partials.
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Fig. 5. Maximum value of the asymptotic rescaled average velocity v/v0, with

v0 = f/η, corresponding to the peak at ∆x = 1.5a in Fig. 4, but for different

values of the rescaled coupling strength.
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In Fig. 4 the average velocity is plotted versus distance for different
values of the coupling constant K. One can notice that the peak height
increases monotonically with K. The ideal situation in which the particles
are constrained at a fixed separation distance equal to a half-integer multiple
of the period and the critical tilt is zero can in practice be realized by setting
∆x = (n + 1/2)a and a large enough value for K in Eq. (5), which reduces
the oscillations of x. This is shown in Fig. 5, where the maximum values of
the average velocity, taken from the curves in Fig. 4, are plotted as a function
of the coupling constant K. For large enough values of K, the asymptotic
value corresponding to the free case, that is v/v0 = 1, is recovered.

Finally, in Fig. 6 the asymptotic average velocity is plotted versus the
equilibrium distance ∆x for different values of the applied tilt f . As in Fig. 4,
the region in which the average velocity is different from zero determined
the critical tilt, in turn depending on the equilibrium distance between the
particles.
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Fig. 6. As in Fig. 3, for different values of the applied tilt.

5. Conclusions

It has been shown that a system made up of two coupled Brownian
particles in a washboard potential presents a resonant-like behavior in the
mobility as a function of the separation distance, corresponding to half-
integer multiples of the period of the underlying potential. Depending on
the values of the other system parameters, the increase of the average veloc-
ity can be drastic and the system can also switch from a steady to a running
solution. A physical interpretation of this effect has been illustrated and
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a two-dimensional analogy of the model suggested. The model has been
applied to dissociated dislocations in fcc materials in the low temperature
regime, where they are described by the Volterra model, but the effect con-
sidered here should take place in any other physical system which can be
modeled similarly.

A remark should be added concerning an apparent paradox, which espe-
cially arises in the case of a wide dislocations (∆x ≫ a). The considerations
done above suggest that in principle one can set the Peierls stress equal
to a very small value if one makes the separation distance ∆x equal to a
half-multiple of the lattice constant a. This can be achieved by a suitable
value of external stress σ⊥ in Eq. (1), inducing a change ∆x of an amount,
which in general does not have to be larger than a/2. Such a change of the
distance of a small percentage however would induce drastic changes in the
plastic properties of the material.

The solution of the paradox is in the fact that the interaction coupling
constant K and the equilibrium distance ∆x are not independent quanti-
ties in the model, since K = γ2/2E0 ≡ E0/2∆x2, as explained in Sec. 2.
Thus small coupling constants correspond to large separation distances while
strongly interacting partials are at a small distance from each other. The
ratio ∆x/a will correspondingly have a relevant role only when the distance
∆x is not much larger than a and partials strongly interact. In this case a
change of half a period requires a large stress and can represent a significant
fraction of the equilibrium distance ∆x. On the other hand, the effect of
changing the separation distance becomes negligible for wide dislocations,
where ∆x ≫ a, since partials are weakly coupled to each other and in prac-
tice behave independently, so that each partial sees the same effective Peierls
stress.
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