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We study the motion of active Brownian particles in 2d-external poten-
tials. We give the stationary probability distribution in the four-dimensional
phase space in several representations and show that it is maximized above
the deterministic integrals of motion.
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1. Introduction

In this paper we study Brownian particles including an energy input from
the surrounding modeled as negative friction [1–4]. This self moving objects
were called Active Brownian particles [5,6] and stand for a simplified model of
active biological motion [7–11]. It goes beyond Brownian or easy diffusional
motion due to the nonlinear friction and due to being in nonequilibrium.
We study them in symmetric external potentials. In particular, we will look
up the motion in parabolic and Coulomb-like potentials.

Despite a wide diversity of possible applications with multifaceted fea-
tures [12] our aim will be the investigation of the stationary probability
density. From the view point of dynamical systems active Brownian motion
on a plane represent a nonlinear oscillator with two degrees of freedoms and
moving in the four dimensional phase space. Hence, the introduction of
amplitude and phase variables appears to be favorable as well as the consid-
eration of integrals of motion like energy and angular momentum. As will
be seen attractors of these integrals will be provided with maximal proba-
bility in the noise driven case if in addition to the nonlinear dissipative and
external forces random excitations act on the particles.
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The plan of the paper is in brief as follows: At first we will develop the
model of active Brownian particles and reconsider the deterministic noise free
case. Later on, we include the noisy forces and formulate Langevin equations
in the Stratonovich calculus [13]. From the corresponding Fokker–Planck
equations we find expressions for the stationary distributions in several lim-
its. In contrast to former studies where identical expressions were presented
our approach delivers the first systematic derivation of the stationary distri-
bution densities.

2. Equations of motions

The motion of Brownian particles with general velocity- and space-depen-
dent friction in a space-dependent potential U(~r) can be described by the
Langevin equation:

d~r

dt
= ~v , m

d~v

dt
= ~Fdiss −∇U(~r) + ~F(t) . (1)

We assume that ~r = {x1, x2} and ~v = {v1, v2} are two-dimensional vectors,

respectively, for the position and the velocity of the considered particle. ~Fdiss

is a dissipative force which is in the simplest case given by a friction law

~Fdiss = −mγ(~r,~v)~v . (2)

Therein γ(~r,~v) is the friction function of the particle with mass m being at
position ~r and moving with velocity ~v. The friction γ(~r,~v) may depend on

space and velocity. ~F(t) is a Gaussian stochastic force with strength Dp,
independent components and a δ-correlated time dependence

〈

~F(t)
〉

= 0 ;
〈

Fi(t)Fj(t
′)
〉

= 2Dp δi,j δ(t− t′) . (3)

In thermal equilibrium systems and in case of Stokes friction γ(~r,~v) =
γ0 = const. the noise strength of the momentum Dp is connected with
the friction coefficient γ0 due to the fluctuation-dissipation theorem: Dp =
mkBTγ0 where T is the temperature and kB is the Boltzmann constant.

We consider velocity-dependent friction as a mechanism accelerating the
Brownian motion. Velocity-dependent friction plays an important role e.g.

in certain models of the theory of sound [14, 15]. In the simplest case we
may assume the following friction force of the individual Brownian particle:

γ(~r,~v) = −γ1 + γ2~v
2 = γ1

(

~v 2

v2
0

− 1

)

= γ2(~v
2 − v2

0) . (4)
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This Rayleigh–Helmholtz model is a standard model studied in many papers
on Brownian dynamics [1, 12, 16, 17]. We note that v2

0 = γ1/γ2 defines a
special value of the velocities where the friction is zero.

Due to the nonlinear pumping slow particles are accelerated and fast
particles are damped. At definite conditions our active friction functions
have a zero corresponding to stationary velocities v0, where the friction
function and the friction force disappear. Consideration of energy balance
with H = m~v 2/2 + U(~r) results in ( ~F(t) = 0)

d

dt
H(t) = −mγ(~v ) ~v 2 , (5)

hence for small velocities energy is supplied to the particle whereas for large
velocities if γ(~v) is positive H(t) decreases. In both cases, the deterministic
trajectory of our system moving on a plane is attracted by a cylinder in the
four-dimensional phase space given by

v2
1 + v2

2 = v2
0 . (6)

We are interested mainly in the statistical descriptions, i.e. in the prob-
ability P (~r,~v, t) to find the particle at location ~r with velocity ~v at time t.
As it is well known, this distribution function P (~r,~v, t), which corresponds
to the Langevin equations (1), obeys a Fokker–Planck equation:

∂P

∂t
+ ~v

∂P

∂~r
−

1

m
∇U(~r)

∂P

∂~v
=

∂

∂~v

[

γ(~r,~v)~v P +Dv
∂P

∂~v

]

, (7)

where we have introduced Dv =
Dp

m2 .

3. Deterministic motion in external potentials

with rotational symmetry

In the following, we specify the potential U(~r) as a symmetric parabolic
potential:

U(x1, x2) =
1

2
mω2

0 (x2
1 + x2

2) . (8)

First, we restrict the discussion to a deterministic motion, which then is
described by four coupled first-order differential equations:

ẋ1 = v1 , v̇1 = −γ (v1, v2) v1 − ω2
0x1 ,

ẋ2 = v2, v̇2 = −γ (v1, v2) v2 − ω2
0x2 .

(9)

For the one-dimensional Rayleigh model it is well known that this system
processes a limit cycle corresponding to sustained oscillations with the en-
ergy H0 = mγ1

γ2
. For the two-dimensional case we can show by simulation
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and theoretical considerations that two limit cycles in the four-dimensional
phase space are developed [16]. The projections of both these periodic mo-
tions to the {v1, v2} plane is the circle

v2
1 + v2

2 = v2
0 = const. (10)

The projection to the {x1, x2} plane also corresponds to a circle

x2
1 + x2

2 = r20 = const. (11)

Due to the condition of equilibrium between centripetal and centrifugal
forces on the limit cycle we have

mv2
0

r0
= mr0ω

2
0 . (12)

Therefore the radius of the limit cycle is given by

r0 =
v0
ω0

. (13)

From equation (12) follows

m

2
v2
0 =

mω2
0

2
r20 . (14)

This means we have equal distribution of potential and kinetic energy on the
limit cycle [5]. As for the harmonic oscillator in one-dimensional case, both
parts of energy contribute the same amount to the full energy. Therefore
the energy of motions on the limit cycle, which is asymptotically reached, is
double the kinetic energy

H −→ H0 = mv2
0 . (15)

The energy is a slow (adiabatic) variable which allows a phase average with
respect to the phases of the rotation [16].

The explicite form we discuss on behalf of polar coordinates in the four-
dimensional phase space. Introducing v(t) and ϕ(t) according to equations

v1 = v(t) cos (ϕ(t)) , v2 = v(t) sin (ϕ(t)) (16)

and in the coordinate space r(t) and ψ(t)

x1 = r(t) cos (ψ(t)) , x2 = r(t) sin (ψ(t)) (17)

one obtains the dynamics
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ṙ = v cos θ ,
v̇ =

(

γ1 − γ2v
2
)

v − ω2
0r cos θ ,

θ̇ =

(

ω2
0r

v
−
v

r

)

sin θ ,

ψ̇ =
v

r
sin θ (18)

with θ(t) = ϕ− ψ.
The stationary solutions can be readily found. The difference of the two

angles θ approaches two values, θ = ±π/2. These two solutions resemble
the two limit cycles with v0 = γ1/γ2, r0 = v0ω0 and two stationary rotations

(clockwise and counter clockwise) with stationary angular velocity ψ̇ = ϕ̇ =
±ω0

Representing one cycle in the four-dimensional phase space reads with
arbitrary initial phase Φ:

x1 = r0 cos(ω0t+ Φ) , v1 = −r0ω sin(ω0t+ Φ) ,

x2 = r0 sin(ω0t+ Φ) , v2 = r0ω cos(ω0t+ Φ) . (19)

This means, the particle rotates even at strong pumping with the frequency
given by the linear oscillator frequency ω0. The trajectory defined by the
above four equations looks like a hoop in the four-dimensional phase space.
Most projections to the two-dimensional subspaces are circles or ellipses
however there are to subspaces namely {x1, v2} and {x2, v1} where the pro-
jection is like a rod.

The second limit cycle is obtained by use of different initial conditions
and replacing ω0 → −ω0 which yields

x1 = r0 cos(ω0t− Φ) , v1 = −r0ω sin(ω0t− Φ) ,

x2 = −r0 sin(ω0t− Φ) , v2 = −r0ω cos(ω0t− Φ) . (20)

This second cycle forms also a hula hoop which is different from the first
one, however both limit cycles have the same projections to the {x1, x2} and
to the {v1, v2} plane. The projection to the {x1, x2} plane has the opposite
direction of rotation in comparison with the first limit cycle. The projec-
tions of the two hula hoops on the {x1, x2} plane or on the {v1, v2} plane are
two-dimensional rings (figure 1). The hula hoop distributions intersect per-
pendicular the {x1, v2} plane and the {x2, v1} plane (see figure 1). The
projections to these planes are rod-like and the intersection manifold with
these planes consists of two ellipses located in the diagonals of the planes
(see figure 1).



1762 L. Schimansky-Geier, W. Ebeling, U. Erdmann

-2

-1

 0

 1

 2

 3

x
1

-2
-1

 0
 1

 2

x
2

-2

-1

 0

 1

 2

v
1

Fig. 1. Stroboscopic plot of the 2 limit cycles for driven Brownian motion. We

show projections of solutions for v0 = 1 to the subspace {x1, x2, v1}. Parameters:

γ1 = 2, Dv = 0.01 and ω0 = 1.

In order to construct later solutions for stochastic motions we need be-
side H = mv2

0 other appropriate invariants of motion. Looking at the first
solution (19) we see, that the following relation is valid

v1 + ω0x2 = 0 ; v2 − ω0x1 = 0 . (21)

In order to characterize the first limit cycle we introduce the invariant

J+ = H − ω0L =
m

2
(v1 + ω0x2)

2 +
m

2
(v2 − ω0x1)

2 , (22)

where we have introduced the angular momentum L = m(x1v2 − x2v1). We
see immediately that J+ = 0 holds on the first limit cycle which corresponds
to positive angular momentum. In order to characterize the second limit
cycle from equation (20) we use the invariant

J− = H + ω0L =
m

2
(v1 − ω0x2)

2 +
m

2
(v2 + ω0x1)

2. (23)

We see that on the second limit cycle, which corresponds to negative angular
momentum, holds J− = 0.

4. Dynamics in inharmonic potentials

In the present section we will discuss briefly several extensions of the
theory developed in the previous section. At first we will discuss the case
of inharmonic potentials. For the general case of radially symmetric but
inharmonic potentials U(r) the equal distribution between potential and
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kinetic energy mv2
0 = mω2

0r
2
0 which leads to ω0 = v0/r0 = ω is no more valid.

It has to be replaced by the more general condition that on the limit cycle
the attracting radial forces are in equilibrium with the centrifugal forces.
This condition leads to

mv2
0

r0
= |U ′(r0)| . (24)

If v0 is given, the equilibrium radius may be found from the implicit relation

v2
0 =

r0
m

|U ′(r0)| . (25)

Then the frequency of the limit cycle oscillations is given by

ω2
0 =

v2
0

r20
=

|U ′(r0)|

mr0
. (26)

For the case of quartic oscillators

U(r) =
k

4
r4 (27)

we get the limit cycle frequency

ω0 =
k1/4

v
1/2

0

. (28)

Alternatively for attracting Coulomb forces (two charges on a plane)

U(r) = −
Ze2

r
(29)

we find the stable radius

r0 =
Ze2

mv2
0

, (30)

and the limit cycle frequency

ω0 =
mv3

0

Ze2
(31)

and

H0 = −
1

2
mv2

0 ; L0 = ±
Ze2

v0
. (32)

We note that this expression diverges for v0 → 0 (similarly as in quantum
theory the Bohr radius diverges for h→ 0).
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If the equation (25) has several solutions, the dynamics might be much
more complicated, e.g. we could find Kepler-like orbits oscillating between
the solutions for r0. In other words we may find then beside driven rotations
also driven oscillations between the multiple solutions of equation (25).

An interesting application of the theoretical results given above, is the
following: Let us imagine a system of Brownian particles which are pairwise
bound by a Lennard–Jones-like potential U(r1 − r2) to dumb-bell-like con-
figurations. Then the motion consists of two independent parts: The free
motion of the center of mass, and the relative motion under the influence of
the potential. The motion of the center of mass is described by the equa-
tions given in the previous section and relative motion is described by the
equations given in this section. As a consequence, the center of mass of the
dumb-bell will make a driven Brownian motion but in addition the dumb-
bells are driven to rotate around there center of mass. What we observe then
is a system of pumped Brownian molecules which show driven translations
with respect to their center of mass. On the other side the internal degrees
of freedom are also excited and we observe driven rotations and in general (if
equation (25) has several solutions) also driven oscillations. In this way we
have shown that the mechanisms described here may be used also to excite
the internal degrees of freedom of Brownian molecules.

5. Stochastic motion in symmetric external potentials

Since the main effect of noise is the spreading of the deterministic attrac-
tors we may expect that the two hoop-like limit cycles are converted into
a distribution looking like two embracing hoops with finite size, which for
strong noise converts into two embracing tires in the four-dimensional phase
space. In order to get the explicite form of the distribution we may introduce
different variables, like the amplitude and phase description as used in the
previous sections. Here we introduce the energy and angular momentum as
variables and derive reduced densities. We point out that throughoutly the
Stratonovich calculus is used [13].

On the basis of the amplitude and phase representation (16) and (17) we
get for the Hamiltonian

H =
m

2
v(t)2 +

m

2
ω2

0r(t)
2 . (33)

The angular momentum is given as

L = m(x1v2 − x2v1) = mv(t)r(t) cos(θ) . (34)
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Values corresponding to the two limit cycles are

L = +L0 ; L = −L0 ; L0 =
mv2

0

ω0

(35)

with v2
0 = γ1/γ2. Both limit cycles are located on the sphere with H = mv2

0.
Considering harmonic oscillators and using equipartition of potential and

kinetic energy (see equation (15)) we find for motions on the limit cycle
v2 = H/m. Assuming that v2 ≃ H/m holds also near to the limit cycle, the
dynamic system is converted to a canonical dissipative system with

γ(v2) ≃ γ

(

H

m

)

= γH(H) . (36)

Outgoing from the equations (9) we come for the Rayleigh-model to the
energy balance

d

dt
H(t) = −γH(H)H +

√

2DHHξH(t) , (37)

where ξH(t) = ξ1 cos(ϕ) + ξ2 sin(ϕ) is again Gaussian white noise and
DH = Dvm. This corresponds to the Fokker–Planck equation in energy
representation

∂

∂t
P (H, t) =

∂

∂H

[

(γH(H)H −DH)P +DH
∂

∂H
H P

]

(38)

which stationary solution reads

P0(H) = N exp

[

−
1

DH

∫

γH(H)dH

]

. (39)

The most probable value of the energy is the energy on the limit cycle. In
case of the Rayleigh model it is

H̃ = H0 =
γ1

γ2

= mv2
0 . (40)

The stationary distribution can be shaped in compact shape (H ≥ 0)

P0(H) = N exp

[

−
γ2

2m2Dv
(H −H0)

2

]

(41)

which is a Gaussian at positive energies.
This probability is in fact distributed on the surface of the four-dimen-

sional sphere. By using equation (33) we get for the Rayleigh model of
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pumping in the approximation of equipartition of energy the following dis-
tribution of the coordinate with r2 = x2

1 + x2
2

P0(x1, x2) ≃ exp

[

γ1ω
2
0

Dv
r2

(

1 −
r2

2r20

)]

. (42)

We see in figure 2 that the probability crater is located above the trajectory
obtained from simulations of an Active Brownian particle. This way the
maximal probability corresponds indeed to the deterministic limit cycle.
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Fig. 2. Probability density for the Rayleigh-model represented over the {x1, x2}
plane. (a) The probability density (42). (b) Contour plot of P0(r) superimposed

with data points out of simulations of the Active Brownian dynamics. Parameters:

γ1 = 2, Dv = 0.1 and ω0 = 1

So far we represented only a projection on the {x1, x2} plane. The full
probability distribution in the four-dimensional phase space is not constant
on the four-dimensional sphere H = mv2

0 as suggested by equation (39)
but should be concentrated around the limit cycles which are closed curves
on the four-dimensional sphere H = mv2

0. This means, only a subspace
of this sphere is filled with probability. The correct stationary probability
has the form of two noisy distributions in the four-dimensional phase space,
which look like hula hoops. This characteristic form of the distributions was
confirmed also by simulations (see figure 2 and [3, 16]). The projections of
the distribution to the {x1, x2} plane and to the {v1, v2} plane are noisy tori
in the four-dimensional phase space. The hula hoop distribution intersects
perpendicular the {x1, v2} plane and the {x2, v1} plane. The projections
to these planes are rod-like and the intersection manifold with these planes
consists of two ellipses located in the diagonals of the planes.
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In order to refine the description we find the distribution of the angular
momenta. We derive from the Langevin equations (9)

dL

dt
= −γ

(

v2
)

L+
√

2Dvrm ξL(t) (43)

with ξL = ξy cos(ϕ) − ξx sin(ϕ) being Gaussian white noise. On the limit
cycles it holds

L(t) = ±mr(t)v(t), v(t) = ω0 r(t), (44)

respectively, the different signs for the different cycles and r(t) = r0 and
v(t) = v0. To find a closed description we assume that the equations (44)
hold and replace

r =

√

L

mω0

, v2 = L
ω0

m
, γ(v2) = γ

(

L
ω0

m

)

= γL(L) , (45)

where we have used the positive sign and hence L > 0. It follows

dL

dt
= −γL(L)L+

√

2DLLξL(t) (46)

with

DL =
Dvm

ω0

. (47)

The corresponding Fokker–Planck equation is similar to the energy repre-
sentation

∂

∂t
P (L, t) =

∂

∂L

[

(γL(L)L − DL)P +DL

∂

∂L
LP

]

. (48)

Obviously its stationary solution reads

P0(L) = N exp

[

−
1

DL

∫

γL(L)dL

]

(49)

and eventually after introducing the most probable angular momentum L0 =
mr0v0 = H0/ω0 at the limit cycle the stationary solution becomes (L > 0)

P0(L) = N exp

[

−
γ2ω

2
0

2m2Dv
(L− L0)

2

]

. (50)

A corresponding solution can be found for the second cycle by replacing
L0 → −L0 for momenta with L < 0. Since due to symmetry both values
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are provided with same probability one may expect a linear superposition
of the two solutions

P0(L) = N

(

exp

[

−
γ2ω

2
0

2m2Dv
(L− L0)

2

]

+ exp

[

−
γ2ω

2
0

2m2Dv
(L+ L0)

2

])

.

(51)
The given method does not provide a complete solution in the four-

dimensional phase space, but gives us a good idea about the projections
on different planes. In order to find a distribution in the four-dimensional
phase space we combine the previously found distributions and introduce
the invariants J+, J− which leads to the following ansatz:

P0(x1, x2, v1, v2) = N exp

[

−
γ2

2Dp
(H −H0)

2

]

×

(

exp

[

−
γ2

2Dp
J2

+

]

+ exp

[

−
γ2

2Dp
J2
−

])

. (52)

Equation (3) in mind Dp = m2Dv. We may convince ourselves that this
ansatz agrees with all projections derived above. Furthermore, it is in agree-
ment with the general ansatz derived in earlier work from information the-
ory [18]. Since our new expression for the stationary distribution does not
contain any parameter characterizing the concrete potential it may be ap-
plied to arbitrary radially symmetric potentials, in particular we may use it
for describing the stationary distributions for Coulomb confinement.

6. Summary

In this article we have extended the theory of Brownian motion for sys-
tems which remain far from equilibrium due to permanent energy uptake
out of the environment. We considered particles with negative friction at
low velocities and (positive) dissipation at high velocities and which are in
addition affected by random forces.

The corresponding evolution equations for the probability densities of Ac-
tive Brownian particles, the Fokker–Planck equations for appropriate choices
of the phase space coordinates are derived and the stationary solutions of
it are calculated. Simple confinements, which can be formulated in poten-
tial form, have been regarded. These confinements like external fields could
be a good approximation to explain stable rotational states as they can
be observed in active biological motion. It was shown that the stationary
probability densities possess maxima above the integrals of motions which
characterize the limit cycles. These are the Hamiltonians corresponding to
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the constant energy according to the pumping and the constant positive and
negative angular momenta corresponding to clockwise and counterclockwise
rotations of particles in symmetric parabolic potentials.
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ter “Complex Nonlinear Processes” of German Science foundation (DFG-
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